
Semantic Derivation Verification

Geoff Sutcliffe, Diego Belfiore
Department of Computer Science, University of Miami

P.O. Box 248154, Coral Gables, FL 33124, USA
Email: geoff@cs.miami.edu, diego@mail.cs.miami.edu

Abstract

Automated Theorem Proving (ATP) systems are complex
pieces of software, and thus may have bugs that make them
unsound. In order to guard against such unsoundness, the
derivations output by an ATP system may besemantically
verified by a trusted system that checks the required semantic
properties of each inference step. Such verification may need
to be augmented by structural verification that checks that in-
ferences have been used correctly in the context of the overall
derivation. This paper describes techniques for semantic ver-
ification of derivations, and reports on their implementation
in theDVDV verifier.

1. Introduction
Automated Theorem Proving (ATP) systems are complex
pieces of software, and thus may have bugs that make them
unsound or incomplete. While incompleteness is common
(sometimes by design) and tolerable, when an ATP system
is used in an application it is important, and in some cases
mission critical, that it be sound, i.e., that it never report that
a solution has been found when this is not the case. Directly
verifying the soundness of an implemented state-of-the-art
ATP system seems impractical, due to the complexity of the
low level coding that is typically used (McCune & Shumsky-
Matlin 2000). Thus other techniques are necessary, and sev-
eral possibilities are evident.

First, an ATP system may beempiricallyverified, by test-
ing it over a large number of problems. If the system con-
sistently returns the correct (at least, expected) answer,con-
fidence in the system’s soundness may grow to a sufficient
level. For example, it is commonly accepted that Otter (Mc-
Cune 2003b) is sound, thanks to its extensive accepted usage
by many researchers over many years. Second, the deriva-
tions output by a system may besyntacticallyverified. In
syntactic verification each of the inference steps in a deriva-
tion are repeated by a trusted system, to ensure that the
inferred formula can be inferred from the parent formulae
by the inference rule stated. This is the approach taken in
the IVY system (McCune & Shumsky-Matlin 2000), in the
Omega proof checker after reduction to ND form (Siekmann
2002), and is planned for the in-house verifier for Vampire

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(Riazanov & Voronkov 2002). A serious disadvantage of
syntactic verification is that the verification system must im-
plement all of the inference rules of all of the ATP systems
to be verified (which is impossible to do in the present for
inference rules of the future). Third, an appeal may be made
to higher order techniques, in which a 1st order proof is
translated into type theory and checked by a higher order
reasoning system (Harper, Honsell, & Plotkin 1993). This
is the approach taken by Bliksem’s in-house verifier (Bezem
& de Nivelle 2002). A weakness of this approach is the
introduction of translation software, which may introduce
or even hide flaws in the original 1st order proof. Fourth,
the derivations output by an ATP system may besemanti-
cally verified. In semantic verification, the required seman-
tic properties of each inference step are checked by a trusted
ATP system. For example, deduction steps are verified by
checking that the inferred formula is a logical consequence
of the parent formulae. This is the approach taken in the low
level checker of the Mizar system (Rudnicki 1992), has been
adopted by several in-house verifiers for contemporary ATP
systems, has been implemented using the “hints” strategy in
Otter (Veroff 1996), and forms the core of the verification
process described in this paper.

The advantages of semantic verification include: indepen-
dence of the trusted ATP system from the ATP system that
produced the derivation (this advantage also applies to syn-
tactic checking and higher order techniques, and contrasts
with the internal proof checking in systems such as Coq
(Bertot & Casteran 2004) and Isabelle (Paulson & Nipkow
1994)); independence from the particular inference rules
used in the ATP system - see Section 2; and robustness to
the preprocessing of the input formulae that some ATP sys-
tems perform - see Section 2.2. Semantic verification is able
to verify any form of derivation, not only proofs, in which
the required semantic properties of each inference step are
known.1 However, semantic verification of inference steps
where the inferred formula is not a simple logical conse-
quence of the premises, e.g., Skolemization and splitting,is
not straight forward. At this stage no general purpose se-
mantic verification technique has been developed for such
inference steps, and techniques that are specific to each of

1That is the reason for using the term “derivation verification”
rather than the more common “proof checking”.



the inference rules are used.
All the forms of verification that examine ATP systems’

derivations implicitly include somestructural verification,
i.e., verification of properties of the derivation structure,
rather than of the individual inferences within the deriva-
tion. A basic structural check is that the specified parents
of each inference step do exist in the derivation, and more
complex checks are required in certain situations. Structural
checking is the basis for the high level checker of the Mizar
system.

