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Abstract

In this paper, we extend the well-known multi-modal lan-
guage for knowledge of agents ‘faithfully’. That is, the
framework we propose preserves in essence the modal way
of describing knowledge. Two desirable properties arise from
our approach. First, extending the language gives us clearly
more expressive power, which is exploited for the develop-
ment of a spatio-temporal view of knowledge, in particu-
lar. And second, doing so modally enables us to prove some
good-natured meta-properties of the new system.
For a start, we integrate two additional features into the com-
monly used logic of knowledge. The first one is as simple as
natural: distinguished states are named, in fact, by nominals
from hybrid logic. The second one is a new modal operator
associated with every agent. Such a modality ascribes to the
agent ‘access’ to states that are complementary to his or her
own view of the world and is, therefore, called a ‘distinction
operator’ (contrasting the knowledge operator which goes to-
gether with indistinguishability of states). It turns out that
distinction operators and hybrid names perfectly co-operate.
In fact, we obtain completeness and decidability of the ap-
pearing logical system as well as a corresponding complexity
result.
Then we add a spatio-temporal component to the just intro-
duced hybrid logic of knowledge and distinction. To this end,
an ‘effort operator’ is incorporated, and the set of names is
structured according to the additional dimension. We argue in
favour of a formal basis for spatio-temporal epistemic reason-
ing, provide a suitable axiomatization, and get a completeness
theorem for the system derived from that, too.
KEYWORDS: reasoning about knowledge in multi-agent
systems, hybrid logic, spatio-temporal epistemic logic, topo-
logical reasoning

Introduction
Since the early eighties, the idea of knowledge has been con-
sidered more and more significant for both designing and
analysing multi-agent systems. In the context of such sys-
tems, knowledge is ascribed externally, by the designer or
analyst, to the agents, and the multi-modal S5m represents
the basic logic of knowledge in case m agents are concerned
(m∈N); cf, eg, the standard textbooks Fagin et al. or Meyer
& van der Hoek.
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According to the modal setting, a binary relation Ri on the
set S of all states of the system is associated with every agent
i∈ {1, . . . ,m}. In fact, we have that sRi t holds by definition,
iff the states s, t ∈ S are indistinguishable to agent i. For
example, in case of a distributed system this means that the
i–local components of s and t coincide. More generally, it
is always assumed that Ri is an equivalence relation (which
explains the appearance of S5). Knowledge of agent i is then
defined as validity in all i–indistinguishable states.

There is obviously a second, complementary relation that
could (and, because of our external view, is allowed to) be
assigned to agent i in a natural way: distinguishability of
states. Why not use this relation, too, in order to specify
more complex properties of multi-agent systems? As far as
we know this has not been done up to now, actually. Maybe
one of the reasons for this is that distinguishability does not
fit in with the modal framework (eg, because it is an irreflex-
ive relation and irreflexivity cannot be expressed by a modal
formula).

In the present paper we apply hybrid logic, HL, to rea-
soning about knowledge of agents. Basic HL extends modal
logic, ML, in such a way that many of the advantageous fea-
tures of the latter system are retained. And already the most
basic system of HL offers much more expressive power than
ML; cf, eg, Blackburn or Blackburn, de Rijke, & Venema,
Sec. 7.3. For example, irreflexivity can be expressed now.
We will show below that we can hybridly get to grips with
the relation of distinguishability. Moreover, we can also in-
corporate time.

Now we go a little more into particulars about the con-
tent of this paper. In the next section, we define precisely
the language underlying the just indicated hybrid logic of
knowledge and distinction, abbreviated Kn+. An example
showing how the new language can be utilized for specify-
ing properties of multi-agent systems, is also contained in
this section. Then, in Section 3, the logic itself is dealt with.
We prove a completeness theorem for a corresponding ax-
iomatization, argue towards decidability, and determine the
computational complexity of the satisfiability problem for
the single-agent case there.

In the second part of the paper we take a step further.
We consider certain temporal knowledge structures, mod-
elling an effort operator for knowledge acquisition. It turns
out that a spatial component is inherent in such models as



well. In fact, we are led to an HL–based characterization of
the appropriately generalized Kn+–models as complement
closed spaces of sets. In this way, structures appear that are
‘topological’ to an extent. Thus we discovered an interesting
connection between reasoning about knowledge and spatial
reasoning.

