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Abstract 
Ontological issues have been widely researched, especially 
in the semantic web where ontologies are developed to 
strengthen the semantic layer of web information. As a 
result, the proliferation of ontologies necessitates a mapping 
approach. The existing mapping approaches are generally 
developed for generic ontologies such as linguistic 
ontologies. We envisage ontologies as formal knowledge 
bases basing on which mobile intelligent agents will 
communicate and reason with in order to perform 
collaborative and distributive problem resolution in a 
dynamic environment. Furthermore, the volatility of the 
environment often requires approximation in reasoning. We 
present a similarity-based approach to ontology mapping for 
ontologies formally modeled in logic. The approach is 
based around a similarity function and uses SLD resolution 
as the basis to measure semantic likeness between concepts. 
In validation of our concept, the approach is experimented 
in the network security domain. 

1. Introduction 
 The definition of ontology mapping can be defined as 
the matching of every concept from the source ontology to 
corresponding concept from the target ontology. Mapping 
can be either exact- or similarity- based. Exact mapping 
accepts total equivalence or none, while similarity-based 
mapping relaxes the constraint by multiply extending 
mathematical equality to values in the range of [0,1]. The 
latter approach, deemed as more practical in a dynamic 
environment, allows concepts to be mapped with similarity 
degree assigned. The similarity degree, in the range of 
[0,1], is measured by a similarity function S. S is 
conceptually the same as similarity indexes in similarity-
based fuzzy approximate reasoning. The choice of S is 
dependent on the domain and the employed similarity 
model(s). The standard similarity models include 
geometric, transformation, featural (Tversky 1997) and 
network models. Geometric model measures the distance 
between points, while transformation model is suitable for 
visual configuration. Featural model measures number of 
common and differing features and network model 
assesses hierarchical distances between concepts. 
 The existing ontology mapping approaches are mainly 
based on informal ontologies with the exception 
(Kalfoglou, & Schorlemmer 2002). (Rodriguez, & 
Egenhofer 2003), (A. Doan et al. 2002) and (Wiesman, 
Roos, & Vogt 2001) present mapping approaches on 

ontologies that contain generic concepts semantically 
modeled in relation to WordNet. The mapping approaches 
base on ideas ranging from text categorization, set and 
graph comparison to machine learning techniques. The 
notion of similarity is often made explicit by the definition 
of a similarity function. (Kalfoglou, & Schorlemmer 2002) 
attempts to express ontologies with generic concepts in 
prolog logic. Information flow and channel theories are 
used to logically deduce mapping between concepts. 
However, the proposed mapping has to be exact and 
approximation is not possible. 
 Approximate reasoning is a domain relevant to our 
logical and similarity aspects of ontology mapping. 
(Yeung, & Tsang 1997) presents works on approximate 
reasoning with the use of similarity functions on fuzzy 
sets. Beside fuzzy logic based similarity, (Loia, Senatore, 
& Sessa 2001) presents a similarity-based SLD resolution 
on classical logic. Approximate solutions with associated 
approximation degree can still be computed when exact 
inference process fails. The main idea is to relax the 
equality constraint by using similarity relations between 
constants and predicates. The similarity relations are 
associated with values in the range of [0,1] that will be 
used to compute the approximation degree.  
 We propose a mapping approach for formally 
represented ontologies. Ontologies constructed with formal 
semantic definitions are essential for intelligent reasoning. 
The capabilities of agents in problem resolution guarantee 
their future importance. In our experimentation domain, 
security management, there are extensive studies on agent 
technology such as (R. Zhang et al. 2001). The ontological 
issues exhibited in the security domain, concern the 
heterogeneity and quantity of security information. 
Intelligent reasoning on the security information is 
required for correlation and to detect cyber attacks. 
Ontology plays an important role not only in the 
alleviation of the interoperability problem, but also the 
enabling of precise communications between mobile 
agents. 
 This paper is organized as follow: Section 2 presents the 
semantic model basing on which our ontology mapping 
will be performed. Section 3 details the approximate 
mapping methodology. Section 4 experiments the ideas 
from Section 2 and 3 in the domain of security intrusion 
detection. Lastly, Section 5 summarizes the works along 
with future research directions. 



