
Reasoning about Events with Time-interval Information

Shieu-Hong Lin
Department of Mathematics and Computer Science

Biola University
13800 Biola Avenue

La Mirada, California 90639
shieu-hong.lin@bubbs.biola.edu

Abstract

It is a challenging task to reason about a dynamically
evolving system with events triggering state transitions
and uncertainty about the ordering of events. In previ-
ous research, uncertainty of the event ordering is mainly
modelled by partial orders over the events. In this paper,
we investigate uncertainty of the event ordering mod-
elled by time intervals in which the events may occur.
Each event will occur at exactly one point of time, but
it could be any point within the time interval associated
with the event. We present both positive and negative
results that provide insight into the complexity of tem-
poral reasoning about events with time-interval infor-
mation.

1 Introduction

Reasoning about dynamically evolving systems with events
triggering state transitions has important applications in plan
validation (Nebel & B̈ackstr̈om 1992) (Dean & Boddy 1988)
and system verification (Dean & Wellman 1991) (Manna &
Pnueli 1995) (Lin & Dean 1996). The dynamics of the sys-
tem is often modelled by a set of boolean state variables,
each of which has a value,true or false, at a given point
of time. The values of the state variables at a point of time
determine the system state at that time. The evolution of the
system depends on a sequence of state transitions triggered
by a set of coming events. Often there is uncertainty about
in what order the events will occur as a sequence. In gen-
eral, there may be many possible event sequences that end
in very different trajectories of system evolution. In pre-
vious research (Dean & Boddy 1988) (Nebel & Bäckstr̈om
1992) (Lin & Dean 1996), uncertainty of the event ordering
is mainly modelled by partial orders over the events. In this
paper, we investigate uncertainty of the event ordering mod-
elled by time intervals in which the events may occur. Each
event will occur at exactly one point of time, but it could be
any point within the time interval associated with the event.

When an event occurs, it instantly changes the system

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

state according to a set of causal rules associated with the
event. A causal rule is a STRIPS-like operator as used in
the planning community (Russell & Norvig 2003) (Ghallab,
Nau, & Traverso 2004). A causal rule is applicable in a state
if the values of the state variables satisfy the antecedent re-
quirements of the rule. When the rule is applied in an appli-
cable state, the values of the state variables are updated as
described in the rule. Events could be deterministic or non-
deterministic. An event is a nondeterministic event if there
are two or more associated causal rules applicable in a state.
In that situation, exactly one of the applicable rules is nonde-
terministically picked and applied to precipitate a state tran-
sition. In general, reasoning about nondeterministic events
is more challenging than about deterministic events due to
such nondeterminism.

In this paper, we focus on the temporal projection problem
(Dean & Boddy 1988) (Nebel & B̈ackstr̈om 1992) (Lin &
Dean 1996) over events in dynamical systems as described
above. Given an initial state and a goal, the task of tem-
poral projection is to determine the existence of a possible
event sequence that ends in a system state that satisfies the
goal, and provide information of such an event sequence if
one exists. Temporal projection can be considered as a spe-
cial kind of planning (Lin & Dean 1996) (Ghallab, Nau, &
Traverso 2004) since events are associated with operators
(causal rules) and we are looking for an event sequence to
achieve the goal. However, for temporal projection, we do
not have full control over the events. Instead, we have to
achieve the goal under the restrictions that the number of
events is fixed, that the event ordering must be consistent
with the time interval information, and that a fixed number
of operators (causal rules) are associated with each event.

Temporal projection is a challenging computational task.
In addition to the number of events involved, there are sev-
eral factors affecting the complexity of temporal projection,
such as the number state variables of the system, whether the
events are deterministic or nondeterministic, and how tightly
the associated time intervals overlap with one another. In
this research, we develop an algorithm that transform the
temporal projection problem to an AI search problem and
the algorithm allows us to exploit structure embedded within
the time-interval information to improve performance. We

also present both positive and negative results that provide
insight into the complexity of temporal projection involving
events with time-interval information.

