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Abstract 

 Intelligent systems in automobiles need to be aware of the 
driving and driver context. Available sensor data stream has 
to be modeled and monitored in order to do so. Currently 
there exist no building blocks for hierarchical modeling of 
driving. By semi-supervised segmentation such building 
blocks can be discovered. We call them drivemes in analogy 
to phonemes. More parsimonious modeling of driving 
becomes now possible. 

Introduction 
There is increasing proliferation of portable and fixed 
devices in cars, such as navigation modules, entertainment 
devices, real-time information, and communication 
equipment. There are also increasing demands to manage 
the distractions they present to the driver. This in turn 
raises the need to develop intelligent driver assistance 
systems that, for example, manage the presentation of 
information to the driver from various devices or 
subsystems in the car, or alert the driver when his or her 
attention is not where it should be. The basic philosophy is 
never to take the control from the driver, but only assist the 
driver. One necessary sub-component of such an intelligent 
assistance system is a driving situation classifier that 
detects difficult driving situations requiring full attention of 
the driver, and then acts as a gate to information 
presentation from other devices to the driver. Another 
component could be a system detecting where the attention 
of the driver is directed. Such subcomponents can be 
designed in two fundamentally different ways. One can 
either program them heuristically, using common sense 
knowledge, or, such systems can be learned from data.  The 
latter approach based on machine learning is what we 
describe in this paper.  
 Context detectors or classifiers observe the available 
sensor stream and produce a label, perhaps also a 
probability, of a meaningful context state as their output. 
The classifier can be constructed for instantaneous 
operation, that is, it operates on instantaneous snapshots of 
the sensor data labeling them independently of the 
preceding or succeeding time samples of sensor data 
vectors. This may be a preferable approach in time-critical 
applications, where no delay is tolerable. On the other 
hand, an instantaneous snapshot may not be sufficient when 
the context depends on earlier context. An alternative is 
sequential modeling. A driving maneuver typically consists 
of a sequence of actions that repeats with variations. These 
variations, as reflected in the sensor data stream,  need to 

be captured in a sequential model. Speech recognition 
community has modeled the speech signal using stochastic 
graphical models, Hidden Markov Models (HMM). We 
take the same approach in modeling the sensor stream 
acquired from an automobile.  
 This paper describes attempts to discover useful subunits 
in sequential modeling of driving. The structure of this 
paper is as follows. We begin with a motivation drawing 
the analogy between driving maneuver recognition and 
speech recognition. We discuss HMMs in sequence 
modelling. The specifics of the driving data and its 
modeling are discussed next.  The core of the paper is the 
section describing experimentation in discovering the 
drivemes. An overview of other relevant work and 
discussion concludes the paper. 

Motivation 

Subunits in Speech Modeling 
In automatic speech recognition (ASR) the speech signal is 
converted into a sequence of acoustic parameter vectors. 
Most commonly, these are so called cepstral vectors, 
computed at a rate of 100Hz. ASR then models this stream 
of parameter vectors as a sequence of subunits (Rabiner, 
1989). The basis of these subunits is linguistic, because the 
whole purpose of speech communication is, of course,  to 
convey a message. The smallest subunit that can change the 
meaning of a speech message is a phoneme. Acoustic 
realizations of phonemes are called phones, which is 
typically the lowest level subunit modeled in ASR.  
 The existence of these well-defined subunits enables 
hierarchical modeling the speech signal. There is no need 
to construct a distinct acoustic model for each word in the 
language. It suffices to construct a model for each 
phone(me). Words are then modeled as concatenated 
phoneme models according to a pronunciation dictionary, 
and sentences are concatenations of word models according 
to some kind of a language model.  Thus, there is a small 
number of subunits that are shared in the next level of 
modeling hierarchy. In learning these models, training data 
becomes utilized much better because of parsimony in 
representation. 