2. Semantic Model  
 Semantic model provides a guideline on how to capture 
meanings. It serves as a schema that governs the scope of 
semantic to be modeled. There are semantic models 
developed in other domains for different purposes. For 
example, in the image processing domain, meanings of 
images are captured by paying attention to their 
appearance. The purpose is to formalize visual 
characteristics in order to facilitate image query retrieval. 
Semantic models are also used in domains: proof-carrying 
code, validation of authentication protocol … etc. We are 
interested in a model that is capable of modeling dynamic 
concepts such as events, processes.  
 In contrast to most existing static semantic models, we 
consider the semantics of events, processes as dynamic. 
That is, their internal structures and variable states vary 
over time. The existing ontological approaches where 
concepts are semantically modeled with respect to class 
references, structures and so on, fail to adequately capture 
the notion of time. In the network management domain, the 
set of concepts include not only static object (e.g. network 
object – routing table), but also computational entities (e.g. 
process – security monitoring operation). The practice of 
using slots (Protégé) to represent individual static semantic 
relationships such as part-of, function and so on, is not 
sufficient to capture the more complex semantic 
relationships such as the state transition of network objects 
that are manipulated by a process. We stress that 
Semantics is distributed Over Space (SoS) and Over Time 
(SoT). The SoS by itself already requires the use of 
complex semantic relationships to model sophisticated 
object interactions. The addition of SoT further 
complicated the notion of semantics at abstract concept 
level. Thus, a more flexible mechanism is required to 
express and capture semantics. We suggest the use of first 
order logic (FOL) as the underlying representation 
language of ontologies. The powerful expressiveness of 
FOL and its success as a semantics specification language 
for concepts such as programming languages, motivate our 
choice. Throughout the paper we denote the semantics of a 
concept C that is modeled in FOL as L(C). In order to 
facilitate precise mapping and similarity measurement, the 
different aspects i of semantics (such as class references, 
structures) are modeled in separate FOL statements, 
denoted Li(C). 

3. Mapping Methodology 
In this section, we propose a similarity- and logic- 

based ontology mapping approach. The approach has two 
components. Section 3.1 proposes a logic-based similarity 
function S to measure similarity between two concepts. 
Section 3.2 discusses a strategy for locating concepts to be 
compared by S. That is, given a subject concept that has to 
be mapped, the strategy guides the search through the 
ontology such that the most similar concept can be 

identified. The two components together form our 
ontology mapping methodology. 

3.1. Concept Mapping 
Let C1 and C2 be two concepts from respective ontologies 
O1 and O2. We translate the problem of similarity 
assessment between C1 and C2 to similarity measurement 
between L(C1) and L(C2). By definition, L(C1) is logically 
equivalent to L(C2) if they have the same logical content. 
L(C1) is equivalent to L(C2), syntactically if L(C1) ↔ 
L(C2) is a theorm and; semantically if  SemLogic(C1) ↔ 
SemLogic(C2) is a tautology. In order to prove semantic 
equivalence, we use SLD resolution to show that L(C1) 
and L(C2) have the same truth value in every model.  
3.1.1. Semantic Equivalence 
 C1 and C2 are semantically equivalent if L(C1) and L(C2) 
are logically equivalent. That is, if we can infer through the 
process of SLD resolution that L(C1)╞ L(C2) and L(C2) ╞ 
L(C1), then every model of C1 is a model of C2 and vice 
versa. The property of logical entailment╞ allows us to 
deduce some form of semantic equivalence, at least as 
good as how well the semantics is abstracted by L(C1) and 
L(C2). 
3.1.2. Semantic Similarity 
 When either L(C1) ╞ L(C2) or L(C2) ╞ L(C1) is proven, 
a certain degree of similarity exists between C1 and C2. In 
fact, equivalence is a special case where similarity is at 
maximum. We aim to assess similarity between L(C1) and 
L(C2) when any ╞ direction fails. Our purpose is to 
measure semantic similarity such that the underlying 
logical reasoning mechanism is not altered. In order to do 
so, we first of all analyze and interpret logic semantically 
such that semantics can be estimated by the complexity of 
logical statements. We define a logical statement as a set of 
assertions and an assertion as a disjunctive constituent: 
 
Logical Statement as Semantic Assertions 
SemLogic(C) is a set of semantic assertions joined by and 
only by logical operators: /\ and ↔. 
 
Semantic Assertion 
Semantic assertion can be viewed as a logical assertion or 
combination of logical assertions. Let P = {p1, p2 … pn} be 
the set of logical predicates defined over some domain D. 
A semantic assertion is a subset of P joined by and only by 
logical operators: ∨ and . 
 
