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Abstract

Second-order calculations may significantly increase a deci-
sion maker’s understanding of a decision situation when han-
dling aggregations of imprecise representations, as is the case
in decision trees or influence diagrams, while the use of only
first-order results gives an incomplete picture. The results
apply also to approaches which do not explicitly deal with
second-order distributions, instead using only first-order con-
cepts such as upper and lower bounds.

I ntroduction

In decision analysis, it is often the case that complete, ade-
quate, and precise information is missing. The requirement
to provide numerically precise information in such models
has often been considered unrealistic in real-life decision
situations. Consequently, during recent years of rather in-
tense activities in the decision analysis area (see, e.g., (Klir
1999; Cano and Moral 1999; Weichselberger 1999)) sev-
eral approaches have emerged. In particular, first-order ap-
proaches, i.e., approaches based on sets of probability mea-
sures, upper and lower probabilities, and interval probabili-
ties, have prevailed. However, the latter still do not admit for
discrimination between different beliefs in different values.
This seems unnecessarily restrictive since a decision maker
does not necessarily believe with the same faith in all possi-
ble functions that the vectors represent, i.e., in all points be-
tween the upper and lower bounds. Furthermore, leaving out
second-order information may lead to severely warped eval-
uation results not evident from an upper and lower bound
analysis. This also troubles classical utility theory as well as
the various relaxations that have been suggested.

To allow for estimates which closer models the decision
maker’s beliefs, representations of decision situations could
involve beliefs in sets of epistemically possible value and
probability functions, as well as relations between them.
Beliefs of such kinds can be expressed using higher-order
belief distributions. However, they have usually been dis-
missed for various reasons, computational and conceptual,
and approaches based on sets of probability measures, upper
and lower probabilities, or interval probabilities have tradi-
tionally been preferred. We demonstrate in this paper and in
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(Larsson, Danielson, and Ekenberg 2005) why second-order
reasoning is useful and how second-order effects can be
taken into account also when handling aggregations of first-
order representations, such as occurring in decision trees or
probabilistic networks.

Preliminaries
Decisions under risk (probabilistic decisions) are often given
a tree representation, c.f. (Raiffa 1968). In this paper, we
let a decision frame represent a decision problem. The idea
with such a frame is to collect all information necessary for
the model in one structure. One of the building blocks of a
frame is a decision tree. Formally, a decision tree is a graph.

Definition 1 A graphisastructure (V, E) where V isa set
of nodes and F is a set of node pairs (edges). A treeis
a connected graph without cycles. A rooted tree is a tree
with a dedicated node as a root. Theroot is at level 0. The
adjacent nodes, except for the nodes at level 7 — 1, to a node
atlevel i isat level © + 1. Anode at level i is a leaf if it
has no adjacent nodes at level i + 1. Anode at level ¢ 4 1
that is adjacent to a node at level i is a child of the latter. A
(sub-)tree is symmetric if all nodes at level i have the same
number of adjacent nodes at level ¢ + 1. The depth of the
treeismax(n|there exists a node at level n).

The general graph structure is, however, too permissive for
representing a decision tree. Hence, we will restrict the pos-
sible degrees of freedom of expression in the decision tree.
Definition 2 AdecisiontreeT = (CUAUN Ur, E) isa
tree where

r isthe root

Aisthe set of nodesat level 1

Cisthe set of leaves

N is the set of intermediary nodesin the tree except these
inA

E isthe set of node pairs (edges) connecting nodes at ad-
jacent levels

A decision tree is a way of modelling a decision situation
where A is the set of alternatives and C' is the set of final
consequences. For convenience we can, for instance, use
the notation that the n children of a node x; are denoted,
Ti1, Zi2, - - ., Tin and the m children of the node x,; are de-
noted Tij1, Tij2y - - -y Tijms etc.



Figure 1 A decision tree.

There are two sources for constraints, the first source be-
ing decision maker statements (of probabilities and values).
The statements are translated into corresponding constraints.
Such constraints can either be range constraints (contain-
ing only one variable) or various kinds of comparative con-
straints. Given consequences c;, ¢;, cx, and ¢,,, denote their
values v;, v, vy, and v,,. Then user statements can be of
the following kinds for real numbers a1, as, d1, d2, d3, and
dy

e Range constraints “v; is between a; and a»” is denoted

v; € [a1, az] and translated into v; > a1 and v; < as.

e Comparative constraints several possibilities; examples
include “v; is between d, and d larger than v;” is denoted
v; — vj € [di,d2] and translated into v; — v; > d; and
v; — v; < dg. The difference “v; — v; is between ds and
dy larger than v, —v,,,” is denoted (v; —v;) — (Vg — ) €
[ds, d4] and translated into (v; + v.,) — (v + vg) > ds
and (v; + vm) — (vj + vg) < da.