From Phonemes to Drivemes 
Modeling driving shares some aspects with speech 
recognition.  From the sensor point of view, driving in a car 
produces a stream of parameters from various different 



Fig 1. The driving simulator 

sensors. From a driver assistance system point of view, the 
sensor stream needs to be segmented in time into different 
context classes that are relevant to driving.  The "sentence" 
of driving should be segmented into "words" of driving, 
that is, maneuvers.  However, no "phonemes" exist for 
driving. Thus each different maneuver has to be modeled as 
a discrete entity with no shared parts. We attempt to 
discover such subunits for the purposes of modeling 
driving sensor data. We call these subunits "drivemes". 

Background 
Hidden Markov Models 
Hidden Markov Models (HMM) are a sequence modeling 
and recognition technique that is the dominant approach in 
automatic speech recognition. HMMs are doubly stochastic 
models where the underlying stochastic process is hidden 
and is only indirectly observed by another set of stochastic 
processes that produce the observation sequence (Rabiner 
1989). They model observation sequences as states and 
transitions between states.  An HMM is characterized by 
the following 
1. N, the number of states in the model. The states are 

generally interconnected with each other. The states are 
identified by S1, S2,…, SN.  

2. M, the number of distinct observation symbols given by 
v1, v2,…, vM. 

3. State transition probability distribution A = {aij} denotes 
the probability of transition from state i to state j. 

4. Observation symbol probability distribution B = {bi(k)} 
denotes the probability of observing symbol vk at state j. 

5. Initial state distribution π = {πi} which gives the 
probability of choosing the ith state as the first state for 
generating the sequence. 

 Efficient dynamic programming algorithms exist for 
calculating the probability of observing a given sequence 
by the model, and for computing the most likely state 
sequence generated by the model for the given observation 
sequence. The HMMs can be trained from the data by 
Maximum Likelihood estimation using an Expectation-
Maximization-based algorithm. Rabiner (1989) presents a 
comprehensive overview of these algorithms.  
 These algorithms do not make any assumptions about the 
observation distributions used in each state or about the 
HMM topology. The presence of self transitions allows the 
model to repeat the same state several times and thus match 
a sequence of (almost) arbitrary length, even varying 
proportions of the observation sequence matching each 
state. These properties render HMMs their flexibility and 
theoretically make them possible to model any source of 
data. In this research, HMMs were used to model the 
various maneuvers of a driver and the drivemes. 

Sequence Modeling for Driving 
We define drivemes as data units that occur as common 
patterns among the various driving maneuvers. Since these 
are sequences on their own they could be modeled as 

separate Hidden Markov Models. The general idea is to 
model each maneuver via HMMs and find the states or 
sequence of states that are common to the maneuvers. 
These common states or state sequences represent the 
drivemes and can be used as building blocks to model the 
various maneuvers of a driver.  
 The steps involved in learning the drivemes can be 
summarized as follows:  
1. Collect driving data.  
2. Annotate the data for different maneuvers. 
3. Build HMMs for each maneuver using the 

features/sensors that discriminate them the most. 
4. Cluster the states of these HMMs. All those states that 

are similar will belong to the same cluster. These clusters 
will represent the common patterns among the various 
maneuver models.  

5. Build tied state maneuver models using these cluster 
states. These clusters states or cluster state sequences that 
appear in common to more than one maneuver will 
characterize the various drivemes. 

Each of the above steps are detailed in the following 
subsections. 

Driving Simulator Environment 
The experiments were conducted in a driving simulator lab, 
which is an instrumented car in a surround video virtual 
world with full visual and audio simulation (although no 
motion or G-force simulation) of various roads, traffic and 
pedestrian activity. The driving simulator consists of a 
fixed based car surrounded by five front and one rear 
screens. All driver controls such as steering wheel, brake, 
accelerator are monitored and affect the motion through the 
virtual world in real-time. Various hydraulics and motors 
provide realistic force feed back to driver controls to mimic 
actual driving.  
 The basic driving simulator software is a commercial 
product with a set of simulated sensors that, at the 
behavioral level, simulate a rich set of current and future 
onboard sensors in the near future. This set consists of a 
radar for locating other traffic, a GPS system for position 
information, a camera system for lane positioning and lane 
marking, a mapping data base for road names, directions, 