The remainder of the paper is organized as follows. Sec-
tion 2 provides definitions of terms and notations to formally
describe the temporal projection problem involving events
with time-interval information. Section 3 describes the al-
gorithm to exploit the event-chain structure within the time-
interval information, which transform the temporal projec-
tion problem to an AI search problem. In section 4, we in-
vestigate the complexity trade-offs involving various factors
mentioned above.

2 Temporal Projection with Time-interval
Information

In the following, we introduce definitions of terms and no-
tations to formally describe the temporal projection problem
with time-interval information associated with the events.
These terms and notations are also used in the results and the
proofs appearing in the later sections. Using the notations
introduced in this section, Figure 1 provides a concrete prob-
lem instance of six events together with their causal rules
and time-interval information.

State variables and states: We model the dynamics of the
system in terms of a set ofm boolean state variablesX =
{X1, X2, . . . , Xm}. The value of a state variableXi is ei-
ther true or false at a point of time. The values of the
state variables inX all together at a point of time deter-
mine the system state at that time. We represent a state as
(x1, x2, . . . , xm) wherexi is the value ofXi in the stateu.
For notational convenience, we use the notationSX to refer
to the state space{true, false}m.

State expressions: A state expression is a set of pairs of the
form 〈Xi, value〉 whereXi is a state variable andvalue is
eithertrue or false. A state expressionα is true in a stateu
if and only if for each pair〈Xi, true〉 in α, the value ofXi

in u is true and for each pair〈Xj , false〉 in α, the value of
Xj in u is false. An empty state expression is true in every
state.

Causal rules: A causal ruler is represented asα → β where
α andβ are state expressions.α is the antecedent require-
ment of ruler andβ is the causal effect of ruler. A rule
r of the formα → β is applicable in stateu if and only if
α is true in stateu. Ruler can cause a state transition from
stateu to statev if rule r is applicable in stateu, β is true in
statev, and the values of the state variables not appearing in
β remain the same inv as they are inu.

Remark: A ruler = α → β is actually a STRIPS-like op-
erator where the state variables appearing inα are the pre-
conditions of the operator while those appearing inβ are the
postconditions of the operator.

Events and state transitions: When an event occurs, it in-
stantly triggers a state transition at a point of time. No two
events can occur at the same point of time. Each event is
associated with a set of causal rules. Given the stateu im-
mediately before an evente occurs, evente can trigger a state
transition from stateu to another statev according to one of
the causal rules applicable inu. If two or more rules of event
e are applicable in stateu, evente triggers state transition
nondeterministically according to exactly one of the appli-
cable rules. If no rule explicitly associated with an event is
applicable to a state, nothing is changed by the event and the
system remains in the same state. In other words, there is an
implicit causal rule that will cause a state transition back to
the same state when none of the explicit rules is applicable.

Remark: If an event e cause a state transition from stateu
to statev due to a causal ruler, we say that the ruler is ap-
plied by the evente in stateu. An event precipitates change
of system state. The effects of an event is conditional on
the state immediately before the event occurs, and the set of
causal rules associated with the event. In this way, an event
determines a state-transition relation overSX .

Nondeterministic events: An evente is a nondeterministic
event if there exists a state in which two or more explicit
causal rules associated withe are applicable; otherwise the
event is a deterministic event. A deterministic event encodes
a complete state-transition function over the state space de-
termined by the set of state variables while a nondetermin-
istic event encodes a complete state-transition relation over
the state space.

Time-interval information of events: The time line is mod-
elled as the line of real numbers with every point of time
uniquely encoded as a real number. Each evente is associ-
ated with an open time intervalI(e) = (t, t′) wheret < t′.
For notational convenience, we refer to the two ends (t and
t′) of this open interval asAT (e) andBT (e) respectively.
Evente will occur at exactly one point of time, and it could
be any point of time afterAT (e) and beforeBT (e).

Event sequences, tails, and prefixes: An event sequenceq
of length h over a set of eventsE, whereh ≤ |E|, is a
sequence〈e1, e2, . . . , eh〉 whereei ∈ E for 1 ≤ i ≤ h, and
ei 6= ej if i 6= j. The eventeh is the tail of q. A prefix of
an event sequenceq = 〈e1, e2, . . . , eh〉 is an event sequence
q′ = 〈e1, e2, . . . , eh′〉 whereh′ ≤ h.