 According to the featural similarity models, similarity 
can be assessed by measuring the number of common and 
differing assertions. Our idea of similarity measurement is 
based around the paradigm of database query where 
approximate matching is performed implicitly between 
loosely specified query and accurate database records. 
The notion of logical statement as a set of assertions is 
structurally the same as a database record or query 
compositing of attributes. The values of semantic 
assertions symbolize attribute values or query constraints. 



The matching between query constraints and database 
record values is therefore similar to the matching between 
L(C1) and L(C2). Hence, the attempt in deriving L(C1) ╞ 
L(C2) can be viewed as Database Record ╞ Query. By 
employing the database record-query analogy, we are 
proposing an asymmetric similarity measurement scheme 
(how close is Database Record to Query). In fact, the 
asymmetric property is an integral essential feature of our 
ontology mapping strategy presented in Section 3.2. 
Throughout the forth coming discussion, lets assume the 
following scenario for similarity computation: L(C1) ╞ 
L(C2), that is how close is L(C1)  to L(C2). 
 The major difference between the database query 
paradigm and our settings is that attributes are explicitly 
labeled and semantic assertions are not. The identification 
problem is fortunately overcome by employing SLD 
resolution as part of the similarity assessment mechanism. 
SLD resolution is a logical process that attempts to prove 
╞. Its derivation can be formalized as follow:  
 
Given a logic program P in first order language and a 
goal G. The derivation consists a sequence G0, G1, … Gm 
of negative clauses from G, associated with a sequence Q0, 
Q1 … Qm of variants of clauses from P, and a sequence of 
substitution θ0, θ1 … θm. Gi and Qi resolve into Gi+1, and 
G0, G1 … Gm yields the corresponding computed 
substitution θ0, θ1 … θm. 
 
As mentioned earlier, a semantic assertion is composed of 
predicates. The SLD resolution of L(C1) ╞ L(C2) involves 
the identification of Qi such that Gi can be resolved into 
Gi+1. Qi is technically a variant of semantic assertion of C1. 
Each resolution from Gi to Gi+1 contributes to the 
progression towards the inference of a semantic assertion 
from C2 in C1. The identification of assertions to be 
compared is therefore implicit to SLD resolution. We 
propose a similarity function, at conceptual level, that 
measures how many semantic assertions from C2 can be 
inferred in C1.We define Complementres(p,p’) as the 
process of predicates complementation during resolution 
when p = ¬p’. That is, the process of using Qi to resolve 
with Gi into Gi+1. When all compositional predicates of 
assertion an is complemented, we denotes it as 
Complementres(an).  
 
Definition 1: Similarity Function (Abstract)  

Sabstract (L(C1), L(C2)) = 
|{a | a ∈ L(C2), Complementres(a)}|  / |L(C2)| 

where a denotes assertion, || denotes size; and 
|SemLogic(C2)| denotes the number of assertions in 
SemLogic(C2). 
 
Sabstract measures the number of semantic assertions from 
C2 that can be inferred from C1. The similarity value 
approaches 1 as more assertions of C2 can be inferred from 
C1. Note that Sabstract assumes that if any semantic assertion 
can be inferred in C1, it is completely inferred. That is, 
each assertion inference contributes 1 / |L(C2)| to Sabstract. 
We generalize the similarity function to not only consider 

how many assertions but also how much of them can be 
inferred. Consider the scenario of comparing two value 
sets: {a,b} and {a,b,c}. A similarity measure between the 
two value sets is to separately compute similarity for each 
value pair from the sets. The similarity value between the 
sets is the maximum possible sum of the similarity values 
for each pair, divided by the number of pairs formed. 
Assume the following matrix that indicates similarity value 
for the pairs: 

 a b Null 
a 1 0.3 0 
b 0.3 1 0 
c 0.5 0 0 

The maximum summation would be the pairs (a,a) (b,b) 
and (c null), hence the similarity value of 2 / 3 between the 
sets. We are interested in introducing such a similarity 
matrix to Sabstract such that partially inferred semantic 
assertions can be assessed and correctly weighted in the 
similarity function. We introduce a function ∂ that serves 
as a similarity matrix. ∂ measures how well a semantic 
assertion is inferred. 
 
Definition 2: Resolution Quality of Assertion  

∂ (a) = ∀ pi ∈ a  (Max( Ω (pi, Qi) )) 
where a is an assertion from C2 such that ¬a ∈ Gj; pi  
denotes a predicate, Qi is the variant of clauses from C1 
used along with Gi to resolve into Gi+1; and Ω, defined 
below in Definition, is a function that assesses how well pi 
is resolved during the resolution from Gi to Gi+1. 
 