The other source for constraints is implicit constraints. They

emerge either from properties of the variables or from struc-

tural dependencies. Such constraints can either be default

constraints (involving a single variable) or various kinds of

structural constraints (involving more than one variable).

e Default constraints “The range of v; is between 0 and 1”
is denoted v; € [0, 1] and translated into v; > 0 and v; <
1.

e Structural constraints Examples include the constraint
implied by the normalization constraint for probabilities,
>.ipij =1

Combining these two sources, constraint sets are obtained.

A constraint set can either be independent (containing only

constraints involving a single variable each), or it can be

dependent (also containing constraints involving more than
one variable). In this paper, we will only treat independent
constraint sets?.

Definition 3 Given adecisiontree T, let P be a set of con-
straintsin the variables {p.. ;.. ;...}. Substitute the interme-

LFor space reasons, we focus on interval probabilities and val-
ues and we do not explicitly cover relations in value constraint
sets. However, the aggregated distributions over such constraint
sets have the same properties as the distributions discussed herein.

constraint set for T if, for all sets {p_;1,...,p. im} Of &l
sub-nodes of nodes p . ; that are not leaves, the statements
p..i; € [0,1] and Zj p.ij=1L1j5€l[l,...,m ;| areinP,
where m__; isthe number of sub-nodestop__ ;.

Thus, a probability constraint set relative to a decision tree
can be seen as characterizing a set of discrete probability
distributions. The normalization constraints (Zj pij = 1)
require the probabilities of sets of exhaustive and mutually
exclusive nodes to sum to one.

Definition 4 Given adecisiontree T, let V be a set of con-
straintsin {v_ 1 }. Substitute the leaf labels = _; withv_ ;.
Then V isavalue constraint set for 7.

Similar to a probability constraint set, a value constraint set
can be seen as characterizing a set of value functions. In this
paper, we will assume that the value variables’ ranges are
[0, 1]. The elements above can be employed to create the
decision frame, which constitutes a complete description of
the decision situation.

Definition 5 A decision frame is a structure (T, P, V),
where T' is a decision treg, P is a probability constraint set
for T"and V isavalue constraint set for 7T'.

Evaluation

The probability and value constraint sets are collections of
linear inequalities. A minimal requirement for such a sys-
tem of inequalities to be meaningful is that it is consistent,
i.e., there must be some vector of variable assignments that
simultaneously satisfies each inequality in the system.

The first step in an evaluation procedure is to calculate the
meaningful (consistent) constraint sets in the sense above.
Ensuing consisteny, the primary evaluation rule of the de-
cision tree model is based on a generalized expected value.
Since neither probabilities nor values are fixed numbers, the
evaluation of the expected value yields multi-linear objective
functions.

Definition 6 Given a decision frame (T', P, V), GEV (A;)
denotes the generalized expected value of alternative A ; and
is obtained from

N4 Ny i —2
E Piiq E Piivig - - - E Piiyiz..im—oim—1 - - -
i1=1 ia=1 im—1=1
Mg —1
§ Diivis..im—2im—1im * Viitio...im_2im—1im
im=1

wherep ;. ,j € [1,...,m], denote probability variables
inPandv. ; denotevaluevariablesinV.

Maximization of such non-linear expressions subject to lin-
ear constraints (the probability and value constraint sets) are
computationally demanding problems to solve for an inter-
active tool in the general case, using techniques from the
area of non-linear programming. In, e.g., (Danielson and
Ekenberg 1998), (Ding, Danielson, and Ekenberg 2004), and
(Danielson 2004), there are discussions about computational
procedures that reduce such non-linear decision evaluation



problems to systems with linear objective functions, solv-
able with ordinary linear programming methods. The proce-
dures yield interval estimates of the evaluations, i.e., upper
and lower bounds of the expected values for the alternatives.
They also include methods for separating alternatives result-
ing in overlapping expected value intervals. This is a first
step in an analysis but more can be done. Regardless of the
assumptions made on the decision maker’s belief in the var-
ious parts of the input intervals, the evaluation should con-
tinue with a further analysis of the intervals obtained.

Second-Order Belief Distributions

Approaches for extending the interval representation us-
ing distributions over classes of probability and value mea-
sures have developed into various hierarchical models, such
as second-order probability theory (Gardenfors and Sahlin
1982; Gérdenfors and Sahlin 1983; Ekenberg and Thor-
biérnson 2001; Ekenberg, Thorbiérnson, and Baidya 2005).
Gardenfors and Sahlin consider global distributions of be-
liefs, but restrict themselves to the probability case and to
interval representations. Other limitations are that they nei-
ther investigate the relation between global and local dis-
tributions, nor do they introduce methods for determining
the consistency of user-asserted sentences (Ekenberg 2000).
The same criticism applies to (Hodges and Lehmann 1952),
(Hurwicz 1951), and (Wald 1950).