This paper describes techniques for semantic verification
of derivations, and reports on their implementation in the
DVDV verifier.2 The techniques were developed to verify
derivations in classical 1st order logic, and have been partic-
ularly applied to derivations in clause normal form (CNF).
However, the principles are more widely applicable. Sec-
tion 2 describes how various parts of a derivation are seman-
tically verified, and Section 3 describes structural verifica-
tions. Section 4 gives some details of the implementation of
DVDV. Section 5 examines the extent to which these veri-
fication techniques can be trusted. Section 6 concludes the
paper.

2. Semantic Verification
A derivation is a directed acyclic graph (DAG), whose leaf
nodes are formulae (possibly derived) from the input prob-
lem, whose non-leaf nodes are formulae inferred from par-
ent formulae, and whose root node is the final derived for-
mula. Figure 1 shows this structure. For example, a CNF
refutation is a derivation whose leaf nodes are the clauses
formed from the axioms and the negated conjecture, and
whose root node is the empty clause.

Figure 1: Derivation DAG

L L

L

LL

L D

F

D

D D

Input Problem

Semantic verification of a derivation has two notionally
distinct parts. First, it is necessary to check that each leaf
node is a formula (possibly derived) from the input prob-
lem. Second, it is necessary to check that each inferred for-

2The acronym has nothing to do with “derivation verifier” - it
stands for “Diego’s Version of the Dashti Verifier”, named after the
programmers.

mula has the required semantic relationship to its parents.
The required semantic relationship of an inferred formula
to its parents depends on the intent of the inference rule
used. Most commonly an inferred formula is intended to
be a logical consequence of its parents, but in other cases,
e.g., Skolemization and splitting, the inferred formula has a
weaker link to its parents. A comprehensive list of inferred
formula statuses is given in (Sutcliffe, Zimmer, & Schulz
2004).

The techniques described here verify:

• that leaf formulae are, or are derivable from, the input
problem formulae;

• that inferred formulae are logical consequences of their
parents;

• three forms of splitting inferences;

• some structural requirements of derivations, particularly
of splitting steps in CNF refutations.

The verification of logical consequences is described first
because the technique is also used in checking leaf formulae
and splitting steps.

2.1 Logical Consequences
The basic technique for verifying logical consequences is
well known and quite simple. The earliest use appears to
have been in the in-house verifier for SPASS (Weidenbach
et al. 2002). For each inference of a logical consequence
in a derivation, anobligationproblem, to prove the inferred
formula from the parent formulae, is formed. If the infer-
ence rule implements any theory, e.g., paramodulation im-
plements most of equality theory, then the corresponding
axioms of the theory are added as axioms of the obligation
problem. The obligation problem is then handed to a trusted
ATP system. If the trusted system solves the problem, i.e.,
finds a proof, the obligation has beendischarged.

In the case of CNF derivations, the obligation problem is a
first order form (FOF) problem, formed from the universally
quantified forms of the parents and the inferred formula. If
an obligation is discharged by an ATP system that converts
the problem to CNF and finds a refutation, then the univer-
sally quantified inferred formula in the obligation problem
is negated before conversion to CNF.

This verification of logical consequences ensures the
soundness of the inference steps, but does not check forrel-
evance(Anderson & Belnap 1975). As a contradiction in
first order logic entails everything, an inference step with
contradictory parents can soundly infer anything. A deriva-
tion containing two examples of such inferences is shown in
Figure 2. If such inferences should be rejected, an obliga-
tion problem consisting of only axioms is formed from the
parents of the inference, and must be discharged by being
shown to be satisfiable. (This verification step is definitely
not applicable to the final inference of a refutation.) Due to
the semi-decidability of first order logic, such satisfiability
obligations cannot be guaranteed to be discharged. Three al-
ternative techniques, described here in order of preference,
may be used to show satisfiability. First, a finite model of
the axioms may be found using a model generation system



such as MACE (McCune 2003a) or Paradox (Claessen &
Sorensson 2003). Second, a saturation of the axioms may
be found using a saturating ATP system such as SPASS or
E (Schulz 2002b). Third, an attempt to show the axioms to
be contradictory can be made using a refutation system. If
that succeeds then the obligation cannot be discharged. If
it fails it provides an incomplete assurance that the formu-
lae are satisfiable. In addition to being useful for rejecting
inferences from contradictory parents, relevance checking is
also useful in the verification of splitting steps, as described
in Section 2.3.