Ω employs information theory to measure how well a 
predicate is resolved during SLD resolution. We argue that 
the more random the information is embedded in an 
assertion (Qi in Defintion 2), the worse it is in resolving 
the predicate pi. We analyze exhaustively how a predicate 
p(x) can be complemented: 
 
A. (1) ~p(x)  ∈ Gi  (2) p(x) ∈ Qi   
  (2) complements (1) through identity 
B. (1) ~p(x)  ∈ Gi            (2) p(x) ∨ q(y)  ∈ Qi   
  (2) complements (1) with q(y) remains 
Given an axiom: h(x)  p(x) 
C. (1) ~p(x)  ∈ Gi  (2) h(x) ∈ Qi   
  (2) complements (1) through axiom 
D. (1) ~p(x)  ∈ Gi            (2) h(x) ∨ q(y)  ∈ Qi   
  (2) complements (1) through axiom with q(y)  
     remains 
 
Given the cases above, we employ information theory to 
quantify the information randomness of (2). The well 
known formula, – log2 prob, determines the information 
content of an event that has prob chance of occurring. The 
formula ∑probi * -log2 probi is referred as entropy. 
Entropy, on the one hand, can be viewed as the 
measurement of information content of an event sequence. 
On the other hand, it can be deemed as measurement of the 
randomness and impurity of information. The latter notion 



is more suitable in semantic sense. The randomness of 
information embedded in (2) provides an indication in 
measuring how well (1) is resolved. The main idea is that 
the more random the information content is, the less 
accurate (2) is in resolving with (1) from Gi to Gi+1. When 
information randomness is 0, Ω should return maximum 
value 1. Hence we have Ω (in range of [0,1]) as follow: 
 
Definition 3: Resolution Quality of Predicate 

Ω (pi, Qi) = ℮-Entropy(Qi)* Sp(pi,p’) 
where p’ is a predicate from Qi; and Sp is a function that 
measures the similarity between pi and p’. Sp can take the 
simple function 1 / 1 + d(Cpi, Cp’) to measure the 
hierarchical distance between the corresponding concepts 
of the predicates (or other approaches).  
 
The entropy of Qi can be calculated according to the cases 
A, B, C and D. In case A, Qi being p(x) firmly states that 
p(x) is true, hence the randomness of information is 0. In 
case B, Qi being p(x) \/ q(y) vaguely specifies that p(x) 
might be true. The information content is random in that 
p(x) can be estimated as dominating prob = 0.5 of the 
information content. In fact p(x), in a uniform context, can 
be generalized as dominating 1 / N of the information 
content where N is the number of predicates in Qi. Similar 
to case A, the information randomness of (2) in case C is 0. 
However, Sp takes the similarity value between p(x) and 
h(x) instead of 1. Finally, in case D, the information 
randomness of (2) is similarly interpreted as in case B.  
 In complex scenarios where A, B, C and D co-exist, we 
select the case with maximum Ω. Having introduced the 
similarity matrix function ∂, the similarity function Sabstract 
can be redefined as: 
 
Definition 4: Similarity Function (Logic) 

SLogic(L(C1), L(C2)) = 
(∀a ∈ L(C2) ∑∂(a) )  / |{a | a ∈ L(C2)}| 

 
SLogic measures how similar L(C1) is to L(C2). We further 
generalize SLogic to S such that similarity is measured 
between the actual concepts. Assume that a concept C 
whose semantics is modeled in logic with the different 
semantic aspects represented in separate FOL statements. 
We define S as: 
 
Definition 5: Similarity Function (Concept) 

S(C1,C2) = 
∑ω(i)*S(Li(C1),Li(C2)) 

where ω(i) is an application dependent weight distribution 
function that controls the importance of different aspects I 
in affecting S. 
 

3.2. Ontology Mapping  
Now that we have a similarity function S, the process of 
ontology mapping could be defined as a search procedure 
for every concept C1 ∈ O1, a concept C2 ∈ O2 such that 

S(C2,C1) has maximum value. We present such search 
procedure in this section. W 
 e observe that If L(C1)╞ L(C2), but not L(C2) ╞ L(C2), 
C2 is a more general concept than C1. That is, every model 
of C1 is also a model of C2, but not vice versa. Hence the 
set of world models of C1 must be a subset of C2. We 
employ this observation and generalize it in terms our 
similarity concepts. C2 is conceptually more general than 
C1 if S(C1,C2) > S(C2,C1). That is, if C1 is more similar to 
C2 than C2 is to C1, then C2 is intuitively more general. In 
fact, the observation of C1 having a subset of world models 
of C2 is the special case where S(C1,C2) = 1 and S(C2,C1) < 
1. We are actually suggesting the following: 
 