To facilitate better qualification of the various possi-
ble functions, second-order estimates, such as distribu-
tions expressing various beliefs, can be defined over an n-
dimensional space, where each dimension corresponds to
possible probabilities of events or utilities of consequences.
In this way, the distributions can be used to express vary-
ing strength of beliefs in different first-order probability or
utility vectors.

Definition 7 Let a unit cube be represented by B = [0, 1]*.
A belief distribution over B is a positive distribution F’' de-
fined on B such that

/ F(z)dW(z) =1
B

where Vg is a k-dimensional Lebesgue measure on B.
The set of all belief distributions over B is denoted by
BD(B). In some cases, we will denote a unit cube by
kB = (by,...,bx) to make the number of dimensions and
the labels of the dimensions clearer.

Example 1 Assume that the function

32 +a3) fl>a0>21>0
fler,22) = { 0 otherwise

represents beliefs in different vectors (x1, z2). The volume
under the graph of this functionis 1.

Example2 The functions fb; — b, and hba — by are be-
lief distributions over the one-dimensional unit cubes (b1)
and (b2) respectively defined by

f(z1) = max(0, min(—100x; + 20, 100x1))

and
100 80 200 100
h(xg) = max(O, min(—?xg + ?7 Tfﬂg - T))
These have graphs given by triangles with bases on the
x1-axis and the x,-axis, respectively, and with areas = 1.
Therefore, g(z1,z2) = f(z1) - h(z2) isabelief distribution
over a unit cube (bq, ba).

Local Distributions

The only information available in a given decision situation
is often local over a subset of lower dimensions (most deci-
sion makers are unable to perceive their global beliefs over,
say, a 100-dimensional cube). An important aspect is there-
fore to investigate the relationship between different types of
distributions. A reasonable semantics for this relationship,
i.e., what do beliefs over some subset of a unit cube mean
with respect to beliefs over the entire cube, is provided by
summing up all possible belief values of the vectors with
some components fixed. This is captured by the concept of
S-projections.

Definition8 Let B = (b1,...,bx) and A =
(biys...»bi,),t; € {1,...,k} be unit cubes. Let
F € BD(B), and let

.mm>=A;AﬂmdeAm

Then f 4 isthe Sprojection of F' on A.

Theorem 1 Given a unit cube B = (b1, ..., b) and a be-
lief distribution I € BD(B), let fa = Pra(F), then
fA({EI) S BD(bil, . bis)aij S {1, RN k‘}

Thus, Theorem 1 shows that an S-projection of a belief
distribution is also a belief distribution. A special kind of
projection is when belief distributions over the axes of a unit
cube B are S-projections of a belief distribution over B.

Definition 9 Givenaunitcube B = (bq,...,b;) andadis
tribution F € BD(B). Then the distribution f;(z;) ob-
tained by

fa) = [ Fa)av, @)
where Bi = (bl, - ;bi—h b1'+17 ceey bk), is a belief distri-
bution over the b;-axis. Such a distribution will be referred
to asalocal distribution.

Example 3 Let a unit cube be given. Assume that the vec-
torsin this cubeis represented by pairs. Each of these pairs
is assigned a belief, eg., g(0.1,0.4) = 0.4, ¢(0.1,0.7) =
0.3, etc.

The rationale behind the local distributions is that the result-
ing belief in, e.g., the point 0.1 in a sense is the sum of all
beliefs over the vectors where 0.1 is the first component, i.e.,
the totality of the beliefs in this point.

Example4 Given a unit cube [0, 1]® with positive uniform

belief on the surface where Ele x; = 1, the Sprojection
f(z;) onthe axesis f(z;) = 2 — 2z, i.e,

1—x;
f(xi):/o %\/gdy:2—2xi



Centroids

In the sequel, we will use the concept of centroids. Intu-
itively, the centroid of a distribution is a point in space where
some of the geometrical properties of the distribution can be
regarded as concentrated. This is, in some respects, analo-
gous to the center of mass of physical bodies. It will below
turn out to be a good representative of the distribution in
various calculations.

Definition 10 Given a belief distribution F' over a cube B,
the centroid F, of F' is

F.= /BxF(x) dVp(z)

where Vp is some k-dimensional Lebesgue measure on B.

Centroids are invariant under projections on subsets of the
unit cubes in the sense that the S-projections of a centroid
on a subset have the same coordinates as the centroids of the
corresponding S-projections (Ekenberg, Thorbiérnson, and
Baidya 2005). Thus, a local distribution of a belief distribu-
tion preserves the centroid in that dimension.

Example5 The centroid f. of the local distribution given
in Example4is

! 1
fc:/ x-(2—2zx)dr = -
0 3
i.e., the center of massin an ordinary triangle.

