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Abstract

For a few years, there is some interest about solving
distributed problems. Particularly, many contributions
have been brought in the resolution of distributed con-
straint satisfaction problems.
Most of works tend to propose asynchronous search al-
gorithms. These are always an adaptation of the back-
tracking principle well known for resolution of central-
ized CSP. Few interest has been shown about the spa-
tial complexity of these algorithms and the way they are
evaluated. Indeed, most of algorithms in literature use
nogoods saving which can imply an exponential spatial
complexity in the worst case.
Then, these algorithms are evaluated by a discrete event
simulator. Since these algorithms are designed to be
used in real world problems, we think that a realis-
tic evaluation (i.e. implementation and execution over
physically distributed computer) is more adapted.
In this article, we propose a simple algorithm avoiding
the nogoods recording and consequently an exponential
spatial complexity. We finish with realistic experiments
of this algorithm.

Distributed Constraint Satisfaction Problems
A constraint satisfaction problem (CSP) can be viewed as a
triplet (X,D,C) in which: X is a finite set of variables, each
variable xi ∈ X is associated to a finite domain dom(xi) ∈
D and related to a finite set of constraints in C.

Associating a value to a variable is called an assignation.
When an assignation did not violate any constraint of C,
assignation is qualified with consistent. So, a solution of a
CSP (X,D,C) is a set of n assignations (n = card(X)) all
consistent with C.

The general framework of CSP has been enriched with
many extensions such as dynamic CSP(Bessière 1992), max
CSP(Freuder & Wallace 1989) and so on. The concept of
distributed CSP has been introduced to formalize and re-
solve naturally distributed problems (Yokoo et al. 1992).
Such problems generally deal with a set of data, shared out
among many sites, whose a centralization is often impossi-
ble (Piechowiak & Hamadi 2002).
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A DisCSP (X,D,C,A) is an extension of the triplet
(X,D,C) where A is a finite set of agents {A1, A2, ...Ap}
in which each Ak(1 ≤ k ≤ n) has a subset of X: var(Ak)
with

⋂

ak∈A

var(Ak) = ∅.

Variables of the set var(Ak) are called ”owned variable”
of Ak whereas the set X\var(Ak) refers to the ”foreign
variables” of Ak. The set C can also be split by applying
the same idea. For an agent Ak, we can thus refer to its inter
and intra-agents constraints (Cinter ∪ Cintra = C).

Solving DisCSP
Solving DisCSP in a centralized way might be impractical.
Sometimes too many data to centralize lead to unacceptable
communication time. In other cases, the critical context of
the problem makes that collecting data is in contradiction
with the need of privacy. So, the first centralized approachs
to solve DisCSP have been given up in favour of distributed
approach.

The first asynchronous algorithms were ABT (Asyn-
chronous BackTracking) (Yokoo 1990). Each agent instan-
ciates concurrently its variable and passes on its solution to
other agents of the system. If an agent cannot find any con-
sistant value with the different assignations it has already
received, it sends a backtracking message to the agent with
highest priority. To avoid considering obsolete messages,
each agent attaches its nogoods. A nogood is a set of values
which implies an impossible assignation: {x1 = a ∧ x2 =
b... => xk 6= c}

The analysis of this algorithm allows to point out different
issues with which resolution has to deal:
• the needs to have a total order among agents (required to

avoid infinite loop)
• the asynchronism management
• the link communication management
Afterwards, many other algorithms have been proposed. For
example, DIBT (Hamadi, Bessière, & Quinqueton 1998)
proposes not to use nogoods, but it is incomplete. More
recently, AAS (Silaghi, Sam-Haroud, & Faltings 2000)
focuses on the constraints rather than variables. DDB
(Bessière, Maestre, & Meseguer 2002b) allows to keep the
original topology of the problem by avoiding link addition
during the resolution.



Thus, all these algorithms have contributed to improve the
resolution of DisCSP. On the other hand, few works talk
about the evaluation of these distributed algorithms which
is, most of the time, always centralized. Most of evalua-
tions presented in literature are based on the use of a dis-
crete event simulator (Yokoo 2001),(Bessière, Maestre, &
Meseguer 2002a). At each simulation step, an agent is ac-
tivated. During this cycle, it can read its messages, per-
form some calculus, change its assignation and send poten-
tial messages.