Figure 2: Irrelevant Inferences

p ~p

~r

q

r

2.2 Leaf Formulae
To verify that a leaf formula is a formula (possibly derived)
from the input problem, an obligation to prove the leaf for-
mula from the input formulae must be discharged. This
technique can normally be used directly, as shown in the
left hand side of Figure 3. In the case that the derivation
being verified is a CNF refutation, and obligations are dis-
charged by finding a CNF refutation, more careful control is
required. A refutation of the input clauses and the negated
leaf clause does not necessarily mean that the leaf clause isa
clause (possibly derived) from the input clauses, because the
refutation may be of the input clauses alone. The solution is
to partition the input clauses into two satisfiable parts, e.g.,
one part containing all the positive clauses and the other part
containing all the non-positive (mixed and negative) clauses,
as shown in the right hand side of Figure 3. Two alternative
obligation problems are then formed, one consisting of the
first part and the negated leaf clause, and the other consisting
of the second part and the negated leaf clause. If the trusted
CNF system discharges either of these, then the leaf clause
is a clause (possibly derived) from the input clauses. If it
fails, that may be because the leaf formula is derived from
parents that are not all in one of the two partitions of the in-
put clauses. Alternative partitioning may then be tried, e.g.,
a predicate partition.

An advantage of the semantic technique for verifying leaf
formulae is that it is somewhat robust to preprocessing infer-
ences that are performed by some ATP systems. For exam-
ple, Gandalf (Tammet 1998) may factor and simplify input
clauses before storing them in its clause data structure. The
leaves of refutations output by Gandalf may thus be derived
from input clauses, rather than directly being input clauses.
These leaves are logical consequences of the original input
clauses, and can be verified using this technique.

If the input problem is in FOF, and the derivation is a CNF

Figure 3: Verification of Leaf Formulae

Obligation 
problem

Trusted 
ATP system

Input 
Problem

Positive 
clauses

Obligation 
problem

Trusted 
CNF system

Non-positive 
clauses

Obligation 
problem

Trusted 
CNF system

OR

CNF 
Problem

Conjecture AxiomsAxiomsAxioms Conjecture

refutation, the leaf clauses may have been formed with the
use of Skolemization. Such leaf clauses are not logical con-
sequences of the FOF input formulae. The verification of
Skolemization steps has not yet been addressed, and remains
future work (see Section 6). This is a form of verification
unsoundness, which can be tolerated, as discussed further in
Section 5.

2.3 Splitting
Many contemporary ATP systems that build refutations for
CNF problems usesplitting. Splitting reduces a CNF prob-
lem to one or more potentially easier problems by dividing
a clause into two subclauses. Splitting may be done recur-
sively; a clause in a subproblem may be split to form sub-
subproblems, etc. There are several variants of splitting that
have been implemented in specific ATP systems, including
explicit splittingas implemented in SPASS (also calledex-
plicit case analysisin (Riazanov & Voronkov 2001)), and
forms of pseudo splittngas implemented in Vampire and
E (also calledsplitting without backtrackingin (Riazanov
& Voronkov 2001)). The verification of splitting steps has
been omitted in existing ATP systems’ in-house verification
programs.

2.3.1 Explicit Splitting Explicit splitting takes a CNF
problemS ∪ {L ∨ R}, in which L andR do not share any
variables, and replaces it by two subproblemsS ∪ {L} and
S ∪{R}. These are referred to as theL andR subproblems,
respectively. If both the subproblems have refutations i.e.,
are unsatisfiable, then it is assured that the original problem
is unsatisfiable. In SPASS’ implementation of explicit split-
ting, when a refutation of theL (R) subproblem has been
found,¬L (¬R) is inferred, with the root of the subprob-
lem’s refutation,L (R), andL ∨ R as parents. This inferred
clause is called theanti-kidof the split. It is a logical conse-
quence ofS, and can be used in any problem that includesS.
Semantic verification of explicit splitting steps and the anti-
kid inferences are described here. Constraints required for
the soundness of explicit splitting are structurally verified,
as described in Section 3.