Trajectory: A state sequence〈s0, s1, . . . , sh〉 is a trajectory
of an event sequenceq = 〈e1, e2, . . . , eh〉 if and only if each
eventei, can trigger a state transition from statesi−l to state
si, for 1 ≤ i ≤ h. A trajectory of an event sequence is sim-
ply a possible system evolution in the state space triggered
by the event sequence.

Remark. When a set of events occur as a sequence, it causes
a sequence of state transitions. This corresponds to the evo-
lution of system, which critically depends on the ordering of

X = {X1, X2, X3, X4, X5, X6, X7, X8}
s0 = (true, true, true, true, true, true, true, true)
G = (〈X1, false〉〈X2, false〉〈X4, false〉

〈X5, false〉〈X7, false〉〈X8, false〉)
E = {e1, e2, e3, e4, e5, e6}

e1 : I(e1) = (21, 28)
{(〈X1, true〉〈X2, true〉) → (〈X1, false〉〈X2, false〉〈X3, true〉)
(〈X1, true〉〈X3, true〉) → (〈X1, false〉〈X3, false〉〈X4, true〉)
}
e2 : I(e2) = (25, 32)
{(〈X1, true〉〈X3, true〉) → (〈X1, false〉〈X3, false〉〈X2, true〉)
(〈X1, true〉〈X2, true〉) → (〈X1, false〉〈X3, false〉〈X4, true〉)
}
e3 : I(e3) = (3, 9)
{(〈X4, true〉〈e, true〉) → (〈X4, false〉〈X5, false〉〈X6, true〉)
}
e4 : I(e4) = (1, 12)
{(〈X4, true〉〈X6, true〉) → (〈X4, false〉〈X6, falae〉〈e, true〉)
}
e5 : I(e5) = (16, 23)
{(〈X1, false〉〈X4, true〉) → (〈X1, true〉〈X4, false〉〈X7, false〉)
}
e6 : I(e6) = (13, 18)
{(〈X1, true〉〈X4, false〉) → (〈X1, false〉〈X4, true〉〈X8, false〉)
}

Figure 1: A problem instance(X, s0, G, E) with six events

the events and the choices of applicable rules for individual
events.

Sets of event sequences: Given a set of eventsE together
with their time-interval information,QE is the set of all
event sequences of length|E| overE that are consistent with
the time-interval information.

Temporal projection problem instances: An instance of the
temporal projection problem is a four-tuple(X, s0, G,E),
whereX is a set of state variables that determine the states
of the system,s0 is the initial state,G is a state expression
to implicitly specify a set of goal states in whichG is true,
andE is a set of events together with the causal rules and
the time-interval information associated with the events.

Temporal Projection: Given an instance of the temporal pro-
jection problem, the PRJ task of temporal projection is to
determine the existence of event sequences inQE immedi-
ately following which the system is in one of the goal states.
If such event sequences do exist, we would like to generate
one such sequence together with (1) the causal rules applied
by the individual events and (2) a suggested list of specific
points of time in which the events may occur.

Example: In Figure 1, we have a setX of eight state vari-
ables, each of which models whether the concentration of
certain chemical is low or not in a production process. Ini-

tially, all chemicals are low in concentration, and thus in the
initial states0 all the variables have the same value,true.
Six events in the production process will change the values
of state variables according to the causal rules. Each event
will occur at a point within the specified time interval. The
task is to determine, as specified in the goalG whether it is
possible that in the end of the production process the con-
centrations of the first, the second, the fourth, the fifth, the
seventh, and the eighth of the chemicals are all high, and
thus would damage the quality of the final product. In this
particular example, the event sequence〈e3, e4, e6, e5, e1, e2〉
with the first causal rules of these events applied will end in a
state satisfying the goal. Such an event sequence may come
with events occurring in that order at the specific points of
time 5, 10, 15, 20, 25, and 30 respectively.