The biggest problem of this approach is that the simulated
execution is almost synchronous (modulo one step late).
Each message received by an agent at step t has been sent at
step t − 1 which is not really realistic. Moreover, with this
method, it is impossible to evaluate the algorithm in terms
of time execution because communications are often based
on a shared memory or exchanges between processes.

In this article, we defend the idea that the correct way to
evaluate a distributed algorithm for a use on real problems,
is to implement and test it over a distributed set of comput-
ers. Most of algorithms in literature are impossible to use
because of their spatial complexity induced by nogoods sav-
ings. As nogoods are even more exchanged in messages,
the length of the message grows up during the resolution.
Finally, the memory of each agent and the communication
channel may be quickly satured. Thus, we propose here a
simple algorithm, called DBS, which avoids spatial com-
plexity.

Distributed Backtracking with Sessions
Before describing our proposition in details, we make some
assumption about its use:
• Our algorithm requires a total order among variables of

DisCSP. This relation can be computed by using differ-
ent technics before the call of DBS. In our tests, we use
an adaptation of the first-fail principle (Haralick & El-
liott 1980) which consists in considering that the variables
with the smallest domain have to be near the root of the
search tree. Afterwards, we use ≺ to point at the total or-
der and for each agent we will consider the two sets acc+

and acc− which respectively represent the superior and
inferior accointances. If acc designed the set of all accoin-
tances of an agent Ak, we can define: acc+(Ak) = {Ai ∈
acc/Ai ≺ Ak} and acc−(Ak) = acc(Ak)\acc+(Ak)

• In general, each agent has to solve a local CSP (made up
of owned variables and intra-constraints). This can be per-
formed by employing different technics known in litera-
ture (arc consistency algorithm, search algorithm, and so
on). This local resolution can be computed during the
resolution of the DisCSP. To achieve this objective, DBS
uses two shared variables: sol which is the set of all solu-
tions of the local CSP and a boolean endOfLocalSearch
which indicates the end of the process.

Using sessions instead of nogoods
To manage asynchronism during resolution, each message
has to contain a context which allows the receiver to know
its potential obsolescence. For most of algorithms like ABT,

nogoods are used as context. As nogoods grow up during the
resolution, this context is not stable in term of space mem-
ory. To be implemented, we assume that an algorithm must
have a context whose length remains constant during the res-
olution. In order to perform this, we introduce the notion of
session.

Considering an agent Ak, sessionAk
is defined for each

agent Ai ∈ acc−(Ak) as an integer which is incremented
every time that an agent of acc+(Ak) submits a new value.
We can notice that a similar idea is used in (Silaghi 2002) to
eliminate nogoods recording from ABT.

Changing session implies that values already submitted to
inferior agents can still be proposed. For each local solution,
a stamper is maintained to know if a solution has already
been submitted during the current session. Applying this,
we ensure that DBS scans entirely the search tree.

Link communication
The problem of link communication has already been dis-
cused in many articles (Bessière, Maestre, & Meseguer
2002a). Computing the set of links for an agent thanks to its
set Cinter is not enough (Yokoo 2001). Many approaches
are conceivable. The order of variables can be recomputed
during the resolution, to avoid an agent not to send a back-
tracking to an agent with which it shares any constraints.
Another method is to add a link between the two agents
during the resolution. Our approach is to compute all ac-
cointances of agents before the resolution . Although this
method is not optimal because some links may not be usefull
for the resolution (Bessière, Maestre, & Meseguer 2002a), it
has the advantage to make the algorithm more simple.

DBS algorithm
In order to simplify our explanation, we consider that each
agent owns only one variable. For an agent Ak, we will call
this variable xAk

.
When an agent Ak instanciates its variable, it sends its

assignation to all agents with which it shares constraints and
which are inferior in the order.