To verify a explicit splitting step’s role in establishing the
overall unsatisfiability of the original problem clauses, an
obligation to prove¬(L ∨ R) from {¬L,¬R} must be dis-
charged. The soundness of the split is then assured as fol-



lows: The ATP system’s (verified) refutations of theL and
R subproblems show that every model ofS is not a model
of L or of R, and thus every model ofS is a model of¬L
and of¬R. The discharge of the obligation problem shows
that every model of¬L and¬R is a model of¬(L∨R), and
therefore not a model ofL ∨ R. Thus every model ofS is
not a model ofL ∨ R, andS ∪ {L ∨ R} is unsatisfiable.

Discharging the obligation problem by CNF refutation
also ensures thatL andR are variable disjoint - a simple ex-
ample illustrates this: Let the split clause bep(X) ∨ q(X).
L is p(X) andR is q(X), i.e., they are not variable disjoint.
The obligation problem is to prove¬∀X(p(X) ∨ q(X))
from {¬∀Xp(X),¬∀Xq(X)}. When converted to CNF,
the variables in the two unit formulae are converted to
Skolem constants, producing the CNF problem{p(X) ∨
q(X),¬p(sk1),¬q(sk2)}. This clause set is satisfiable, and
the obligation is not discharged.

While discharging the splitting obligation problem as-
sures the soundness of the overall refutation, it does not en-
sure that the splitting step was performed correctly. For ex-
ample, it would be incorrect to split the clausep ∨ q into p
and¬p, but the obligation to prove¬(p∨ q) from {¬p, p} is
easily discharged because of the contradictory axioms of the
obligation problem. In such cases the refutations of the two
subproblems,S ∪ {p} andS ∪ {¬p}, show thatS is unsat-
isfiable alone. If such incorrect splits should be rejected,the
discharge of the obligation must also check for relevance, as
described in Section 2.1.

An anti-kid A of theL (R) subproblem of a split is veri-
fied by discharging an obligation to proveA from¬L (¬R).
The refutation of theL (R) subproblem shows thatS ⇒ ¬L
(S ⇒ ¬R), and thus by modus ponensA is a logical conse-
quence of any subproblem that includesS.

2.3.2 Pseudo Splitting Pseudo splitting takes a CNF prob-
lem S ∪ {L ∨ R}, in whichL andR do not share any vari-
ables, and replaces{L∨R} by either (i){L∨ t,¬t∨R}, or
(ii) {L ∨ t1, R ∨ t2,¬t1 ∨ ¬t2}, wheret andti are new
propositional symbols. Vampire implements pseudo split-
ting by (i) and E implements it by (ii). The replacement does
not change the satisfiability of the clause set – any model of
the original clause set can be extended to a model of the
modified clause set, and any model of the modified clause
set satisfies the original one (Riazanov & Voronkov 2001;
Schulz 2002a). The underlying effect of (i) is to introduce a
new definitional axiom,t ⇔ ¬∀L, and of (ii) is to introduce
two new definitional axioms,t1 ⇔ ¬∀L andt2 ⇔ ¬∀R.
Variants of these forms of splitting, that allowL andR to
have common variables, and that split a clause into more
than two parts (Riazanov & Voronkov 2001), are treated
with generalizations of the verification steps described here.

Pseudo splitting steps are verified by discharging obliga-
tions that prove the equivalence of the split clause and the
replacement clauses. These are done in two parts: First,
an obligation to prove the split clause from the replacement
clauses must be discharged. To check that this obligation is
not discharged because the axioms of the obligation problem
(the replacement clauses) are unsatisfiable, the dischargeof
the obligation problem must also check for relevance, as de-

scribed in Section 2.1. Second, obligations to prove each of
the replacement clauses from the split clause and the new
definitional axiom(s) must be discharged.

As is the case with explicit splitting, the obligations can-
not all be discharged ifL andR share variables. For ex-
ample, in the second form of pseudo splitting ((ii) above),
an obligation to prove¬t1 ∨ ¬t2 from the split clause and
the definitional axioms must be discharged. Let the split
clause bep(X) ∨ q(X). L is p(X) and R is q(X), i.e.,
they are not variable disjoint. The obligation problem is to
prove¬t1 ∨¬t2 from {∀X(p(X) ∨ q(X)),t1 ⇔ ¬∀p(X),
t2 ⇔ ¬∀q(X)}. When the problem is converted to CNF,
two Skolem constants are generated, producing the CNF
problem{p(X) ∨ q(X), ¬ t1 ∨ ¬ p(sk1), ¬ t2 ∨ ¬q(sk2),
t1 ∨ p(X), t2 ∨ q(X), t1, t2}. This clause set is satisfiable,
and the obligation is not discharged.