Concluding this introduction we compare our approach
with related work. To our knowledge, a combination of
hybrid logic and the common logic of knowledge has not
been considered up to now (whereas the individual parts
of our combined system are well-established; cf the refer-
ences above). The logic studied in the second part of this
paper refers to Dabrowski, Moss, & Parikh. In that paper, a
general spatio-epistemic reasoning framework called TOPO-
LOGIC was proposed. In order to obtain more expressive
power with regard to topology, a ‘sorted’ (i.e., both state-
and set-sensitive) hybridization of TOPOLOGIC was devel-
oped subsequently; cf Heinemann. A hybrid extension of the
classical topological semantics of modal logic was briefly
considered in Gabelaia. All in all, hybrid logics in connec-
tion with knowledge or topology received amazingly little
attention by the relevant communities so far. In contrast,
hybrid versions of temporal reasoning formalisms are very
common; see Blackburn for further references.

An Extension of the Modal Language for
Knowledge

Let m ∈ N be a natural number. In this section, we ex-
tend the basic modal language describing knowledge of m
agents by nominals and a distinction operator for every
agent. Nominals are to denote states (as in usual hybrid
logic), whereas applying the distinction operator associated
with i ∈ {1, . . . ,m} means, in particular, moving to any state
that is complementary to i’s actual knowledge state (which
equals the set of all states indistinguishable to i, by defini-
tion).

Let PROP = {p,q, . . .} and NOM = {a,b, . . .} be two
denumerable set of symbols called proposition letters and
nominals, respectively. We assume that these sets are dis-
joint. Then we define the set WFF of well-formed formulas
over PROP∪NOM by the rule

α ::= p | a | ¬α | α ∧β | Kiα | Diα,

where i ∈ {1, . . . ,m}. The modality Ki represents knowl-
edge of agent i, and Di the ability to recognize a knowledge
state different from the actual one. The duals of Ki and Di
are denoted Li and Ci, respectively. The missing boolean
connectives >,⊥,∨,→,↔ are treated as abbreviations, as
needed.

We give next meaning to formulas. This is done with
respect to suitable Kripke structures. In the following, let
P(S) denote the powerset of a given set S.

Definition 1 (Extended Kripke structure) Let S 6= /0 be a
set (of states). For every i ∈ {1, . . . ,m}, let Ri, Qi be binary
relations on S such that

• Ri is an equivalence, and
• for all s, t ∈ S : (sQi t ⇐⇒ not sRi t).

Moreover, let V : PROP ∪ NOM −→ P(S) be a mapping
such that V (a) is a singleton subset of S for all a ∈ NOM.
Then M := (S,R1, . . . ,Rm,Q1, . . . ,Qm,V ) is called an ex-
tended Kripke structure (for m agents) (or, in short, an EKS).

Now let an EKS M = (S,R1, . . . ,Rm,Q1, . . . ,Qm,V ) be
given. We define the relation of satisfaction , |= , between
states of M and formulas.

Definition 2 (Satisfaction and validity) Let M be an EKS
as above, and let s ∈ S be a state. Then

M ,s |= p :⇐⇒ s ∈V (p)
M ,s |= a :⇐⇒ s ∈V (a)
M ,s |= ¬α :⇐⇒ M ,s 6|= α

M ,s |= α ∧β :⇐⇒ M ,s |= α and M ,s |= β

M ,s |= Kiα :⇐⇒ ∀ t : (sRi t ⇒M , t |= α)
M ,s |= Diα :⇐⇒ ∀ t : (sQi t ⇒M , t |= α) ,

where i ∈ {1, . . . ,m}, p ∈ PROP, a ∈ NOM, and α,β ∈
WFF. In case M ,s |= α is true we say that α holds in M at
s. – A formula α is called valid in M iff it holds in M at all
states. (Manner of writing: M |= α .)

The following remark shows that the just defined lan-
guage is rather expressive.

Remark 3 For every i ∈ {1, . . . ,m}, the relation Ri ∪Qi is
obviously universal (i.e., Ri∪Qi = S×S). This implies that
the global modality A, cf Blackburn, de Rijke, & Venema,
Sec. 7.1, is definable in our language (by Aα :≡Kiα∧Diα).
– Having the global modality to hand, the hybrid satisfac-
tion operator @a belonging to the nominal a, cf Blackburn,
de Rijke, & Venema, Sec. 7.3, can be defined as well (by
@aα :≡ A(a → α)). – It follows that a lot of important
frame properties (eg, irreflexivity) can be expressed in the
language for knowledge and distinction; cf loc cit.