When an agent Ak receives a new assignation from an
agent B, it searches a solution for its variable according all
values previously received. If no solution can be found, it
is in a failure context and has to send a backtracking mes-
sage. To determine the recipient of this message, the agent
Ak considers only assignations received from Ai with supe-
rior order. Two cases are possible:
• the constraint cBAk

cannot be satisfied, Ak sends its mes-
sage to B (Figure 1)

• the constraint cBAk
can be satisfied and the backtracking

demand is addressed to the lowest order agent in acc+

(Figure 2)
The execution of DBS by an agent Ak starts by research-

ing a first solution. This is performed by the function search-
Solution which takes as an argument a set of constraints C
and returns a boolean notifying the existence of a solution.
Among all local solutions in the set sol, the function chooses
one which satisfies the set of constraints C without being yet
submitted during the current session. We use here an array



Figure 1: Backtracking in DBS: Case 1

Figure 2: Backtracking in DBS: Case 2

of booleans (local to the agent Ak): state allowing to know
which value has already been proposed during the current
session.

The proposal of a new value by an agent Ak is made by
the procedure sendSolution. A new value is always sent to
each agent of acc− which shares a constraint with Ak.

Each message received by an agent Ak is dealt by anal-
yseMessage. This procedure tests the type of message:
END, SUBMISSION or BACKTRACKING. For the two
last types, a comparison is made between the session num-
ber attached to the message and the current session of the
sender agent.

A submission is treated if the session number attached in
the message is greater or equal to the last session number re-
ceived. If a submission is valid, the current session is closed
and the new assignation received is checked over consis-
tency (procedure checkAssign). Closing a session (proce-
dure closeSession) simply consists in incrementing the cur-
rent session number and reinitializing all stampers over the
set of solutions.

A backtracking demand is treated if the session num-
ber attached is equal to the current session of Ak (variable
mySession)

For each value received, an agent Ak checks if it can find
a solution to achieve consistency over the set Cinter (proce-
dure checkAssign). When it cannot, it sends a backtracking
demand (Figures 1 and 2).

To deal a backtracking demand, an agent Ak looks if
changing its value can solve the conflict (procedure back-
track). If it does not, it forwards the message to the agent
with lowest priority in acc+. If such an agent does not exist
(acc+ = ∅) , Ak is able to say that no solution exists for the
DisCSP and sends the message END to all other agents of
the system.

When the research succeeds, all agents reach a stable
state: each variable is instanciated and all constraints are
satisfied. Such a situation can be detected by using an algo-
rithm which checks the exchanged messages in the system
((Chandy & Lamport 1985),(Tel 1998)).

procedure dbs()
ifsearchSolution(Cinter) then

sendSolution();
analyseMessage()

function searchSolution(C)
fsol← {s ∈ sol | state[s] = ¬proposed};
fsol

∗

← {s ∈ fsol | consistent(s,C)};
if fsol

∗

6= ∅ then
choose s in fsol

∗

;
state[s]← proposed;
xAk
← s;

return(true)
else

if endLocalSearch then
return(false)

procedure sendSolution()
assign← (xAk

, s);
directAcc− ← {A ∈ acc− | ∃ a constraint cXA};
forall Agent ∈ directAcc− do

send((SUBMISSION,assign,mySession),Agent)

procedure closeSession()
mySession← mySession + 1;
forall s ∈ sol do

state[s]← ¬proposed

procedure analyseMessage()
while message 6= END do

if message = (SUBMISSION,assign,session) then
if session ≥ lastSession[sender] then

lastSession[sender]← session;
closeSession();
checkAssign(assign,sender)

if message = (BACKTRACKING,session) then
if session = mySession then

backtrack()



procedure checkAssign(assign,Agent)
if searchSolution(Cinter) then

sendSolution()
else

if searchPartialSol(Cinter,Agent) then
directAcc+ ← {A ∈ acc+ | ∃ a constraint cXA};
receiver ← (A ∈ directAcc+ | A = min(x, A)

x∈directAcc+

);

session← lastSession[receiver];
send((BACKTRACKING,session),receiver);

else
session← lastSession[Agent];
send((BACKTRACKING,session),Agent)

procedure searchPartialSol(C,Agent)
C∗ ← {cXY ∈ C | Agent ≺ Y };
searchSolution(C∗);

procedure backtrack()
if searchSolution() then

sendSolution();
else

if acc+ = ∅ then
forall receiver ∈ accointance do

send(END,receiver)
else

Agent← (A ∈ acc+ | A = min
x∈acc+

(x, A));

session← lastSession[Agent];
send((BACKTRACKING,session),Agent)

Evaluation
In this section, we give an example of execution of DBS and
present first experiments.