locations of points of interest etc. There is also a complete 
car status system for determining the state of engine 
parameters (coolant temp, oil pressure etc), driving controls 
(transmission gear selection, steering angle, window and 
seat belt status etc.). The simulator setup also has several 
video cameras, microphones and eye tracking infrared 
sensors to record all driver actions during the drive that is 
synchronized with all the sensor output and simulator 
tracking variables. Altogether there are 425 separate 
variables describing an extensive scope of driving data – 
information about the auto, the driver, the environment, and 
associated conditions. An additional screen of video is 
digitally captured in MPEG2 format, consisting of a quad 
combiner providing 4 different views of the driver and 
environment.  Combined, these produce around 400Mb of 
data for each 10 minutes of drive time.  
 

Data Collection and Annotation 
The simulation package also has an authoring tool 
component, which was used to create the driving world 
scenario. The virtual drive simulated a six kilometer square 
multi-lane beltway with on and off-ramps, overpasses, and 
two and three-lane traffic in each direction (separated by a 
grass median).  Interior to the squared beltway, connecting 
to each mid-side overpass, were four varied two-lane roads 
- urban, suburban, industrial, and rural environments.  
These crossed in the middle at a light controlled 
intersection. All drivers used daytime dry-pavement driving 
conditions with good visibility. For a high-density driving 
environment, 59 “distracter” vehicles were added to the 
highway scenario along with high-density random 
“ambient” traffic.  These distracter vehicles were randomly 
programmed to drive between ±10 percent faster/slower 
than the posted speed limit, providing the impression of a 
steady flow of normal traffic around the subject car.  All 
distracter vehicles simulated alert, “good” driver behavior 
and reacted reasonably to any particular maneuver from the 
subject driver. This arrangement allowed a variety of traffic 
conditions and road types within a confined, but continuous 
driving space.  Opportunities for passing and being passed, 
traffic congestion, and different levels of driving difficulty 
were thereby encountered during the drive. 
 Data was collected from four drivers each driving about 
15 minutes in the simulated world. Drivers were instructed 
to engage in all possible maneuvers they could think of.  
The data is labeled for maneuvers by manually hand 
annotating the data using a special purpose tool that 
combines video playback with graphical visualization of 
the selected variables from the data.  
 The data was labeled with the following 12 maneuvers: 
ChangingLeft, ChangingRight, CrossingShoulder, Not-
OnRoad, Passing, Reverse, SlowMoving, Starting, 
Stopping, Tailgating, TurningLeft, TurningRight, and U-
Turn. The labels could be overlapping, say every Passing 
Maneuver is a sequence of ChangingLeft followed by 
ChangingRight. 

Feature Selection for Maneuver Classification 
From many of the available features, a subset of 15 features 
was selected as base features that could be foreseeable to 
be built into a car. They are described in Table I. An 
economically very viable alternative to adding more 
sensors is to calculate newly derived variables from 
existing sensors. Of course, one cannot add new 
information to the sensor signal just by processing it, but it 
is possible to make important information more explicit. In 
order to enhance the feature set, the following features 
were added to the base feature set:  
1. Quadratic terms, i.e., all the cross products and squares, 

of the numeric variables 
2. First order time derivatives of the numeric features. 
3. Second order time derivatives of the numeric features. 
4. Short-time running entropies for steering, brake, and 

accelerator prediction errors. Entropy is calculated as 
described by Boer (2000), but within a sliding window. 