3. Structural Verification

Structural verification checks that inferences have been used
correctly in the context of the overall derivation.

For all derivations, two structural checks are necessary:
First, the specified parents of each inference step must ex-
ist in the derivation. When semantic verification is used to
verify each inference step then the formation of the obliga-
tion problems relies on the existence of the parents, and thus
performs this check. The check can also be done explicitly.
Second, there must not be any loops in the derivation. For
this check it is sufficient to check that there are no cycles
in the derivation, using a standard cycle detection algorithm,
e.g., Kruskal’s or Prim’s algorithm.

For derivations that claim to be CNF refutations, it is nec-
essary to check that the empty clause has been derived. If
explicit splitting is used, multiple such checks are necessary,
as described below.

For refutations that use explicit splitting, structural checks
of certain splitting steps are required. In such a refutation
there are two possible reasons for splitting a clause. The
first reason is to produce two easier subproblems, both of
which are refuted. The second reason is to refute just one of
the subproblems in order to form an anti-kid that is then used
in another part of the overall refutation. Structural checking
is required in the first case. Clauses that were split for the
first reason can be found by tracing the derivation upwards
from the root nodes (a derivation with explicit splits has mul-
tiple root nodes), but not passing through anti-kid nodes,
noting the split clauses that are found. The splitting steps
performed on these split clauses then require two structural
checks: First, it is necessary to check that both subproblems
have been refuted. This is done by ensuring that both theL
andR clauses have a false descendant in the refutation DAG.
Second it is necessary to check thatL (R) and it’s descen-
dants are not used in the refutation of theR (L) subproblem.
This is done by examination of the ancestors of the false root
clause of the refutation of theR (L) subproblem.

For refutations that use pseudo splitting, a structural check
is required to ensure that the “new propositional symbols”
genuinely are new, and not used elsewhere in the refutation.



4. Implementation and Testing
The semantic verification techniques described in Sec-
tions 2 and 3 have been implemented in theDVDV sys-
tem. DVDV is implemented in C, using theJJParser li-
brary’s input, output, and data structure support. The in-
puts toDVDV are a derivation in TSTP format (Sutcliffe,
Zimmer, & Schulz 2004), the input problem in TPTP (Sut-
cliffe & Suttner 1998) or TSTP format, trusted ATP systems
to discharge obligation problems, and a CPU time limit for
the trusted ATP systems for each obligation problem. Sys-
temOnTPTP (Sutcliffe 2000) is used to run the trusted ATP
systems. The overall architecture and use ofDVDV is shown
in Figure 4.

Figure 4: TheDVDV Architecture

Input Problem

ATP System

Derivation

Line of inference

Line of inference

Line of inference

Line of inference

DVDV

Structural 
checks

Semantic 
checks

Obligation 
problems

Trusted 
ATP system

SystemOnTPTP

Obligations that are successfully discharged are reported.
If an obligation cannot be discharged, or a structural check
fails, DVDV reports the failure. As is explained in Section 5,
a failure to discharge an obligation does not necessarily im-
ply a fault in the derivation, and thus a command line flag
provides the option to continue after a failure.

DVDV has been tested on solutions from SPASS and EP
(EP is a combination of E and a proof extraction tool) for
FOF theorems and CNF unsatisfiable sets in TPTP version
2.7.0, as contained in the TSTP solution library (Sutcliffe
URL). Testing DVDV on the large number of solutions in
the TSTP has provided a high level of confidence in the
soundness of DVDV (the soundness and completeness of
derivation verifiers, as opposed to the soundness of an ATP
system whose derivations are verified, is discussed in Sec-
tion 5). However, it is expected that all the derivations in
the TSTP are correct, and therefore failure to find fault with
them is expected. In order to test the completeness of DVDV,
faults have been inserted by hand into existing derivations,
and DVDV has successfully found these. In order to build
a higher level of confidence in the completeness of DVDV
it would be necessary to have a test library of faulty deriva-
tions - something that seems difficult to find or generate.