We illustrate now the newly obtained expressive power by
an example.

Example 4 We remind the reader of the well-known muddy
children puzzle; cf Fagin et al., Sec. 2.3. In case m chil-
dren are involved, the domain of the Kripke frame mod-
elling that scenario equals the m–dimensional unit cube
Cm. The relation of i–indistinguishability is defined by
(x1, . . . ,xm)Ri (y1, . . . ,ym) : ⇐⇒ x j = y j for all j 6= i (i, j ∈
{1, . . . ,m}; x j,y j ∈ {0,1}). Now, it is possible to spec-
ify this structure completely by a finite set of formulas of
the new language. Eg, the formulas pi ∧ a → Ki(pi → a),
¬pi ∧ a → Ki(¬pi → a) and Li pi ∧ Li¬pi express together
the fact that every Ri–equivalence class consists of exactly
two ‘pi–complementary’ points (where pi represents ‘child i
has a muddy forehead’, and a∈NOM is some nominal). The
operator Di is required to capture the size of Cm. (We omit
the details concerning this, but mention that, in general, the
new modality enables one to count (knowledge) states.)

The Logic
First in this section we provide an axiom system, A , for the
set of all formulas valid in every EKS. Second, we prove the
soundness and completeness of the logic Kn+ derived from
A , with respect to the class of all the intended structures.



And finally, we show that Kn+ is decidable and has, in the
single-agent case, an NP–complete satisfiability problem.

Apart from all instances of propositional tautologies, the
system A consists of eight formula schemata. For a start, we
list the distribution axioms with respect to every modality:

1. Ki(α → β )→ (Kiα → Kiβ )
2. Di(α → β )→ (Diα → Diβ ),

where i ∈ {1, . . . ,m} and α,β ∈ WFF. – Because of later
requirements, the axioms of the following group are formu-
lated in a purely hybrid way.

3. a→ Lia 4. LiLia→ Lia
5. Lia→ KiLia 6. Lia ∨Cia
7. Lia → ¬Cia 8. a∧α → K(a→ α),

where 1 ≤ i ≤ m, a ∈ NOM and α ∈ WFF. – Note that
the first three schemata of this list represent hybrid versions
of the usual axioms of knowledge; eg, the schema 4, ex-
pressing the transitivity of agent i’s accessibility relation Ri,
corresponds to the axiom of positive introspection. – The
first-order equivalents to the purely hybrid schemata 3 – 7
(eg, mutual exclusion of the relations Ri and Qi, captured by
Axiom 7) play their part in the proof of Theorem 6 below.
The last axiom ensures there that the denotation of every
nominal is single-valued.

By adding suitable proof rules we obtain the logic Kn+.
First, we have four commonly known Kn+–rule schemata:
modus ponens, both Ki– and Di–necessitation, and the hy-
brid schema (NAME); as to the latter, cf Blackburn, de Rijke,
& Venema, p 440. In addition, we need one new schema:

(ENRICHMENT)
Oi (a∧Pj(b∧α))→ β

Oi(a∧Pjα)→ β
,

where 1 ≤ i, j ≤ m, Oi,Pj ∈ {L1, . . . ,Lm,C1, . . . ,Cm}, a,b ∈
NOM, α,β ∈WFF, and b does not occur in a, α or β . The
reader can now easily convince himself or herself that Kn+

is sound with respect to the class of all EKSs.

Proposition 5 (Soundness) Let α ∈ WFF be a formula
which is Kn+–derivable. Then α is valid in all EKSs.

The converse of Proposition 5 is also valid. Due to limited
space, we cannot give a detailed proof of this result (neither
of the issues following below).

Theorem 6 (Completeness) Let α ∈ WFF be valid in all
EKSs. Then α is Kn+–derivable.

Proof. (Sketch) Let s be a maximal Kn+–consistent set of
formulas. Then s is called named, iff s contains some a ∈
NOM. And s is called enriched, iff for all i, j ∈ {1, . . . ,m},
Oi,Pj ∈ {L1, . . .Lm,C1, . . . ,Cm}, a ∈ NOM, and α ∈ WFF,
Oi(a∧Pjα) ∈ s implies Oi (a∧Pj(b∧α)) ∈ s for some b ∈
NOM. – Let Ñ be a denumerable set of new nominals, and
F̃ the set of formulas extended accordingly. Then we obtain
the subsequent Modified Lindenbaum Lemma.