5. Multivariable stationarity with delta=2 and 3 samples. 
6. The output of a quadratic classifier trained using 

standard least-squares approach.  
 Adding theses features makes the total size of the feature 
set to 138. Feature selection is applied to this dataset for 
selecting the most relevant sensors for maneuver 
classification. In addition to selecting the best base sensors, 
we also evaluate what derived features are relevant to this 
problem. Random Forests based feature selection (Breiman 
1989)  has given satisfactory results for instantaneous 
classification of driving data (Torkkola et al 2004). The top 
32 most  significant features were selected  for training the 
maneuver models. 

TABLE I 
BASE FEATURE SET 

Feature Type* Description 

Accelerator Cont Normalized accelerator input value 
Brake  Cont Normalized brake input value 

Speed Cont Speed of the subject (m/s) 
Steering Cont Normalized steering angle 
TurnSignal Disc Status of Indicator lights 
AheadLaneBe
aring 

Cont Bearing of the current lane 100 meters 
ahead 

CrossLaneAcc
eleration 

Cont Acceleration during lane changes 
(m/s2) 

CrossLaneVel
ocity 

Cont Velocity during lane changes (m/s) 

distToRightLa
neEdge 

Cont Distance to the edge of the right lane 
(m) 

distToLeftLan
eEdge 

Cont Distance to the edge of the left lane (m) 

laneOffset Cont Offset relative to the center of the lane 
lateralAcceler
ation 

Cont Acceleration in the direction 
perpendicular to the motion of the 
vehicle (m/s2) 

HeadwayDist Cont Distance from the subject’s front 
bumper to the rear bumper of any other 
vehicle ahead. (m) 

HeadwayTime Cont Time in seconds to vehicle ahead. 

*Type denotes the feature type indicating whether the feature is 
Discrete or Continuous. 
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Fig 2. Modeling discrete driving maneuvers 

HMM Modeling of Maneuvers 
In the case of driving, each observation is a time sample of 
all available sensor readings as a vector. The basic 
assumption is that the sequence of observations from a 
maneuver is different from a sequence of observations from 
a non-maneuver. One HMM for each class is trained to 
model these time sequences, or, trajectories in parameter 
space. Fig 2 depicts maneuver-based HMM.  
 In the training process, example sequences of the desired 
classes are first collected and are then used to train, or 
estimate, the parameters of corresponding models. In the 
recognition phase, an unknown sequence of sensor data is 
presented to each of the trained models, each of which 
produces a probability of that sequence having been 
generated by the model. Maximum probability provides the 
classification result. In practice, since we do not have 
isolated sensor data sequences with the task of determining 
whether they are a maneuvers or not, but rather a 
continuous stream of sensor data, HMMs are used to detect 
the most probable segmentation of the stream to maneuvers 
and non-maneuvers, that is, to detect where there is a 
maneuver in the sensor stream. A simple sentence grammar 
allows any maneuver to follow any other maneuver. 

HMM Experiments 

Dataset Generation & Feature Selection 
Data from the driving simulator was hand annotated for 
different maneuvers. For the purpose of experimentation 
we selected the maneuvers that occurred most frequently in 
the dataset. These maneuvers are specified in Table II. 
 A tabular labeled dataset was generated using the 
sequence data from the simulator and the hand annotations. 
It is possible for certain maneuvers to be overlapping with 
other maneuvers. For instance, Passing maneuver will 
usually be composed of ChangingLeft and ChangingRight 
maneuvers, hence the dataset is a multi-label multi-class 
data. In order to perform random forest based feature 
selection the dataset needed to be converted to single class 
dataset. In order to overcome this multi-class problem, a 
single pass algorithm was developed which duplicates all 
the overlapping instances and creates one instance for each 

class label. The algorithm also tries to preserve the 
sequential nature of the input by not interleaving the class 
labels of overlapping instances. This unfolded data is 
passed to the feature selection algorithm to pick the 
features that best discriminates the different maneuvers.  