3 Temporal Projection as Search

In the following, we describe an algorithm to exploit the
event-chain structure within the time-interval information
and reduce the temporal projection problem to an AI search
problem. First of all, we need to define (1) the degree of un-
certainty over the ordering of events and (2) the event-chain
structure as follows.

Definition 1 (Degree of uncertainty) Given a set of events,
we say the set of events has a degreed of uncertainty over
the ordering of events if and only if (1) there exists one point
of timet such thatt falls inside the associated time intervals
of d + 1 events and (2) at any other point of timet′, t′ falls
inside the associated time intervals of no more thand + 1
events. In other words,d + 1 is the maximal number of
events within this set that can occur in any order relative to
one another. Whend is zero, there is no overlapping between
the time intervals and thus no uncertainty over the ordering
of events. Whend is zero, events in the set can only occur in
a fixed order.

Definition 2 (Event chains) A set of events forms an event
chain if and only if their associated time intervals do not
overlap. Such a set of events has 0 degree of uncertainty
over the ordering of events, and they can only occur in a
fixed order relative to one another. Conceptually, we can
view these events as a chain one following another through
the time line.

The following procedure can determined, the degree of
uncertainty over the ordering of events and partition the set
of events intod + 1 event chains.

Procedure DecompositionIntoChains
Input : an problem instance(X, s0, G,E)
Output : (1) d: the degree of uncertainty over the ordering
of events and (2) a partition of events inE into d + 1 event
chains
1. Set up a priority queue to maintain the information of

available chains and the time they are created. Initially there
is no event chain yet and none of the events is assigned to
any chain. Sort the collection of all theAT (e) andBT (e)
end points of the time intervals associated with every event
e in E. 1

2. Repeatedly scan the end points from the earliest one to
the latest one along the time line. For each end point, do
either step 3 or step 4 accordingly.
3. For anAT (e) end point, if there is no available chain at
the moment, create a new chain, assigne as the first event
in the chain, and mark this chain as unavailable. Otherwise,
remove among the available chains in the priority queue the
one that was created earlier than any one else, assigne as
the next event in this available chain, and mark that chain as
unavailable.
4. For anBT (e) end point, mark the chain that evente is
assigned to as an available chain again and put it back to the
priority queue.
5. Output the event chains according to the assignment of
events to chains and report the degree of uncertaintyd as the
total number of chains allocated minus one.

Lemma 1 Given a set ofn events with the time-interval
information, the procedureDecompositionIntoChainscan
determine the degree of uncertainty over the ordering of
eventsd in O(n log n) time and partition the set of events
into d + 1 event chains. Any possible event sequence over
then events is derived from interleaving thesed + 1 event
chains into a sequence.

Proof sketch. It takesO(n log n) time to sort the end points,
and then spendsO(n) time to process the end points. This
procedure basically scan the time line from left to right to as-
sign every pair of events with overlapping intervals into dif-
ferent chains, and it does so by using the minimum number
of chains needed. This minimum number of chains needed
to separate the intervals also tells us the maximum number
of the intervals that any point of timet can fall into.

When the degree of uncertainty over the event order-
ing is a constant, we can view the set of events as sev-
eral event chains and reason about the interleaving of these
event chains into a possible event sequence. In the fol-
lowing, we reduce the task of temporal projection to graph
search by applying the standard graph-search algorithms to
derive the answers. It turns out the event-chain structure can
be exploited in the procedure to guarantee polynomial-time
computational efficiency when dealing with a state space of
polynomial size .

Procedure TemporalSearch
Input : an problem instance(X, s0, G, E).
Output : (1) determine the existence of a goal statesG that

1The sorting is conducted by comparing the numerical values
of the end points. If anAT (e) end point of an evente and an
BT (e′) end point of an evente′ turns out to have the same value,
we considerBT (e′) to be smaller thanAT (e).

the system may end in after some event sequence inQE and
sG satisfies the goalG; (2) an event sequenceq in QE that
ends in the goal statesG if one exists; (3) the rules applied
by individual events inq to enter the goal state; and (4) a
suggested list of specific points of time in which the events
may occur
1. Call procedureDecompositionIntoChainsto determine
the degree of uncertaintyd and partition the set of eventsE
into d event chains as stated in Lemma 1.
2. Conduct a graph search as described in step 5 through the
following directed acyclic graphTE = (V, A) as described
in step 3 and step 4 to find the information we need.2