Lemma 7 Every maximal consistent set s ⊆ WFF can be
extended to a named and enriched maximal consistent set
s̃⊆ F̃.

Let a structure M̃ be defined as follows. The domain S of
M̃ consists of all named points that are yielded from s̃ by
enrichment, and the relations of M̃ are the induced ones.
Then we have the following Existence Lemma.

Lemma 8 Let O ∈ {Li,Ci | i = 1, . . . ,m}. Assume that s ∈ S
contains the formula Oα . Then some t ∈ S exists that is O–
accessible from s and contains α .

Both lemmata can be proved with the aid of the new rule
(among other things). – Now, because of the axioms of the
second group above, the model M̃ turns out to be an EKS.
Moreover, an appropriate Truth Lemma is valid for M̃ . Let-
ting α be a non-derivable formula and s contain ¬α , we
have, therefore, found a model falsifying α . In this way
Theorem 6 is proved. �

Our next topic is decidability. In order to prove this prop-
erty for Kn+ we would like to use the standard tool appli-
cable to many other logics of knowledge, viz filtration; cf
Fagin et al., Sec. 3.2. However, trying this we get very soon
into serious difficulties with the distinguishability relation
Qi, for it is not possible to filtrate this relation in such a way
that its disjointness with Ri can be preserved (i∈{1, . . . ,m}).
The way out of this dilemma is to do some model surgery by
changing the filter set suitably and, in particular, eliminating
the distinction operators temporarily; cf the proceeding in
case of the modal difference operator in Blackburn, de Ri-
jke, & Venema, proof of Theorem 7.8.1

Theorem 9 (Decidability) The set of all formulas satisfi-
able in some EKS is decidable.

Proof. (Sketch) It suffices to establish the finite model prop-
erty for Kn+. So, let M be some EKS that realizes a given
satisfiable formula α , for which we want to find a finite
model, at some state. Let Σ be the set of all subformulas
of α . Moreover, let ∼Σ be the usual filtration relation in-
duced by Σ on the domain S of M . The equivalence class of
a point s ∈ S with respect to ∼Σ is denoted s̄. We choose an
injective mapping ι from the (finite) set of all such classes
into the set of all proposition letters not occurring in Σ. Fur-
thermore, a new proposition letter pi

β
is assigned to every

formula Diβ ∈ Σ in such a way that pi
β
6= p j

γ whenever i 6= j
or β 6= γ . For any δ ∈ Σ, let δ ′ denote the result of substitut-
ing every subformula Diβ of δ with pi

β
. Then we let

Σ′ := {δ ′ | δ ∈ Σ}∪
{pι(s̄),Ki pι(s̄) | s ∈ S,1≤ i≤ m}∪
{pi

β
| Diβ ∈ Σ,1≤ i≤ m}.

Σ′ will be used as a filter set in a moment. Obviously, Σ′ is
Di–free.
The model M is modified to the effect that the valuation is
to make pι(s̄) true at exactly one point of s̄, and pi

α at exactly

1The distinction operator can, in fact, be viewed as a general-
ized difference operator: it allows to jump to points outside the
equivalence class of the actual one for evaluating a given formula
there (instead of jumping to a point different from the actual one
for the same purpose).



the points where Diα is true in model M . Let this variant of
M be designated M ′.
Now, M ′ is filtrated through Σ′ as it is standard of the logic
of knowledge. It ensues that the filtration R̄i of the acces-
sibility relation on M belonging to Ki, is an equivalence.
Let ∼Σ′ denote the filtration relation induced by Σ′ on S.
Then every equivalence class with respect to ∼Σ is divided
into exactly two equivalence classes with respect to ∼′

Σ
(if

the former class consists of more than one point). More-
over, we can prove that these two smaller classes are not
R̄i–connected.
Finally, we can show by a suitable induction that the filtrated
model just described is semantically equivalent to M with
respect to Σ. This proves the desired finite model property.
�

In case of at least two knowers the ordinary logic of
knowledge is PSPACE–complete; cf Halpern & Moses,
Th. 6.17. In contrast, the satisfiability problem is NP–
complete in the single-agent case; cf Fagin et al., Sec. 3.6. It
is now natural to ask whether NP–completeness is the com-
plexity of the DL–satisfiability problem in case m = 1 as
well. The answer to this question turns out to be ‘yes’. – For
the rest of this section we assume that m = 1.

