
Partial Constraint Satisfaction of Disjunctive Temporal Problems

Michael D. Moffitt and Martha E. Pollack
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI, USA

{mmoffitt, pollackm}@eecs.umich.edu

Abstract

We present a method for finding optimal partial solutions to
overconstrained instances of the Disjunctive Temporal Prob-
lems (DTP). The solutions are optimal in that they satisfy a
maximal number of constraints. While partial constraint sat-
isfaction (PCS) has been commonly applied to finite-domain
CSPs, its application in this setting is of particular interest, as
temporal problems are traditionally solved using a meta-CSP
approach, in which the constraints of the original problem be-
come the variables of the meta-level problem. We show how
to adopt nearly all previous pruning techniques in DTP solv-
ing for use with PCS, and provide results demonstrating their
effectiveness. We also introduce an incremental technique
that leads to substantially improved performance.

Introduction
Temporal reasoning is an important tool in many areas of
artificial intelligence, including planning, scheduling, and
natural-language processing. A great deal of work has been
done on temporal reasoning as a form of constraint satisfac-
tion processing. Research on this topic has focused primar-
ily on two key questions: how to expressively represent tem-
poral information, and how to efficiently generate solutions
for temporal problems. The former issue has been addressed
with a number of different formalisms, where the underly-
ing constraints have been augmented with conditional de-
pendencies (Tsamardinos, Vidal, & Pollack 2003), uncer-
tainties (Vidal & Fargier 1999), and preferences (Peintner
& Pollack 2004). The latter issue has also received signifi-
cant attention in the development of efficient algorithms for
finding complete solutions to temporal reasoning problems
(Stergiou & Koubarakis 1998; Tsamardinos & Pollack 2003;
Choueiry & Xu 2004). However, most of the prior work
has focused on finding complete solutions, while in practice,
real-world temporal problems–and even synthetic ones–are
often overconstrained. To be useful, a temporal constraint
problem-solver should do more than generate a notice of
failure when confronted with such a problem. What is really
needed is a partial solution, i.e., a solution that satisfies a
modified form of the original problem in which some of the
constraints or variables have been weakened or removed.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Partial constraint satisfaction (PCS) (Freuder & Wallace
1992) techniques have been developed for finding partial so-
lutions to overconstrained problems, by selecting a subset of
constraints to relax. Often, this is done with the objective
being to minimize the total number of weakened constraints.

In this paper, we show how partial constraint satisfaction
can be successfully applied to Disjunctive Temporal Prob-
lems (DTPs) (Stergiou & Koubarakis 1998), a particularly
expressive form of temporal constraint satisfaction prob-
lem that subsumes Simple Temporal Problems and Temporal
Constraint Satisfaction Problems (Dechter, Meiri, & Pearl
1991). While partial constraint satisfaction has been com-
monly applied to finite-domain CSPs, its application in this
setting is of particular interest, as temporal problems are tra-
ditionally solved using a meta-CSP approach, in which the
constraints of the original problem become the variables of
the meta-level problem. We show how to adopt nearly all of
the pruning techniques for meta-CSPs implemented in the
Epilitis DTP solver (Tsamardinos & Pollack 2003) so that
they can be used with PCS. Some of these techniques have
no previous exposure to partial constraint satisfaction, and
as we will show, can prove to be quite useful in improving
performance. We also introduce an incremental technique
that leads to substantially improved performance.

It should be noted that ours is not the first attempt to com-
bine partial constraint satisfaction and temporal reasoning.
This work is closely related to (Beaumont et al. 2001);
however, that paper deals an interval algebra representation,
which is strictly less expressive than that allowed by DTPs.

Disjunctive Temporal Problems
A Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 1998) is a constraint satisfaction problem de-
fined by a pair 〈X,C〉, where each element Xi ∈ X des-
ignates a time point, and C is a set of constraints of the fol-
lowing form:

ci1 ∨ ci2 ∨ ... ∨ cin

where in turn, each cij is of the form x−y ≤ b; x, y ∈ X and
b ∈ �. DTPs are thus a generalization of Simple Temporal
Problems (STPs), in which each constraint is limited to a
single inequality. A solution to a DTP is an assignment of
values to time points such that all constraints are satisfied.
Notice that since each constraint Ci may involve more than

two temporal variables, it may not necessarily be a binary
constraint.