5. Trusting the Verifier
A derivation verifier iscompleteif it will find every fault in
a derivation. A derivation verifier issoundif it claims to

have found a fault only when a fault exists. Conversely to
the case of ATP systems, completeness is more important
than soundness - if a verifier mistakenly claims a fault the
derivation can be further checked by other means, but if a
fault is bypassed the flawed derivation may be accepted and
used.

All verifiers that rely on a trusted system must contend
with the possibility that the trusted system is unsound or
incomplete. This is the case for all except the first of the
verification techniques described in Section 1. In the case
of IVY, the trusted system is implemented in ACL2 (Kauf-
mann, Manolios, & Strother Moore 2000), and has been ver-
ified in ACL2 as being sound in the context of finite mod-
els (it is believed that this may be extended to infinite mod-
els). In this case the trust has ultimately been transferredto
ACL2’s verification mechanisms. In Bliksem’s case the 1st
order proof is translated into type theory with in-house soft-
ware, and the higher order reasoning system Coq is used for
testing the type correctness of the translated proof. The com-
bination of the translator and Coq thus form the trusted sys-
tem. For semantic verification trust is placed in the ATP sys-
tems that are used to discharge the obligation problems. In
the first order case, even if the trusted systems are theoreti-
cally complete and correctly implemented, the finite amount
of resources allocated to any particular run means that the
trusted systems are practically incomplete.

For semantic verification, incompleteness of the trusted
system for theoretical, implementation, or resource limit
reasons, means that some proof obligations may not be dis-
charged. In such a situation the verifier can make a possibly
unsound claim to have found a fault. Although undesirable,
this is not catastrophic, as described above. In contrast, un-
soundness of the trusted system leads to incompleteness of
the semantic verifier, and must be avoided. The question
then naturally arises, “How can the trusted system be veri-
fied (as sound)?” The first approach to verifying a system
- extensive use, provides one exit from this circle of doubt.
The trust may be enhanced by making the trusted system as
simple as possible. The simpler the system, the less likely
that there are bugs. At the same time, simpler systems are
less powerful. If a derivation has to be semantically verified
using a weak trusted system, that requires that the inference
steps be reasonably fine grained. This may be a desirable
feature of derivations, depending on the application. Thus,
as the trusted system’slimbo bar is lowered, the level of
trust in the trusted system rises and the granularity of the in-
ference steps must get finer. The lowest level for the limbo
bar seems to be something like the “obvious inferences” de-
scribed in (Davis 1981) and (Rudnicki 1987). InDVDV the
trusted systems are configured to use small but (refutation)
complete sets of inference rules, e.g., Otter is configured to
use binary resolution, factoring, and paramodulation.

A further technique to enhance the level of confidence in
semantic verification iscross verification. For a given in-
put problem and a set of ATP systems, cross-verification re-
quires that every system be used as the trusted system for
verifying the inference steps of every other system’s solu-
tion to the problem. In this manner it is ensured that either
all or none of the systems are faulty.



6. Conclusion
This paper describes techniques for semantic verification of
derivations, focussing particularly on derivations in 1storder
logic. The techniques have been implemented in theDVDV
system, resulting in a verifier that can verify any TSTP for-
mat derivation output by any ATP system. It has been suc-
cessfully tested on proofs from SPASS and EP. This is the
first systematic development of a general purpose derivation
verifier.

In the future it is hoped to deal with Skolemization in
FOF to CNF conversion. Some aspects of user level veri-
fication will also be integrated - the first check will be that
the problem’s axioms are satisfiable, to avoid proofs due to
contradictory axioms. The second check will be to check
that all formulae output as part of a derivation are necessary
for the derivation - already in this work it has been noticed
that some ATP systems output superfluous formulae.

References
Anderson, A., and Belnap, N. 1975.Entailment: The Logic
of Relevance and Necessity, Vol. 1. Princton University
Press.

Bertot, Y., and Casteran, P. 2004.Interactive Theorem
Proving and Program Development - Coq’Art: The Calcu-
lus of Inductive Constructions. Texts in Theoretical Com-
puter Science. Springer-Verlag.

Bezem, D., and de Nivelle, H. 2002. Automated Proof
Construction in Type Theory using Resolution.Journal of
Automated Reasoning29(3-4):253–275.

Claessen, K., and Sorensson, N. 2003. New Techniques
that Improve MACE-style Finite Model Finding. In Baum-
gartner, P., and Fermueller, C., eds.,Proceedings of the
CADE-19 Workshop: Model Computation - Principles, Al-
gorithms, Applications.