Theorem 10 (Complexity) The set of all formulas satisfi-
able in some EKS for one agent, is NP–complete.

Proof. (Sketch) Let α ∈WFF be a satisfiable formula. That
is, there exists a finite EKS M = (S,R,Q,V )2 and a state
s ∈ S such that M ,s |= α . We construct now an EKS M ′ =
(S′,R′,Q′,V ′) such that α holds at some state s ∈ S′ and the
size of S′ is polynomial in the length |α| of α . This suffices
to prove the theorem.
Let K = {Kβ1, . . . ,Kβk} be the set of all subformulas of α

prefixed by K. Correspondingly, let D = {Dγ1, . . . ,Dγl} be
the set of all subformulas of α prefixed by D. We generate
S′ in steps by the following procedure:

BEGIN
S0 := {s}; STOP:=FALSE;
WHILE NOT STOP DO

IF there are x ∈ S0 and i ∈ {1, . . . , l} such that
M ,x 6|= Dγi

AND there is no y ∈ S0 such that xQy and
M ,y 6|= γi

THEN CHOOSE z ∈ S such that M ,z 6|= γi;
S0 := S0∪{z}

ELSE STOP:=TRUE;
FOR ALL j ∈ {1, . . . ,k} AND x∈ S0 such that M ,x 6|=
Kβ j DO

CHOOSE some z ∈ S such that xRz and
M ,z 6|= β j;
S0 := S0∪{z}

END

Then we define S′ := S0, R′ := (S′ × S′)∩R, and Q′ the re-
lation complementary to R′ in S′ ×S′. Moreover, V ′ is to be

2We omit the index ‘1’ here and in the following.

the restriction of V to P(S′) in the range.3 Obviously, the
structure M ′ := (S′,R′,Q′,V ′) is an EKS.
For the proof of the desired bound on the size of S′ it is
important to note that every formula from D contributes at
most two new points to S0 during the WHILE-loop. In fact,
it is not hard to convince oneself that the second conjunct in
the condition of the IF–clause can never become true after-
wards. Thus S′ contains at most 2l · k points. That is, the
cardinality of S′ can be estimated by 2 · |α|2.
Because of the above choice of states, we obtain the fol-
lowing assertion by an induction argument (not carried out
here): for all subformulas δ of α and states s′ ∈ S′ it holds
that

M ′,s′ |= δ ⇐⇒ M ,s′ |= δ .

From that we conclude M ,s |= α . Now, the proof of the
theorem is completed by an obvious guess-and-check algo-
rithm, as usual. �

Note that the size of (the domain of) the model we have
just constructed, is quadratic in |α|. In contrast, a model of
linear size exists for every satisfiable formula of the usual
logic of knowledge of one agent; cf Fagin et al., Prop. 3.6.2.
We suspect that this is not always true if the distinction op-
erator is present.

Incorporating the effort operator
In this section we extend the logic of knowledge and distinc-
tion by a spatio-temporal dimension.

Two alternative ways of temporalizing a language L for
knowledge appeared in the literature up to now: time can be
integrated into L either explicitly or implicitly. To a great
extent, the existing formalisms for reasoning about knowl-
edge follow the first variant; cf Fagin et al., Sec. 4.3, or
(more comprehensively) Halpern, van der Meyden, & Vardi.
Because of our interest in the spatial properties of knowl-
edge (see below) we focus on the second approach here,
which is due to Dabrowski, Moss, & Parikh.

It is basically assumed in the latter paper that spending
effort to acquire knowledge (eg, by a computation or an ex-
periment) can never result in a loss of knowledge.4 Con-
sequently, the knowledge state of an agent, i.e., the set of
states indistinguishable to him or her, keeps on decreasing,
or at least not increasing, during the acquisition procedure.
The effort operator is then expressed by an (implicitly tem-
poral) modality � interacting with the knowledge operator
in an easily comprehensible way. Actually, the interplay
of these two connectives is described by the axiom schema
K�α →�Kα (in case of a single agent).

Dabrowski, Moss, & Parikh called their logical system
of knowledge and effort TOPOLOGIC, because it can also

3Nominals not denoting an element of S′ are interpreted arbi-
trarily.