Several algorithms have been developed for solving DTPs
(Stergiou & Koubarakis 1998; Armando, Castellini, &
Giunchiglia 1999; Oddi & Cesta 2000; Tsamardinos & Pol-
lack 2003). Typically, these algorithms view the DTP as
a collection of alternative STPs. Using this approach, the
algorithm selects a single disjunct from each constraint of
a given DTP D. The resulting set forms an STP, called a
component STP of D, which can then be checked for con-
sistency in polynomial-time using a shortest-path algorithm
(Dechter, Meiri, & Pearl 1991). Specifically, an STP is con-
sistent if and only if it contains no negative cycles, which
can be determined by computing the all-pairs shortest path
matrix and checking that the values along the main diagonal
are non-negative. Clearly, a DTP D is consistent if and only
if it contains at least one consistent component STP. Further-
more, any solution to a consistent component STP of D is
also a solution to D itself. Consequently, it is standard in the
DTP literature to consider any consistent component STP to
be a solution of the DTP of which it belongs.

A number of pruning techniques can be used to focus
the search for a consistent component STP of a given DTP.
These include conflict-directed backjumping, removal of
subsumed variables, and semantic branching. The DTP
solver Epilitis (Tsamardinos & Pollack 2003) integrated all
of these techniques, in addition to no-good recording. At
the time it was developed, Epilitis was the fastest existing
DTP solver, although it was recently surpassed by TSAT++
(Armando et al. 2004). We use Epilitis as the basis of our
approach to partial constraint satisfaction in DTPs.

Partial Constraint Satisfaction
Partial Constraint Satisfaction (Freuder & Wallace 1992)
deals with the issue of solving a constraint satisfaction prob-
lem by removing or weakening some of its constraints. Such
a procedure is useful for cases in which the problem is over-
constrained and thus lacks a complete solution, or is sim-
ply too difficult to solve completely and an approximate
solution is acceptable. In maximal constraint satisfaction,
the objective is to find a solution that satisfies the maximal
number of constraints. Freuder and Wallace present an ap-
proach to maximal constraint satisfaction based on a natu-
ral backtracking search technique using branch and bound–
whenever a solution is found that violates fewer constraints
than previous solutions, the algorithm remembers it and af-
terwards prunes all search paths that cannot result in any
better solution. They also demonstrate how basic pruning
techniques such as forward checking and conflict-directed
backjumping can be used to further reduce the search space
during maximal constraint satisfaction.

Several subsequent enhancements have been made to the
basic partial constraint satisfaction algorithm, most of which
involve variations of arc consistency. Unfortunately, these
enhancements are not especially useful for DTP solving: as
discussed in (Choueiry & Xu 2004), performing generalized
arc consistency on the meta-CSP is NP-hard and thus pro-
hibitively expensive.

Application to DTPs
As illustration of the application of partial-constraint satis-
faction to DTPs, consider the following very small problem:

C1 : {c11 : a − b ≤ 10}
C2 : {c21 : b − a ≤ −15} ∨ {c22 : d − c ≤ −15}
C3 : {c31 : c − d ≤ 10}

Clearly there is no complete solution to this problem, since
c21 conflicts with c11 (the only possible disjunct to be se-
lected from C1), while c22 conflicts with c31 (the only pos-
sible disjunct to be selected from C3).

In this paper, our objective will be to find an assignment
of values to time points that maximizes the number of con-
straints satisfied in the DTP, or, equivalently, that requires re-
laxation of the minimal number of constraints. For instance,
the assignment a ← 10, b ← 0, c ← 10, d ← 0 which satis-
fies two constraints (C1 and C3), is optimal, in that no as-
signment can satisfy all three. Of course, there are many
alternative assignments that also satisfy two constraints, and
indeed, in this particular example, it is possible to satisfy any
two of the three.

To achieve the goal of maximal constraint satisfaction in
a DTP, we modify the original meta-level DTP solving al-
gorithm so that instead of searching through the space of all
possible component STPs, it effectively performs a search
through all possible partial component STPs, where a partial
component STP is one that may select STP constraints from
only a proper subset of the meta-level constraints. Thus,
with our current example, the algorithm might select c11

from C1 and c31 from C3, but leave C2 unassigned–or,
equivalently, make a null assignment to it. Of course, since
the algorithm is designed to make the maximal number of
assignments possible, it will still find a solution that satis-
fies all the constraints if the DTP is consistent. Note that
even though one or more of the meta-level variables may
be unassigned, all the variables of the original DTP, i.e., the
time points, do receive assignments.