An example of execution
To illustrate how DBS works asynchronously, let us consider the
following scenario. An intermediate agent in a chain of constraints
initially might propose one value before changing to another one
due to information received from superiors. Then, it might need to
go back to its initial value to finally satisfy constraints, given new
values from superiors.

Let be three agents A1, A2 and A3 which respectively own a
variable: x1, x2 and x3. The domains are: dom(x1) = {c, a},
dom(x2) = {c, a} and dom(x3) = {a, b}. The problem owns
three constraints: x1 = x3, x1 6= x2 and x3 < x2. The figure 3
gives a graphic representation of the problem.
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Figure 3: A simple DisCSP example

Step 1: A1 chooses c as value for its variable, state[c] is updated
to proposed. A1 sends its first assignation to A2 and A3 with a

session number equal to 1.
Step 2: A2 chooses c as value for its variable x2, state[c] is up-

dated to proposed. A2 sends this assignation to A3 with a session
number equal to 1.

Step 3: A3 receives the message from A1. A3 updates its local
array: lastSession[A1]← 1. As A3 cannot assignate its variable,
it has to send a backtracking message. To determine if the message
will be adressed to A1 or A2, it only considers values received by
all agents superior to A1, in this case: x1 ← c. No value exists
in dom(x3) to satisfy the constraint: c = x3, so A3 sends the
backtracking message to agent A1 with a session number equal to
1.

Step 4: A2 receives message sent by A1 at step 1. It updates
lastSession[A1] to 1 and closes its session: mySession ← 2,
state[c] and state[b] are reinitialized to ¬proposed. In order to
satisfy the inequality constraint, A2 changes its value to a. To fin-
ish, A2 sends its solution to A3 with a session number equal to
2.

Step 5: A3 receives the message sent by A2 at step 2 and conse-
quently chooses a as value and updates lastSession[A2] to 1.

Step 6: A1 receives the backtracking message from A3. As the
number of sessions attached to the message is equal to its current
session, A1 changes its value to a and sends this new assignation
to A2 and A3 with a session number equal to 1.

Step 7: A3 receives the message sent by A2 at step 4 and updates
lastSession[A2] to 2. As no value is suitable to assign x3, A3 has
to send a backtracking message. To perform this, A3 considers
the assignation of all agents superior to A2: x1 ← c and x2 ←
a. No value exists in dom(x3) to satisfy the constraint: x3 < a.
Consequently, A3 sends a backtracking message to agent A2 with
a session number equal to 2.

Step 8: A2 receives the message sent by A1 at step 6. It keeps
lastSession[A1] equal to 1 and closes its session: mySession←
3, state[c] and state[b] are reinitialized to ¬proposed. To satisfy
the constraint a 6= x2, A2 chooses c as new value. To finish, A2

sends its new solution to A3 with a session number equal to 3.
Step 9: A3 receives the message sent by A1 at step 6. It keeps

lastSession[A1] equal to 1 and chooses a as value for x3.
Step 10: A2 receives the backtracking message send by A3 at

step 7. The session number attached in the message is equal to 2
and is therefore inferior to the actual mySession equal to 3. So,
the message is ignored by A2.

Step 11: A3 receives the message sent by A2 at step 8. It up-
dates lastSession[A2] to 3. A3 chooses a as value to satisfy the
constraints: a = x3 and x3 < c

The global solution obtained is {x1 = a; x2 = c; x3 = a}

Evaluation
The use of sessions ensures our algorithm to have a linear spatial
complexity. Since exchanged messages only contains an assigna-
tion and a session number, the length of message remains constant
all along the resolution. For these reasons, we have for instance fo-
cused our experiments on the empirical evaluation of spatial com-
plexity.