4This natural requirement is, therefore, closely related to the
notion of perfect recall from classical logic of knowledge; cf Fagin
et al., Sec. 4.4.4. In fact, perfect recall means that agents do not
forget, or, in other words, knowledge cannot be lost in the course of
time. Assuming perfect recall is quite reasonable in many contexts,
at least from a theoretical point of view; cf, eg, van der Meyden &
Shilov, or Dixon & Fisher.



be applied to qualitative spatial modelling. In fact, certain
elementary properties of points in a space can be treated for-
mally with the aid of TOPOLOGIC. By way of example we
consider closeness. This notion is connected with knowl-
edge according to the fact that acquiring knowledge means
shrinking within a system of sets (viz the various knowledge
states of the agent), thus approximating points (viz the states
of complete knowledge).

While some important classes of spaces, eg, topological,
treelike, or directed ones, can be captured by TOPOLOGIC
(cf Georgatos 94, Georgatos 97, and Weiss & Parikh, respec-
tively), more expressive languages are needed for other nat-
urally arising spatial structures. In the following, we are
concerned with complement closed spaces, which prove to
be just the models for the desired spatio-temporalized logic
of knowledge and distinction. (Note that the systems men-
tioned in the final section of the introduction are not ade-
quate for complement closed spaces.)

By adding nominals and a distinction operator we extend
now the language underlying TOPOLOGIC, Lt , to the frame-
work of evolving knowledge. Or, to say it the other way
round, we extend the language for knowledge and distinc-
tion by a spatio-temporal operator � representing effort. For
the sake of a clear presentation we confine ourselves to the
single-agent case.

According to the additional dimension the set of nomi-
nals is divided into two disjoint subsets, NOM = NOM1 ∪
NOM2. The elements a,b, . . . ∈ NOM1 denote states as
above (thus the static entities of our models), whereas the
elements A,B, . . . ∈NOM2 name sets (which prove to be the
objects changing in the course of time). Thus we define the
set F̃ of formulas by the rule

α ::= p | a | A | ¬α | α ∧β | Kα | Dα |�α.

The dual of � is denoted 3. – In order to define the seman-
tics of our combined language we first specify precisely the
appropriate domains.

Definition 11 (Complement closed spaces) 1. Let S be a
non-empty set and O ⊆ P(S) a set of subsets of S sat-
isfying
• S ∈O , and X ∈O implies S\X ∈O .
Then the pair (S,O) is called a complement closed or cc
set frame.

2. Let S := (S,O) be a cc set frame. Then the set NS :=
{s,U | s ∈U and U ∈ O} is called the set of neighbour-
hood situations of S .

3. Let S = (S,O) be a cc set frame. A mapping V : PROP ∪
NOM−→P(S) such that
• V (a) is a singleton subset of S for all a ∈ NOM1 and
• V (A) ∈O for all A ∈ NOM2

is called an S –valuation.
4. A complement closed or cc space is a triple (S,O,V )

where (S,O) is a cc set frame and V an S –valuation.

It is now clear how a cc space emerges from a given EKS:
as every element of O is to represent some knowledge state
of the agent and spending effort means shrinking the knowl-
edge state, time is ‘encoded’ in the spatial structure (O,⊆).

In other words, the effort operator is reflected by the set in-
clusion relation on O . This is made explicit through the last
clause of the next definition, in which the relation of satisfac-
tion in cc spaces is introduced. This relation holds between
neighbourhood situations and formulas (as it is common for
Lt ).

Definition 12 (Satisfaction and validity II) Let a cc space
M = (S,O,V ) and a neighbourhood situation s,U of the cc
set frame (S,O) be given. Then

s,U |=M p :⇐⇒ s ∈V (p)
s,U |=M a :⇐⇒ s ∈V (a)
s,U |=M A :⇐⇒ V (A) = U
s,U |=M ¬α :⇐⇒ s,U 6|=M α

s,U |=M α ∧β :⇐⇒ s,U |=M α and s,U |=M β

s,U |=M Kα :⇐⇒ ∀ t ∈U : t,U |=M α

s,U |=M Dα :⇐⇒ ∀ t ∈ S\U : t,S\U |=M α

s,U |=M �α :⇐⇒ ∀U ′ ∈O :

{ s ∈U ′ ⊆U
⇒
s,U ′ |=M α,

for all p ∈ PROP, a ∈ NOM1, A ∈ NOM2, and α,β ∈ F̃. In
case s,U |=M α is true we say that α holds in M at the
neighbourhood situation s,U. – A formula α is called valid
in M iff it holds in M at every neighbourhood situation.