The meta-CSP approach taken in temporal constraint sat-
isfaction processing differs somewhat from the approach
taken when PCS is applied to traditional, finite-domain
CSPs. In the latter case, the solution is a total assignment,
where each constrained variable is assigned a value from its
original domain; what may make the solution partial is the
fact that those assignments may violate some of the origi-
nal constraints. When we move to DTPs, a PCS solution is
no longer necessarily a total assignment; instead a (meta)-
variable may be left unassigned, signifying that none of the
disjuncts associated with it should be enforced. In other
words, the weakening of constraints in the original CSP
maps directly to the removal of variables in the meta-CSP.

Figure 1 provides a simple partial constraint satisfaction
algorithm for DTPs. The input variable A is the current set
of assignments to meta-variables, and is initially �; vari-
able U is the set of unassigned variables (initially the entire
set C); cost is the total number of meta-constraints given
a null assignment (initially zero); and upperbound is the
stored cost of the best solution found so far (initially set to
the number of meta-constraints). The algorithm resembles
a bare-bones backtracking algorithm that could be used for

Partially-Solve-DTP(A, U, cost, upperbound)
1. If (cost ≥ upperbound) return
2. If (U = �)
3. best-solution-so-far ← A
4. upperbound ← cost
5. return
6. EndIf
7. C ← select-variable(U), U’ ← U – {C}
8. For each value c of d(C)
9. A’ ← A ∪ {C ← c}
10. If consistent(A’)
11. Partially-Solve-DTP(A’, U’, cost, upperbound)
12. EndIf
13. EndFor
14. A’ ← A ∪ {C ← ε}
15. Partially-Solve-DTP(A’, U’, cost + 1, upperbound)

Figure 1: A simple partial constraint satisfaction algorithm
for DTPs

total constraint satisfaction in DTPs, with two notable dif-
ferences. First, backtracking occurs only when the number
of violated constraints (cost) equals or exceeds that of the
current best solution (upperbound); in total constraint sat-
isfaction, backtracking would occur whenever cost became
nonzero. Second, when alternative assignments are made to
meta-variables, there is the possibility of a null assignment
(designated by ε in line 14), and thus the branching factor is
one greater than that for total constraint satisfaction. Since
the algorithm maintains a copy of the best solution found so
far, this solution can be extracted at any time, thus making
this an anytime algorithm.

Maxilitis
In this section, we present Maxilitis, our algorithm for max-
imal partial constraint satisfaction in a DTP. Its basic frame-
work derives from the simple branch and bound algorithm
given in Figure 1. On top of this framework, we add each
of the additional pruning techniques adopted by Epilitis
(Tsamardinos & Pollack 2003), with the exception of no-
good recording, whose general applicability to partial con-
straint satisfaction has yet to receive significant attention.
We will discuss each of these techniques, focusing on the
changes that must be made to enable them to work with
PCS. Certain other details, such as variable and value or-
dering heuristics, are omitted due to space limitations.

Forward Checking
Forward checking is one of the most basic mechanisms for
dead-end detection and pruning in CSPs. It works by check-
ing the domains of all unassigned variables against the cur-
rent temporal network, removing any values discovered to
be inconsistent. As is the case with most CSPs, forward
checking is an essential component in any DTP solving al-
gorithm. If the all-pairs shortest paths matrix is maintained
and updated using incremental full path consistency, for-
ward checking can be performed in O(v+|X|2) time, where
X is the set of all of time points, and v is the number of re-
maining legal values.

With total constraint satisfaction, a failure is encountered
whenever the domain of any variable is reduced to �. How-
ever, when performing partial constraint satisfaction, one
can no longer backtrack whenever the entire domain of a
variable is exhausted. For example, it may be the case that
the maximum solution includes exactly one unsatisfied con-
straint, that being the one with no remaining consistent val-
ues. As a result, one must increment cost whenever the do-
main of such a variable is obliterated, and backtrack only
when this cost is no better than the current upper bound.
This modification to forward-checking for Maxilitis directly
parallels that presented in (Freuder & Wallace 1992).