3. The set of verticesV of the graphTE = (V,A) models
all the possibilities of the system state after some numbers of
events in the individual event chains have already occurred.
A vertex v in V is of the form(s, c1, c2, . . . , cd+1) where
s ∈ SX indicates the corresponding system state in vertex
v while ci (1 ≤ i ≤ d + 1) is an event counter for theith
event chain indicating that the firstci events in theith chain
have occurred while the remaining events in theith chain
have not occurred yet.3

4. The set of arcsA of the graphTE = (V, A) models all
possible state transitions precipitated by the events. There
is an arc from vertex(s, c1, c2, . . . , ck − 1, . . . , cd+1) to
vertex(s, c1, c2, . . . , ck, . . . , cd+1) if and only if (i) theckth
event in thekth chain can trigger a state transition froms to
t by applying a causal ruler, and (ii) without violating the
time-interval information this event can be the next event to
occur exactly after the firstck − 1 events in thekth chain
and the firstci events in theith chain(1 ≤ i ≤ d+1, i 6= k)
have all occurred . We attach the event-rule tag(e, r) to
the arc to indicates that evente can trigger such a state
transition by applying causal rule r.
5. Let li be the the total number of events in theith event
chain. Search the graphTE starting from the source vertex
(s0, 0, . . . , 0) to determine, for each goal statesG that sat-
isfies the goalG, whether(sG, li, l2, . . . , ld+1) is reachable
from (s0, 0, . . . , 0). 4 If such a vertex(sG, li, l2, . . . , ld+1)
is reachable, do step 6. If no such vertex is reachable,
reports that the goal can never be reached in the system.
6. Find a directed path from the root vertex(s0, 0, . . . , 0)
to the goal vertex(sG, li, l2, . . . , ld+1). The event-rule tags
of the arcs along this directed path them immediately give
us an event sequenceq in QE that ends in the goal state
sG, together with the information of the rules applied by
the events inq to end insG. Scan the events in the event
sequenceq one by one, and assign each event the earliest
possible time point that is (1) within its own time interval
and (2) later than every time points already assigned to the
preceding events inq.

2We do not need to construct the entire graphT E explicitly
before the search. Instead, we only progressively expand portions
of the graph as needed when we conduct the search.

3Let li be the the total number of events in theith event chain.
Each states in SX is mapped to

Q
1≤i≤d+1(1 + li) vertices inV

4See Lemma 2.

Lemma 2 According to the formation of the graphTE as
described in theTemporalSearch procedure, a goal state
sG satisfying the goal can be reached immediately after an
event sequence inQE if and only if there exists a vertex
(sG, li, l2, . . . , ld+1) that is reachable from the root vertex
(s0, 0, . . . , 0) in TE .

Theorem 1. Temporal projection withn nondeterministic
events,O(1) variables, andO(1) degree of uncertainty over
the ordering of events is solvable inO(n log n) time.
Proof sketch.TheTemporalSearchprocedure has to search
through vertices of the form(s, c1, c2, . . . , cd) wheres ∈ SX
indicates a system state whileci (1 ≤ i ≤ d) is an event
counter for theith event chain. Consider the event counter
for the first chain. For each fixedc1 value for that counter,
it turns out there are onlyO(1) possible values for the event
counters of any other chains. Lete be the event correspond-
ing to the fixedc1 value for the first chain. Because of the
O(1) degree of uncertainty over the ordering of events, there
are onlyO(1) possibilities about the what events in any other
chain can occur after thecith event in the first chain has oc-
curred and before the(ci + 1)th event in the first chain oc-
curs. Since the first chain is at most of lengthn, there is
only anO(n) number of possible combinations ofci values,
1 ≤ i ≤ d. Therefore the number of vertices reachable by
theTemporalSearchprocedure from the source vertex is no
more thanO(n) times the size of the state spaceSX , which
is againO(n) given theO(1) variables. Since there is only
O(1) events chains given theO(1) degree of uncertainty, the
maximal out degree of the vertices in the graph isO(1). So
there is onlyO(n) arcs explored. Since graph search can
be done efficiently in time linear in the number of vertices
and arcs explored (Corman & Leiserson 2001), we can con-
clude theTemporalSearchprocedure takesO(n)) to search
the graphTE . The extraO(n log n) time needed in step 1
to sort the end points ofn time intervals then becomes the
dominant factor of the overall computational time. There-
fore the procedure hasO(n log n) time complexity.