Davis, M. 1981. Obvious Logical Inferences. In P., H.,
ed.,Proceedings of the 7th International Joint Conference
on Artificial Intelligence, 530–531.

Harper, R.; Honsell, F.; and Plotkin, G. 1993. A Frame-
work for Defining Logics.Journal of the ACM40(1):143–
184.

Kaufmann, M.; Manolios, P.; and Strother Moore, J. 2000.
Computer-Aided Reasoning: An Approach. Kluwer Aca-
demic Publishers.

McCune, W., and Shumsky-Matlin, O. 2000. Ivy: A
Preprocessor and Proof Checker for First-Order Logic. In
Kaufmann, M.; Manolios, P.; and Strother Moore, J., eds.,
Computer-Aided Reasoning: ACL2 Case Studies, num-
ber 4 in Advances in Formal Methods. Kluwer Academic
Publishers. 265–282.

McCune, W. 2003a. Mace4 Reference Manual and Guide.
Technical Report ANL/MCS-TM-264, Argonne National
Laboratory, Argonne, USA.

McCune, W. 2003b. Otter 3.3 Reference Manual. Techni-
cal Report ANL/MSC-TM-263, Argonne National Labora-
tory, Argonne, USA.

Paulson, L., and Nipkow, T. 1994.Isabelle: A Generic
Theorem Prover. Number 828 in Lecture Notes in Com-
puter Science. Springer-Verlag.
Riazanov, A., and Voronkov, A. 2001. Splitting without
Backtracking. In Nebel, B., ed.,Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
611–617. Morgan Kaufmann.
Riazanov, A., and Voronkov, A. 2002. The Design and Im-
plementation of Vampire.AI Communications15(2-3):91–
110.
Rudnicki, P. 1987. Obvious Inferences.Journal of Auto-
mated Reasoning3(4):383–393.
Rudnicki, P. 1992. An Overview of the Mizar Project. In
Proceedings of the 1992 Workshop on Types for Proofs and
Programs, 311–332.
Schulz, S. 2002a. A Comparison of Different Tech-
niques for Grounding Near-Propositional CNF Formulae.
In Haller, S., and Simmons, G., eds.,Proceedings of the
15th Florida Artificial Intelligence Research Symposium,
72–76. AAAI Press.
Schulz, S. 2002b. E: A Brainiac Theorem Prover.AI
Communications15(2-3):111–126.
Siekmann, J. 2002. Proof Development with OMEGA.
In Voronkov, A., ed.,Proceedings of the 18th International
Conference on Automated Deduction, number 2392 in Lec-
ture Notes in Artificial Intelligence, 143–148. Springer-
Verlag.
Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem
Library: CNF Release v1.2.1.Journal of Automated Rea-
soning21(2):177–203.
Sutcliffe, G.; Zimmer, J.; and Schulz, S. 2004. TSTP Data-
Exchange Formats for Automated Theorem Proving Tools.
In Zhang, W., and Sorge, V., eds.,Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems,
number 112 in Frontiers in Artificial Intelligence and Ap-
plications. IOS Press.
Sutcliffe, G. 2000. SystemOnTPTP. In McAllester, D.,
ed., Proceedings of the 17th International Conference on
Automated Deduction, number 1831 in Lecture Notes in
Artificial Intelligence, 406–410. Springer-Verlag.
Sutcliffe, G. URL. The TSTP Solution Library.
http://www.TPTP.org/TSTP.
Tammet, T. 1998. Towards Efficient Subsumption. In
Kirchner, C., and Kirchner, H., eds.,Proceedings of the
15th International Conference on Automated Deduction,
number 1421 in Lecture Notes in Artificial Intelligence,
427–440. Springer-Verlag.
Veroff, R. 1996. Using Hints to Increase the Effective-
ness of an Automated Reasoning Program: Case Studies.
Journal of Automated Reasoning16(3):223–239.
Weidenbach, C.; Brahm, U.; Hillenbrand, T.; Keen, E.;
Theobald, C.; and Topic, D. 2002. SPASS Version 2.0.
In Voronkov, A., ed.,Proceedings of the 18th International
Conference on Automated Deduction, number 2392 in Lec-
ture Notes in Artificial Intelligence, 275–279. Springer-
Verlag.