Conflict-Directed Backjumping

Conflict-directed backjumping is a commonly used retro-
spective technique that skips over unrelated assignments
when backtracking up the search tree. It is guaranteed
never to prune away any potential solutions, since no alter-
native assignment to any of the unrelated variables would
correct the inconsistency encountered. Most backjumping
schemes use dependency pointers to label domain values re-
moved during forward-checking with the assignments that
precluded them. The variation of backjumping that Epilitis
uses is slightly different, as it instead infers whether a con-
straint was involved in a failure by examining the time points
that lie along the induced negative cycle; if it does not, then
it is irrelevant to the current failure and can be skipped over.

In modifying Epilitis’ model of backjumping for PCS,
we again follow the approach of (Freuder & Wallace 1992).
That is, instead of backjumping to the deepest level of fail-
ure, we must stop at any level that required an increase to
cost (that is, whenever either a constraint was given a null
assignment, or forward checking removed all disjuncts of
another constraint due to negative cycle detection).

Removal of Subsumed Variables

A third key pruning technique used in DTP solving is the
removal of subsumed variables. The basic idea here is that
some unassigned constraints may already be satisfied by the
current temporal network. In this case, one can safely refrain
from making separate, additional attempts to satisfy them.
For example, suppose that the disjuncts x − y ≤ 5 and y −
z ≤ 5 have been assigned to their respective constraints, and
one is about to consider satisfying another constraint Ci that
includes the disjunct x − z ≤ 15. The first two constraints
imply that x−z ≤ 10, and hence, of course x−z ≤ 15. Thus
Ci is necessarily satisfied, and no additional effort should be
extended trying alternative disjuncts in it.

This technique becomes even more valuable when partial
constraint satisfaction is invoked. Recall that when solving
for the maximum number of constraints, the branching fac-
tor increases by one, since the search space must include
the case where a constraint is left unsatisfied. But when
a constraint has already been satisfied by previous assign-
ments, the attempt to leave it unassigned is clearly needless.
It should be noted that the implementation of removal of
subsumed variables requires no special modifications when
moving from total to partial constraint satisfaction.

Semantic Branching
One of the most powerful pruning methods used in solv-
ing DTPs is semantic branching (Armando, Castellini, &
Giunchiglia 1999), a technique that exploits the fact that the
constraints represent numeric inequalities. Suppose that the
partial assignment A ∪ {C ← c} is explored in every possi-
ble way, yet leads to no solution. In such a case, if a solution
exists that is an extension of A, then {C ← c} cannot be a
feasible assignment (or else its branch of search would have
succeeded). Consequently, it must be the case that the nega-
tion of this constraint must hold in any solution that is an
extension of A (if one exists). But remember that constraint
c will have the form x − y ≤ b. Thus, in every extension
of A that is a solution to the DTP, it must be the case that
y − x < −b. Semantic branching makes this requirement
explicit, i.e., it adds a new constraint representing this in-
equality to the network, and thereby in general significantly
prunes the subsequent search.

As in the case of removal of subsumed variables, par-
tial constraint satisfaction has the potential to benefit sig-
nificantly from semantic branching. Consider the case when
all disjuncts of a constraint have been attempted. At this
point, the algorithm will leave the constraint unsatisfied to
see if better solutions can be found. With semantic branch-
ing enabled, the algorithm does more than simply ignore the
constraint; it also ensures that in the remainder of the search
the conjunction of all the negated disjuncts will be satisfied.
In this way, it makes use of the fact that the constraint in
question is intended to be violated, and (with the added in-
crease to cost) can potentially do substantial pruning of the
remaining search space.

As with removal of subsumed variables, semantic branch-
ing can be directly incorporated into a PCS approach to
DTP-solving; no changes are needed to move from total to
partial constraint satisfaction.