Experiments
As it has been discussed in the first section, most of evaluations in
literature use a discrete event simulator. This method can be in-
teresting to compare algorithms between each other but it does not
give any information about the behaviour of the algorithm in real
use (ie data physically distributed over machines and communica-
tion on a network). We have chosen to experiment our algorithm
in a more realistic way by implementing it. Agents of our system



have been developed as multi-thread programs with communica-
tion abilities over Ethernet channel.

As we have to evaluate DBS and not the algorithm used by each
agent for local search, we have considered problems in which each
agent has only one variable.

For example, the following problem allows us to vary easily the
number of instances. Let’s consider p agents Ak each owning a
variable xk. The domain of each xk is defined as following:

dom(xk) = {p, p− 1, ..., 2, 1}

. The set of constraints contains inferiority test applied on
each couple of variables: {x1 < x2, x2 < x3, ..., xk <
xk+1, ..., xp−1 < xp, xp > x1}. We can notice that the agence-
ment of values in dom(xk)(1 ≤ k ≤ p) makes each agent entirely
scan its domain before reaching its solution. This configuration
maximizes the number of exchanged backtracking messages which
are perfect to evaluate our algorithm in the worst case.

For this test, each agent has been set up on a computer. Com-
puters are all similar with a 300Mhz CPU and 128Mo of memory.
Agents are run by turn by a script which opens a remote connection
over each computer. The execution time is measured once the last
agent has been run. As our evaluation is distributed and uses real-
istic communication over an Ethernet network, execution time can
vary according to the use of the network. Execution time reported
over the graphic (Figure 4) are calculated over several executions.
In abscissa, we find the number of instances (which is also the num-
ber of agents in our system). In ordinate, we report the execution
time in seconds.
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Figure 4: Empirical time complexity evaluation

As we can see, the shape of the curve for this problem is expo-
nential with a linear factor. This confirms the theorical complexity
that is usually presented in literature and well known for centralized
CSP. However, we can also notice that for eight distributed agents
the time of resolution is largely superior to one minute. This result
tends to show that a DisCSP algorithm becomes quickly unsuitable
for problems involving data distributed over more than ten sites.

Conclusion
In this article we have presented a simple algorithm for solving
DisCSP. Contrary to other algorithms from literature (ABT, DIBT,
and so on), our algorithm did not use nogoods in exchanged mes-
sages. Thus, exponential spatial complexity is avoided and each
message keeps a constant length during the resolution.

Our algorithm has been implemented and experimented in a re-
alistic way. Therefore, all agents used are physically distributed
over a set of computers and communicate via an Ethernet network.
In such a configuration, our measures take into account the com-
munication time which is not made in a discrete event simulation.

As our algorithm is assured to be constant in space complexity,
we have focused our evaluation in temporal complexity. Execution
times obtained empirically confirms that the temporal complexity
is exponential, but also let us think that a DisCSP algorithm be-
comes unsuitable when the number of sites (data shared out differ-
ent places) is bigger than ten. The next step of our work is to try
to implement other algorithms from literature especially the ones
using nogoods and to compare execution time over problems with
different topologies.
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et systèmes multi-agents, 169–205.
Silaghi, M.; Sam-Haroud, D.; and Faltings, B. 2000. Asyn-
chronous search with aggregations. In Proceedings AAAI’00,
917–922.
Silaghi, M. 2002. Asynchronously Solving Problems with Pri-
vacy Requirements. Ph.D. Dissertation, Swiss Federal Institute of
Technology (EPFL).
Tel, G. 1998. Distributed control for ai. UU-CS, Utrecht Univer-
sity.
Yokoo, M.; Ishida, T.; Durfee, E.; and Kuwabara, K. 1992. Dis-
tributed constraint satisfaction for formalizing distributed prob-
lem solving. In Proceedings of the 12th IEEE Int. Conf. of Dis-
tributed Computing Systems.
Yokoo, M. 1990. Distributed constraint satisfaction for dai prob-
lems. In Proceedings of the 10th International Workshop on Dis-
tributed Artificial Intelligence.
Yokoo, M. 2001. Distributed Constraint Satisfaction: Founda-
tions of Cooperation in Multi-agent Systems. Springer.