We should point to a a peculiarity of the just defined lan-
guage here. Note that the meaning of both proposition let-
ters and nominals depends only on states (as it is the case for
the standard logic of knowledge and time, too). This fact is
mirrored in two special axioms of the logic presented below
(Axioms 10 and 11).

Example 13 Let C be the set of all infinite 0–1–sequences.
A basis B for the distinguished topology on C is determined
by the set of all finite initial segments of elements of C . Let
O := {X ⊆ C | X ∈B or C \X ∈B}. Then, S := (C ,O)
is obviously a cc set frame, which can be viewed as a spatio-
temporal structure in a natural way. In fact, S can be de-
picted as the full infinite binary tree such that every X ∈B is
associated with the node by which it is determined. The lev-
els of the tree represent now the temporal dimension, while
the sets attributed to the nodes as well as their complements,
represent the spatial one. This view is justified since S
models, in particular, procedures computing binary streams.
And with the aid of the formulas of our language one can
specify certain properties of such computations. For exam-
ple, if a procedure P computes some real number ρ (i.e., the
output of P encodes a fast-converging Cauchy sequence hav-
ing limit ρ; cf Weihrauch) and ρ is different from, eg, π , then
one will know this eventually. Thus the formula 3KCπ is
valid in a suitable cc space based on S .

In the remaining part of this section we first give a system
of axioms for complement closed spaces. Afterwards we
touch on the question of completeness of the logic arising
from that.

The axiom schemata are arranged in four groups. The
first one consists of all the axioms from the previous section
(where m = 1 and the index ‘1’ is omitted). – By the second
group, the effort operator is axiomatized. It turns out that �



is, in particular, an S4–modality (due to Axioms 9, 12 and
13).

9. 2(α → β )→ (2α →2β )
10. (p→2p)∧ (3p→ p)
11. (a→2a)∧ (3a→ a)
12. 2α → α

13. 2α →22α ,
where p∈ PROP, a∈NOM1 and α,β ∈ F̃. – All the axioms
contained in the third group concern the interaction of the
modal operators.
14. K2α →2Kα

15. K2α ∧Dα →2Dα

16. 2(Kα ∧Dα)→ D2α ,

where α ∈ F̃. Note that 14 is the commutation axiom for
knowledge and effort mentioned already in the introduction
to this section. Axioms 15 and 16 describe how effort and
distinction commute. – Finally, some further axioms are
needed in the proof of the Completeness Theorem below.
This is the place where names of sets come into play.
17. A→ KA
18. K�(A∧Lα → Lβ )∨K�(A∧Lβ → Lα)
19. K(3B→3A)∧L3B→�(A→ L3B)
20. K3A→ A,

where A,B ∈ NOM2 and α,β ∈ F̃. – The axioms of this
last group are not easy to understand at first glance. Actu-
ally, they provide for the necessary properties of the acces-
sibility relations belonging to the modalities K and � on the
canonical model, so that really a cc set frame structure can
be guaranteed there.

A logical system called STKn+ (where ‘ST’ designates
the additional spatio-temporal component), is now obtained
from this list by adding appropriate proof rules (notably,
suitable modifications of the (ENRICHMENT)–rule above).
This system proves to be sound and complete with respect
to the class of all cc spaces.

Theorem 14 (Completeness II) A formula α ∈ F̃ is valid
in all cc spaces, iff it is STKn+–derivable.

The proof of Theorem 14 will be contained in the full
version of this paper.

Concluding remarks
In this final section, we give a short summary of the paper
and point to future research. – We extended the logic of
knowledge of m agents by nominals and a distinction oper-
ator for every agent. We proved then a corresponding com-
pleteness, decidability and complexity result, respectively.
After that, we augmented the system by an effort opera-
tor having both a strong temporal and spatial flavour. We
modelled distinguishability in this richer framework as well.
In fact, we obtained a completeness theorem for the logic
STKn+ with respect to the class of all complement closed
spaces. – A further-reaching study of STKn+ and, in partic-
ular, its effectivity properties, has to be postponed. But we
believe that a refinement of the methods applied to Kn+ will
show that STKn+ is also a decidable logic (though of rather
high complexity).
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