Theorem 2. Temporal projection withn nondeterministic
events,O(log n) variables, andO(1) degree of uncertainty
over the event ordering is solvable in time polynomial inn.
Proof sketch.The analysis in the proof sketch of Theorem 1
still works here except that now the size of the state space
SX is polynomial inn. Therefore the number of vertices
reachable by theTemporalSearchprocedure from the source
vertex is no more thanO(n) times the size of the state space
SX , which is polynomial inn. Since graph search can be
done efficiently in time polynomial in the number of vertices
explored, we can conclude the procedure is a polynomial
time algorithm in this case.

4 Complexity Tradeoffs

Though theTemporalSearchprocedure in the previous sec-
tion provides polynomial-time performance guarantee given
theO(1) overlapping of time intervals and a polynomial-size

state space. Temporal projection with time-interval informa-
tion in general is hard. The results in this section show that
(1) the number state variables of the system, (2) whether
the events are deterministic or nondeterministic, and (3)
the degree of uncertainty in event ordering all contribute to
the computational complexity of temporal projection with
time-interval information. For convenience of comparison,
we depict the computational complexity results in Table 1
(based on Theorem 3, Theorem 4, and Theorem 5), Table 2
(based on Theorem 1 and Theorem 2), and Table 3 (based
on Theorem 6 and Theorem 7) respectively according to dif-
ferent levels of uncertainty over the event ordering.

Theorem 3. Temporal projection withn nondeterministic
events,O(n) variables, and no uncertainty over the order-
ing of events is NP-Complete.
Proof sketch.
This is established by a reduction from the 3SAT problem
(Garey & Johnson 1979). Given an instance of the 3SAT
problem, for each of then clauses in that instance, we can
create a nondeterministic event which has three causal rules
to simulate the nondeterminism in choosing one of the three
literals in that clause and fix it as true. The time-interval
information set these events to occur in a fixed order as the
clauses are ordered. For each literal, we create two state
variables to record whether its logic value is fixed yet and
what its truth true is if its value is fixed already. In the ini-
tial state, we set the values of these variables to reflect that
the truth values of none of these literals are fixed yet. For
each clause, we create a variable to record whether we have
already successfully set the logical value of one of the three
literals to make satisfy the clause. Let’s refer to the set of
these variables asX. Initially, none of the clauses are satis-
fied yet, and in the initial state all the variables inX initially
are set to false. To find a solution to the 3SAT instance,
we simply have to look at then corresponding events in the
fixed order one by one and decide the rule to apply each
time. The 3SAT instance is satisfiable if and only if it is pos-
sible that in the end of the event sequence all the variables in
X are set to true, which means all the clauses are satisfied.

Theorem 4. Temporal projection withn nondeterministic
events,O(log n) variables, and no uncertainty over the or-
dering of events is solvable in time polynomial inn.
Proof sketch.
Starting from the initial state as the only reachable state be-
fore any event occurs, we can record what states are reach-
able after one more event occurs. Since the size of state
space is polynomial inn and the events occur in a fixed or-

Deterministic Nondeterministic
O(1) variables O(n log n) time O(n log n) time
O(log n) variables O(n log n) time polynomial inn
O(n) variables O(n log n) time NP-Complete

Table 1: Complexity of temporal projection without uncer-
tainty over the ordering of events

Deterministic Nondeterministic
O(1) variables O(n log n) time O(n log n) time
O(log n) variables polynomial inn polynomial inn
O(n) variables unknown unknown

Table 2: Complexity of temporal projection withO(1) de-
gree of uncertainty over the ordering of events

Deterministic Nondeterministic
O(1) variables polynomial inn polynomial inn
O(log n) variables NP-Complete NP-Complete
O(n) variables NP-Complete NP-Complete

Table 3: Complexity of temporal projection withO(n) de-
gree of uncertainty over the ordering of events

der, we can process then events one by one to trace the
reachable states after one more event occurs. Each time it
takes time polynomial inn to determine whether any state
satisfying the goal is reachable after one more event occurs.