Experimental Results
In this section, we describe the results of a set of experi-
ments that were performed on Maxilitis to test the effec-
tiveness of PCS when applied to the meta-CSP approach of
DTP-solving. The primary goals of these experiments were
to 1) assess the performance penalty incurred when mov-
ing from total to partial constraint satisfaction, 2) determine
the effect of the various pruning techniques, and 3) evaluate
the anytime quality of the solver. To benchmark our algo-
rithm, we used DTPs created by a random generator used in
testing previous DTP solvers (Stergiou & Koubarakis 1998).
The test case generator takes as arguments the parameters
〈k,N,m,L〉, where k is the number of disjuncts per con-
straint, N is the number of time points, m is the number of
constraints, and L is the constraint width, i.e., a positive in-
teger such that for each disjunct x − y ≤ b, b ∈ [−L,L]
with uniform probability. In our experiments, we set k = 2,
L = 100, and N = 20. A derived parameter R (the ratio
of constraints over variables, m/N) was varied from 2 to
7. For each setting of R, 50 random problems were gener-
ated. (For example, we generated 50 problems for the case
where N is 20 and R is 7; those problems have 20 vari-

2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

10
2

10
3

R

S
ec

on
ds

neither SB nor RSV
RSV
SB
SB and RSV
incremental
total

Figure 2: Median computation time for several variations of
Maxilitis, averaged over 50 trials

ables and 140 constraints each). The percentages of incon-
sistent problems for R = (2, 3, 4, 5, 6, 7) were found to be
(0%, 0%, 0%, 12%, 72%, 94%), respectively. The domains
of the variables are integers instead of reals, which again is
standard in DTP literature. Unlike Epilitis, which was im-
plemented in Lisp, our implementation of Maxilitis was de-
veloped in Java, and our experiments were conducted on a
Sun Blade 1500 with a 1 GHz processor and 1 GB of mem-
ory.

In the first experiment, we varied the pruning strategies
that were “turned on”. Figure 2 shows the solution time
in seconds as a function of the R value, which has been
shown in the previous literature to be the critical variable
for DTP-solving. Note that the y-axis is logarithmic. We
tested conditions in which we used both Removal of Sub-
sumed Variables (RSV) and Semantic Branching (SB), one
or the other, or neither. (In all cases, we used forward-
checking and conflict-directed backjumping, since these are
fairly standard techniques for constraint solving.) We also
tested a version of Maxilitis in which we set upperbound to
1 and thereby forced the system to find a complete solution,
i.e., one in which every constraint is satisfied; this is identi-
fied as “total” in the figure (in the case of failure, we report
the time it takes for search to complete). The final condition
is one called “incremental,” which we discuss in a moment.

As can be seen in the figure, time to perform complete
satisfaction peaks when R = 6 and then begins to decrease.
This is consistent with previous literature, which has shown
values of R near 6 to define the critical region for DTP-
solving (Tsamardinos & Pollack 2003). Unfortunately, the
time to find a solution for the PCS approach continues to rise
for R = 7. This is because in partial constraint satisfaction,
the computational benefits of overconstrained problems no
longer apply: search cannot be aborted whenever any con-
straint becomes unsatisfiable. Instead, the algorithm drives
on into much deeper search nodes, looking for solutions that
may have several unsatisfied constraints. Consequently, one
can expect these plots to rise indefinitely as R is increased, a

rather disappointing result, as it is these extremely overcon-
strained problems that often need partial satisfaction.

Figure 2 also provides a basis for comparing the effective-
ness of RSV and SB for partial constraint satisfaction. As we
would expect, the worst performance is observed when nei-
ther pruning technique is employed. Results improve when
using RSV only; more so with SB only; and the best per-
formance is obtained with the combination of techniques.
From these results, one can conclude that semantic branch-
ing is the more powerful of the two techniques in PCS; this
is consistent with observations made in (Tsamardinos & Pol-
lack 2003) for complete constraint solving in DTPs. Further-
more, in tests where R is equal to 7, the algorithm experi-
ences a full order of magnitude speedup when both pruning
techniques are turned on relative to having them both off.

By far the fastest technique for PCS used, however, is the
“incremental” algorithm, pseudo-code for which is given in
Figure 3. Basically, the incremental algorithm starts by per-
forming total constraint satisfaction on the DTP, using all
the pruning techniques discussed in this paper. If that fails,
it then performs another search, this time looking for a so-
lution that violates exactly one constraint. If that then fails,
it continues to iterate, each time performing search after in-
crementing the upper bound on the solution cost. Once a
solution is discovered, the search can end immediately, as
previous failed iterations imply that no better solution ex-
ists. Our incremental approach is closely related to Limited
Discrepancy Search (Harvey & Ginsberg 1995) as well as
iterative deepening, except that we increase the allowable
number of constraint violations within the tree rather than
the depth of the tree itself. This strategy is especially useful
in the event that the DTP is consistent, since the first call
to Partially-Solve-DTP() will return successfully. (It is for
this reason that the incremental strategy requires the same
amount of time as does the total constraint satisfaction algo-
rithm up through R = 5, since most of these test cases are
satisfiable). For even more constrained problems, where the
expected cost may be much larger, one could possibly incre-
ment the upper bound by larger amounts after each iteration.