Maneuver Classification 
Generic maneuver classification experiments were 
conducted with different type of HMM topologies, and 
various types gaussian mixtures modeling the states of the 
HMMs. All the experiments were conducted with diagonal 
covariance matrices for the gaussians. The experiments 
were conducted using Hidden Markov Model Toolkit 
(HTK). The preliminary experimental results showed that 
the models fluctuated between high precision - low recall, 
and low precision – high recall values. To strike a balance 
between the two van Rijsbergen’s F-measure was used as 

an indicator to identify the best model: 
b is the parameter that controls the degree of inclination to 
precision/recall. In our domain, recall is more important 
than precision. Setting the value of b to be 2, makes recall 
twice more important than precision.  
 The experiment that gave the best results for F-measure 
was using an ergodic HMM with 6 emitting states and a 
gaussian of 3 mixtures for modeling the states of the 
Maneuver, and an ergodic HMM with 6 states and single 
gaussian for the states modeling the NonManeuver. The 
values for F-measure, Recall, and Precision for the 
Maneuver was 84.5, 87.9%, and 73.1% respectively. The 
experiment conducted using the same Maneuver model as 
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TABLE II 
FREQUENT MANEUVER SET 

Maneuver Description 

ChangingLeft changing to a lane in the left, changing to the 
rightmost lane while entering a freeway. 

ChangingRight changing to a lane in the right, exiting to a 
service lane from a freeway. 

Passing passing a car / many cars, by moving the left 
lane passing the car and moving back to the 
original lane. 

Starting starting the car from a stopped state 
Stopping bringing the car to halt – to stop in a signal, 

etc. 
Tailgating any maneuver the driver undertakes in 

response to a car in the front. 
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Fig 7. distToRightLaneEdge vs. time. The plot marks the portion 
where there are two successive ChangingLeft maneuvers. 

Fig 5. Speed Vs Starting, Stopping States 

 
Fig 6. distToRightLaneEdge Vs ChangingLeft States

above and an ergodic model with 8 emitting states with 2-
mixture gaussian for states of NonManeuver gave the 
results of 82.3, 82.4%, and 82% for F-measure, Recall, and 
Precision respectively. This model strikes a nice balance 
between all the three. These values suggest that HMMs are 
certainly useful and capable of modeling the driving 
behavior of a driver. 

Towards the Discovery of Drivemes 
Due to the small size of the driving database, more rigorous 
classification experiments on fine-grained maneuvers could 
not be performed. But our approach to discover the 
drivemes seemed promising even with this tiny dataset. In 
the following sub-section we give our preliminary 
experimental results and justify that our approach to 
discover the drivemes is quite promising. 
 The fine-grained maneuvers were modeled using HMMs 
with linear topology. HMMs with 6 emitting states were 
used for modeling all the maneuvers except for Passing 
maneuver, for which a 10 state model was used. Since the 
Passing maneuvers are usually longer in time than other 
maneuvers, a longer length HMM was chosen to model it. 
The states were modeled as a single Gaussian with diagonal 
covariance matrix.  
 Separate models were trained for each maneuver. Fig 5 
illustrates the fact that the models were actually able to 
learn driving behavior. The mean of the variable "Speed " 
is plotted against the different states of the Starting and 
Stopping maneuver. It can be seen that as we move from 
state 1 to state 6 (i.e., as time progresses) the speed value 
increases for Starting and decreases for Stopping 
maneuver, which matches our intuition. 

 To justify the fact that other maneuvers are also modeled 
accurately, distToRightLaneEdge was plotted against the 
states of ChangingLeft Maneuver. See Fig 6 for the plot. 
 The actual change in distToRightLaneEdge while there 
was a changing left maneuver is plotted in Fig 7. In Fig 7 
distToRightLaneEdge is plotted across Time. The portion 
marked represents the driving situation where there are two 
successive ChangingLeft maneuvers. It is seen that during 
the maneuver period, distToRightLaneEdge increases to a 
maximum value, suddenly decreases to a minimum value 

(as the car’s right wheel just crosses the lane) and again 
increases as the car moves towards the center of the left 
lane. Though the HMM in Fig 6 does not capture this 
sudden change it can be clearly seen that it smoothes over 
the values between the states and the HMM has been able 
to capture the overall change in the feature.  