More General Rule: S(C1,C2) > S(C2,C1)  
C2 is more general                         if S(C1,C2)=1 
C2 is approximately more general     otherwise 
 
More Specific Rule: S(C1,C2) < S(C2,C1) 
C2 is more specific           if S(C2,C1)=1 
C2 is approximately more specific   otherwise 
 
The taxonomy of an ontology is structured according to the 
object-oriented paradigm where generalization 
relationships edge the parent and child concepts together. 
By employing our proposed rules, we are guided on the 
search within the ontology. The strategy is presented as 
follow: 
 
Assume C2 belong to the ontology O2 is the subject 
concept to be mapped. O1 is the ontology where the 
closest concept C1 is be searched. Let c be some concept in 
O1. 
 
Step1: Start with c = root of O1, and an empty cache H 

that is used to store concepts. 
Step2: If c is more general than C2, push the search 

downwards to children of c. 
Step3: Select amongst the children of c, a node c’ that 

produces highest S between c’ and C2. Set c = 
c’. If c’ is more general than C2, repeat Step 2 on 
c’. Else if c’ is more specific than C2, go to Step 
4. Else, go to Step6. 

Step4: Cache c in H. Select amongst the siblings of c, a 
node c’ that produces highest S between c’ and 
c’ is more general than C2. If any such c’ exists, 
repeat Step 2 on c’ with c = c’. Else, go to Step 
5. 

Step5: Select amongst the concepts in cache H, a node 
c’, that has highest S between c’ and C2. Return 
c’ as the closest match for C2. 

Step6: If S(c,C2) = 1 i.e. c is an exact match of C2, 
return c as the closest match for C2. Else 
compute S values between C2 and every child c’ 
of c. If ∃c’ S(c’,C2) > S(c,C2), perform Step 2 on 
c. Else cache c in H and go to Step 5. 

 



4. Application: Intrusion Detection 
 In this section, we validate our mapping methodology 
by applying it to the network security domain. We identify 
intrusion detection as an area that requires approximate 
matching. Section 4.1 outlines the modeling of security 
events with respect to SoS and SoT. Section 4.2 details the 
mapping between security events. 

4.1. Semantic Modeling: Intrusion Detection 
In the domain of misuse intrusion detection system, the 
elements that are of mapping interest are security events. 
We consider two aspects of semantics: behavioral and 
structural. In the behavioral perspective, security event as a 
process is described in terms of state transition. That is, the 
state changes of resources when the security event occurs. 
In the structural perspective, a security event can be 
described in terms of its composite components.  
 
Structural Semantic can be viewed as a topology that 
depicts the participants involved and the network actions 
that connect the participants together. For example, a relay 
DoS attack event can be described as having two hosts 
with Windows OS such that the attacker sends an invalid 
DNS query to the second host by spoofing the IP address 
of the first host. The participants are the two hosts with 
property Windows OS, and the attacker, while the 
composite actions, send invalid DNS query and spoof IP 
address, bridge the participants together to form the 
structural semantics. 
 
Behavioral Semantic can be described by stating the state 
transition of the affected resources or variables. That is, the 
behavioral semantic specifies the impact of the security 
event. The impact can be expressed as the post conditional 
states of resources or the set of negative behavioral actions 
that are inflicted in the network. For example, a Trajon 
horse may inflict the negative actions such as deletion and 
exposure of data. 
 
We illustrate below the semantic modeling of a security 
event FINGER search query from Snort with ID - 1:332: 
 
Structural Semantic 
(●∃xHost(x) ∧ ■∃yHost(y) ∧ ∃z(Tcp(z,x,y) ∧ 
DstPort(z,79) ∧ Payload(z,”search”)) )  ◊(Attacker(x) ∧ 
∃q(Tcp(q,x,y) ∨ Udp(q,x,y))) 
 
Behavioral Semantic 
■(∃y,d(Host(y) ∧ Data(d,y) ∧ Private(d))) ∧ Exposed(d) 

 ◊RemoteAccess(y) 
 
Note that, the semantics are distributed over time. For 
illustrative purposes, a variant of FOL, temporal FOL, is 
used to represent the intuitive meanings of the security 
event. Since our proposed mapping methodology bases on 

SLD resolution for FOL, separate FOL logical statements 
are in fact used (to model the semantics for different time 
interval: past, present and future) during the mapping 
process.  
 The notion of time is important in security monitoring. 
One might think intuitively the future implications of the 
security event. The event (ID - 1:332) is in fact a 
reconnaissance attempt that gathers information from the 
victim host through application exploit. The immediate 
impact of exposing information is not harmful, but it 
implies that future attacks of remote access might be 
launched. Hence the semantics are also distributed in the 
future. We illustrate in Figure 1 a snapshot of the structure 
of our developed security ontology with each node 
modeled in logic. 
 