Theorem 5. Temporal projection withn nondeterministic
events,O(1) variables, and no uncertainty over the ordering
of events is solvable inO(n log n) time.
Proof sketch.
It follows the same analysis as described in the proof of the
previous theorem except that it is a constant-size the state
space. So it takes only constant time to trace the reachable
states after one event. It takesO(n log n) time to sort the
events according to theAT (e) of each evente. After that it
takesO(n) time to process then events one by one to trace
the reachable states.

Theorem 6. Temporal projection withn deterministic
events,O(log n) variables, andO(n) degree of uncertainty
over the ordering of events is NP-complete.
Proof sketch.
This is established by a reduction from the Forbidden-pairs-
of-arcs problem (Garey & Johnson 1979). An instance of
this problem provides a directed graph and a number of for-
bidden pairs of arcs and the task is to determine whether
there is a path from a source vertex to a target vertex in that
graph without using both arcs in any of the forbidden pairs.
The problem is NP-complete even if the arcs are disjoint.
We can useO(log n) variables to encode every vertex in the
directed graph. The source vertex and the target vertex are
then encoded as the initial state and a goal state. Arcs in the
directed then corresponds to state transitions. For each for-
bidden pairs, we can create a deterministic event with two
causal rules, each of which can simulate state transitions
alone the forbidden pairs. For each arc not in any of the
forbidden pairs, we also create a deterministic event with
one rule that can trigger a state transition corresponding to
the arc. Finding a path in the forbidden-pair problem is then
reduced to finding an event sequence to reach the goal state
from the initial state.

Theorem 7. Temporal projection withn nondeterministic
events,O(1) variables, andO(n) degree of uncertainty over
the ordering of events is solvable in time polynomial inn.
Proof sketch.
This can be established by adapting the proof of Theorem 7
in (Lin & Dean 1996). The idea is to enumerate the con-
stant number of state trajectories that reach a goal state from
the initial state. For each enumerated trajectory, it can be
determined in polynomial time whether there is an event se-
quence that can actually generate such a trajectory.

5 Conclusion

In this paper, we formally define the temporal projection
problem to reason about events with time-interval informa-
tion. We propose an algorithm to exploit the event-chain
structure embedded in the time-interval information. The
algorithm transforms the temporal projection problem into a
search problem to improve the computational efficiency. We
also present both positive and negative complexity results
that show how (1) the number state variables of the system,
(2) whether the events are deterministic or nondeterminis-
tic, and (3) the degree of uncertainty in event ordering all
contribute to the tradeoffs of computational complexity.

References

Corman, T. H., and Leiserson, C. E. 2001.Introduction to
Algorithms. 2nd edition.
Dean, T., and Boddy, M. 1988. Reasoning about partially
ordered events.Artificial Intelligence36(3):375–399.
Dean, T., and Wellman, M. 1991.Planning and Control.
Morgan Kaufmann.
Garey, M. R., and Johnson, D. R. 1979.Computers and
Intractability. W. H. Freeman and Company.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning. Morgan Kaufmann.
Lin, S., and Dean, T. 1996. Localized temporal reasoning
using subgoals and abstract events.Computational Intelli-
gence12(3):423–449.
Manna, Z., and Pnueli, A. 1995.Temporal verification of
reactive systems. Springer-Verlag.
Nebel, B., and B̈ackstr̈om, C. 1992. On the computational
complexity of temporal projection and plan validation. In
Proceedings AAAI-92, 748–753.
Russell, S., and Norvig, P. 2003.Artificial Intelligence: A
Modern Approach,. Prentice Hall, 2nd edition.