Finding Drivemes via HMM State Clustering 
In our approach to find the drivemes, we cluster the state of 
the HMMs modeling the different maneuvers to get 
common subunits, called drivemes, among the various 
maneuvers. The states of different maneuvers are clustered 
using a hierarchical clustering algorithm with complete 
linkage to combine the intermediate clusters.  The distance 
between a state in cluster i and a state in cluster j is 
calculated using the following formula. 

 All the states whose distances fall below a specified 
threshold form a cluster. In our experiments the threshold 
was given a value 1, so that only very close states are 
clustered together. The 38 states of the above specified 6 
maneuvers clustered into 17 clusters. More than 50% 
reduction in the number of states indicates that there are 
certainly common subunits among the different maneuvers.  
Tied state models were built for each maneuver from these 
subunits of driving data. The driveme to which each state 
of the model was tied is given in Table IV. 
 From Table IV it is also seen that there are sequences of 
subunits which repeat. For instance, the driveme sequence 
(10, 1) appears in both ChangingRight and Passing. This 
shows that there are similarities among different maneuvers 
in multiple hierarchical levels, which has to be explored 
into in more detail. 
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Fig 8. Mapping of ChangingLeft, ChangingRight, and Passing 
maneuvers onto its driveme components 

Fig 9. Plot of distToRightLaneEdge for different driveme units in 
ChangingLeft, ChangingRight, and Passing maneuvers. 

Fig 8 shows a plot of how the states of ChangingLeft, 
ChangingRight, and Passing maneuvers are mapped to the 
driveme subunits (cluster centers). The X-axis represent the 
space of drivemes, the Y-axis represent the state space of 
each maneuver. The plot shows the mapping between the 
states of each maneuver to the corresponding drivemes. It 
is seen from the figure that in the driveme space Passing 
maneuver is composed of ChangingLeft and 
ChangingRight maneuvers. This also supports our intuition 
and is strong evidence that the driving domain is composed 
of drivemes and the driving behavior can be decomposed 
into a sequence of drivemes. Fig 9 shows a plot of the 
distToRightLaneEdge values for the various driveme 
subunits of the ChangingLeft, ChangingRight, and Passing 
maneuvers. It can be seen from the figure that the feature’s 
values at the overlapping portions of the Passing and 
ChangingLeft/ChangingRight maneuver are very close to 
each other. This also confirms our belief that driving is 
composed of drivemes and out approach to discover these 
subunits is essentially a right direction to pursue. 

Discussion 
Recognition of typical driving events and their long-term 
prediction using acceleration and location sensors with 
HMMs has been studied in (Mitrovic, 1999). Predicting the 
intent of the driver has been attacked with several machine 

learning architectures. Liu and Pentland (1997) use an 
architecture based upon a hidden Markov dynamic model. 
A hidden Markov model is used to control transitions 
between different dynamical models; each dynamical 
model is targeted towards a certain driveme such as “turn 
left”, “turn right”, etc. Oliver and Pentland (2000)  use 
dynamical graphical models to predict and recognize driver 
behavior.  None of this work has attempted to build a 
hierarchical framework for driving modeling. 
 Machine learning is based on the premise of availability 
of data from the problem domain. These results are based 
on a small sample of drivers in a simulator environment, 
and should be taken only as indicative of what can be 
achieved in reality. Collection of a large naturalistic 
database is underway. 
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TABLE IV 
TIED STATE MODELS 

Maneuver Cluster Center Sequence 

ChangingLeft 1 15 17 16 12 12 
ChangingRight 12 1 12 12 10 1 
Passing 1 15 14 13 12 12 12 11 10 1 
Starting 5 6 6 9 8 8 
Stopping 7 2 6 5 4 3 
Tailgating 2 2 2 2 2 1 

 