 
 

Figure 1 - Snapshot of Security Ontological Structure 

4.2. Ontology Mapping: Intrusion Detection 
The needs for matching between security events are 
envisioned through two observations. Firstly, there exist 
numerous intrusion detection systems. The signatures and 
security events can be defined proprietarily or originated 
from different knowledge bases such as snort, whitehats, 
shoki and dragon sensor. Interoperability issue arises when 
communication has to be performed between the intrusion 
detection systems in order to perform cross-network 
security management. Secondly, number of virus and 
attack strategies is growing everyday. The growth can be 
the results of the emergence of new attacks or variants of 
existing ones. The intrusion detection effort in keeping up 
with the attack growth is limited. By employing an 
approximate mapping strategy, we are able to at least 
provide indication on what might seem to be an attack 
(new or variant) base on what we already know 
(approximately map to attacks modeled in the security 
ontology). That is, the mapping can be regarded as a 
solution in reducing the deficiency of an intrusion 
detection system during the period in which security 
knowledge base is not up to dated. 



 The semantics distributed in the intervals past, present 
and future can be regarded as different aspects in which 
similarity comparisons can be performed. We have S as: 

S(E1,E2) = 
ω(t)*S(LpastE1,LpastE2) + ω(t)*S(LpresentE1,LpresentE2) + 

ω(t)*S(LfutureE1,LfutureE2) 
where E1 and E2 are the two security events in 
comparison; and t ∈ {past, present, future}. 
 
An intuitive choice of ω(t) can be the following 
distribution illustrated in Figure 2. The weight distribution 
models the idea that the importance of similarity fades 
along with time. 

 
Figure 2 – Weight Distribution 

 
Referring to the sample ontology presented in Figure 1. 
We consider the modeling of the node reconnaissance 
attack as follow: 
 
Structural Semantic 
(●∃xHost(x) ∧ ■∃yHost(y) ∧ ∃z(Tcp(z,x,y) ∨ Udp(z,x,y)) 

 ◊(Attacker(x) ∧ ∃q(Tcp(q,x,y) ∨ Udp(q,x,y))) 
 
Behavioral Semantic 
■(∃y,d(Host(y) ∧ Data(d,y) ∧ Private(d)) ∨ ∃xHost(x)) ∧ 
(Exposed(d) ∨ Exposed(x))  ◊(Attack(y) ∨ Attack(x)) 
 
where there exists  an axiom: RemoteAccess(x)  
Attack(x) with S(RemoteAccess,Attack) = 1 and 
S(Attack,RemoteAccess) = 0.9. 
 
We consider the mapping between the event ID-1:332 (E2) 
and the reconnaissance attack node (E1) as an illustrative 
example. In computation on the structural semantic, we 
have S(E2,E1) = 1 and S(E1,E2) ≈ 0.123. We obtain 
S(E2,E1) = 1 and S(E1, E2) ≈ 0.361 in behavioural 
computation. The result suggests that E1 is strictly a more 
general concept of E2. 

5. Conclusion 
 This paper has presented an ontology mapping approach 
that supports approximate matching on formally 
represented ontologies. Matching and reasoning in 
approximation is often required in a dynamic environment. 
The similarity and logic features of the proposed approach 
satisfy such requirement. However, the approach is not 
without its limitations. Due to the use of exponential 

measurement in computing the resolution quality of a 
predicate, the density of similarity values is unevenly 
distributed. The problem limits the ability of the numeric 
similarity values in reflecting the intuitive notion of 
similarity. 
 Intrusion detection has been identified as a domain that 
exhibits ontological issues, namely, the interoperability 
problem and the lack of a semantic-based detection. The 
proposed solution is being experimented in the domain in 
the hope that the problems can be alleviated. 
 Extensions to current work may include the study on the 
use of temporal logic and its inference engine in place of 
first order logic and SLD resolution, and its application to 
different domains with ontological issues: other areas in 
network management, medical and the finance domain. 
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