The success of the incremental algorithm is obviously de-
pendent on the number of iterations it takes before a solution
is found. For this reason, we calculated the distribution of
solution costs–that is, the number of constraints violated in
the optimal solution–for the case where when R = 7. For
cost = (0, 1, 2, 3, 4, 5), the relative proportions were found
to be (6%, 36%, 38%, 12%, 6%, 2%). Thus, although only
a very small percentage of these problems have complete
solutions, roughly 80% can be satisfied with 2 or fewer con-

Incrementally-Solve-DTP(C)
1. upperbound ← 1
2. best-solution-so-far ← null
3. Do Until (best-solution-so-far �= null)
4. Partially-Solve-DTP(�, C, |C|, upperbound)
5. upperbound ← upperbound + 1

Figure 3: An incremental partial constraint satisfaction al-
gorithm for DTPs

10
−1

10
0

10
1

10
2

0

1

2

3

4

5

6

7

8

9

10

Seconds

A
ve

ra
ge

 #
 o

f C
on

st
ra

in
t V

io
la

tio
ns

 in
 S

ol
ut

io
n R = 7

R = 6
R = 5
R = 4
R = 3
R = 2

Figure 4: Anytime curves for various values of R

straints removed, and only one case out of all 50 randomly
generated problems required as many as 5 unsatisfied con-
straints. This is the primary reason why our incremental
method proved to be so successful: in most cases, the up-
per bound only had to be increased once or twice until the
minimal cost was discovered.

The one downside to the incremental algorithm is that it
lacks the anytime property: one cannot interrupt the algo-
rithm in the middle and ask for the best (possibly subopti-
mal) solution found thus far. Conseqently, one might be cu-
rious about the nature of anytime performance in the original
algorithm. In Figure 4, we have made an effort to measure
the anytime quality of our partial constraint satisfaction al-
gorithm. For this experiment, we separately plotted the solu-
tion time of the algorithm with RSV and SB both turned on,
for each value of R between 2 and 7. The number of seconds
elapsed is shown on the x-axis, in a logarithmic scale; on the
y-axis is the number of constraint violations in the solution,
averaged over the 50 test cases for each value of R. Natu-
rally, it appears from these curves that since higher values
of R create problems that are more constrained, the aver-
age number of violations increases with R. Also, the num-
ber of violations obviously decreases over time–otherwise,
there would be something very wrong with the algorithm.
The most notable phenomenon to observe is the existence
of a relatively constant deceleration in the number of con-
straints violated–that is, each order of magnitude of compu-
tation time appears to decrease the number of violated con-
straints by roughly the same amount. For example, consider
the curve for which R = 7. At times 10−1, 100, 101, and 102

seconds, the average number of constraints violated are 8.67,
6.32, 4.09, and 2.05, respectively: a fairly steady decrease of
just over 2 constraints per order of magnitude in computa-
tion time. Thus, the longer one waits, the slower the rate of
improvement to the partial solution. Fortunately, this also
means that the biggest improvements are made early on in
the search rather than later.

Discussion and Future Work

In this paper, we have presented a method for dealing with
overconstrained instances of the Disjunctive Temporal Prob-
lem (DTP). Specifically, the technique of partial constraint
satisfaction was applied to obtain solutions that maximize
the number of satisfied constraints. Our results have shown
that the computation time required to partially solve DTP
problems is dramatically reduced by applying the pruning
techniques of removal of subsumed variables and seman-
tic branching. Furthermore, we have demonstrated that by
executing our solver multiple times with incrementally in-
creasing upper bounds on the solution cost, the performance
can be improved even more, at the cost of giving up the
algorithm’s anytime quality. Unfortunately, despite these
speedups, exact partial constraint satisfaction appears to be-
come intractable when the number of constraints or variables
in the problem becomes substantially large.

One possible extension to this work is to give up alto-
gether on an exact algorithm, and instead construct an ap-
proximate algorithm using local search. This is the approach
taken in (Beaumont et al. 2004) for problems expressible in
the interval algebra, and similarly in (Mouhoub 2001). The
local search procedure may be performed in the partial as-
signment space of the meta-CSP, or alternatively in the total
assignment space of the underlying CSP. In either case, we
suspect that by generating an initial assignment to the DTP
and repeatedly performing heuristic repair, it may be pos-
sible to generate high-quality partial solutions in much less
time than with the use of systematic methods.

Another interesting line of research would be to extend
this framework to allow for more expressive mechanisms
for choosing which constraints to relax. As an example, one
may want to attach weights to the constraints, and then at-
tempt to maximize the weighted sum of the satisfied con-
straints. Luckily, our branch and bound algorithm can easily
be modified to achieve this slightly different objective. We
are currently investigating ways to combine Maxilitis with
preference elicitation schemes that will provide the ability
to learn such weights via interactions with a user.

One final possible avenue of research is to combine par-
tial constraint satisfaction with the recent addition of pref-
erences to DTPs (Peintner & Pollack 2004). As a matter
of fact, the current implementation of DTPPs (Disjunctive
Temporal Problems with Preferences) uses much of Maxili-
tis in its foundation, although at present it is only used in a
total constraint satisfaction mode.

Acknowledgements

The authors thank Bart Peintner for his valuable input into this
work. This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under Con-
tract No. NBCHD030010 and the Air Force Office of Scientific
Research under Contract No. FA9550-04-1-0043. Any opinions,
findings and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the view
of DARPA, the Department of Interior-National Business Center,
or the United States Air Force.

References
Armando, A.; Castellini, C.; Giunchiglia, E.; and Maratea,
M. 2004. A SAT-based decision procedure for the boolean
combination of difference constraints. In Proceedings of
the 7th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT-2004).
Armando, A.; Castellini, C.; and Giunchiglia, E. 1999.
SAT-based procedures for temporal reasoning. In Proceed-
ings of the 5th European Conference on Planning (ECP-
1999), 97–108.
Beaumont, M.; Sattar, A.; Maher, M.; and Thornton, J.
2001. Solving overconstrained temporal reasoning prob-
lems. In Proceedings of the 14th Australian Joint Confer-
ence on Artificial Intelligence (AI-2001), 37–49.
Beaumont, M.; Thornton, J.; Sattar, A.; and Maher, M.
2004. Solving over-constrained temporal reasoning prob-
lems using local search. In Proceedings of the 8th Pacific
Rim Conference on Artificial Intelligence (PRICAI-2004).
Choueiry, B. Y., and Xu, L. 2004. An efficient consistency
algorithm for the temporal constraint satisfaction problem.
AI Communications 17(4):213–221.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Freuder, E. C., and Wallace, R. J. 1992. Partial constraint
satisfaction. Artificial Intelligence 58(1-3):21–70.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited discrep-
ancy search. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-95), 607–615.
Mouhoub, M. 2001. Analysis of approximation algo-
rithms for maximal temporal constraint satisfaction prob-
lems. In The 2001 International Conference on Artificial
Intelligence (ICAI-2001), 165–171.
Oddi, A., and Cesta, A. 2000. Incremental forward check-
ing for the disjunctive temporal problem. In Proceedings
of the 14th European Conference on Artificial Intelligence
(ECAI-2000), 108–112.
Peintner, B., and Pollack, M. E. 2004. Low-cost addition
of preferences to DTPs and TCSPs. In Proceedings of the
19th National Conference on Artificial Intelligence (AAAI-
2004), 723–728.
Stergiou, K., and Koubarakis, M. 1998. Backtracking al-
gorithms for disjunctions of temporal constraints. In Pro-
ceedings of the 15th National Conference on Artificial In-
telligence (AAAI-98), 248–253.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient so-
lution techniques for disjunctive temporal reasoning prob-
lems. Artificial Intelligence 151(1-2):43–90.
Tsamardinos, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, tempo-
ral planning. Constraints 8(4):365–388.
Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical Ar-
tificial Intelligence 11(1):23–45.