Multiplication of Distributions

The expected utility of the alternatives represented by a clas-
sical decision tree are straightforwardly calculated when all
components are numerically precise. When the domains of
the terms are solution sets to probability and value constraint
sets, this is not as straightforward, but there are other meth-
ods available (Danielson et al. 2003), (Danielson 2005). Ei-
ther the decision maker has belief distributions in mind or
not when making interval assignments. In the presentation
below, we assume that the beliefs in the feasible values are
uniformly distributed and we show the effects when multi-
plying variables in trees as in the calculation of the expected
value GEV (A;).2

Let G be a belief distribution over the two cubes A and
B. Assuming that G has a positive support on the feasible
probability distributions at level 4 in a decision tree, i.e., is
representing these (the support of G in cube A), as well as
on the feasible probability distributions of the children of a
node x;;, i.e., 1, Zij2, - - ., Tijm (the support of G in cube
B). Let f = Pra(G) and g = Prg(G). Then the func-
tions f and g are belief distributions according to Theorem
1. Furthermore, there are no relations between two probabil-
ities at different levels (having different parent nodes) so the
distributions f and g are independent. Consequently, the fol-
lowing combination rule for the distribution over the product
of the distribution f and g has a well-defined semantics.

2Qther concievable distributions have similar properties, but in
order to keep the presentation clear, we focus on uniform belief.

Definition 11 The product of two belief distributions f(x)
and g(z) is

hz) = / F(@)g(y) ds

wherel', = {(z,y)z -y =2} and0 < z < 1.

Let us now consider the relation to traditional (1st order)
interval calculus. When aggregating interval probabilities
and values in a tree as above, there are two main cases to
consider.

e The constraints can be linearly independent as in a value
constraint set without equality statements.

e The other interesting case is linear dependencies, such as
in a probability constraint set where the probabilities of
disjoint events must add 1. 3

In the first case, by the assumption the distributions over
the intervals (i.e. the local distributions) are considered to
be uniform over the respective axes. Assume that we have
constraint sets where the constraints are linearly indepen-
dent. If the assertions (statements) are made through inter-
vals (range constraints) there are several options for the dis-
tributions over them and usually they are not well known.
Below, we will discuss the case when the belief in all fea-
sible points could be considered equal, i.e., the local belief
distributions are uniform, f(z) = g(y) = 1, over the in-
tervals [0, 1]. Needless to say, these are not at all the true
distributions. However, we use these to illustrate the general
tendencies, which will be the same in all reasonable cases.

Theorem 2 Let f1(z1),. .., fm(z,) bebeief distributions
over theintervals [0, 1]. The product %, (z,,) Over these m
factorsisthedistribution

(17 (In(z,))"
(m—1)!

hm (Zm) -

Proof.
hm (Zm) -
,fm (xm ) )

T

<< , f3<x3>( 5 f2<x2>f1<x1>d82)d83)...)dsm:

(I ()
/Fn/F3 F2d52d53...d8m— (m —1)!

O

Theorem 3 Thecentroid of thedistribution A, (z,,,) in The-
orem2is2—™,

Proof.

(=1 InGm)m _o-m
/0 Zm, (m = 1! Az, = 2

3This case is beyond the scope of this paper.



Example6 Thedistributions i, (z,,) in Theorem 2 are be-
lief distributions, and Figure 2 below shows, from right
to left, the plots of the functions on depth 2 to 7, i.e,

In?(z) —1In®(z) In*(z) —In®(z) In®(z
—In(2), 2()’ 6()’ 251)’ 120()7 72(0)'

0.z 0.g 0.& 0.8 1

Figure 2 Multiplication of distributions of 7, 6,
5, 4, 3, and 2 consecutive node values.

As mentioned above, this effect is not dependent on the as-
sumption of uniform distribution.

The important observation above is that the mass of the re-
sulting belief distributions becomes dramatically more con-
centrated to the lower values the deeper the tree is and the
more factors that are aggregated in the expected value (the
dual warp effect). Already after one multiplication, this ef-
fect is significant. It should be regarded as additional infor-
mation by any method employing an interval calculus.

As can be seen from the results above, in general, the
effects of this are considerable when evaluating imprecise
decision problems. Inevitably, the most important sub-
intervals to consider are the supports of the distributions
where the most mass is concentrated. This can be compared
to the ordinary multiplication of extreme points (bounds)
which would generate an interval [0, 1]. Consequently,
an important component in any method for decision tree
analysis is the possibility of determining belief-dense sub-
intervals.

This warp effect does not imply that the extreme points
themselves are wrong. Interval methods in general are un-
able to give any qualification on the belief distribution. This
does neither imply that algorithms for determining upper
and lower bounds in trees are inappropriate, but the results
should be supplemented by second-order and centroid cal-
culations.

Conclusion

In the literature, there has been a debate whether or not var-
ious kinds of second-order approaches are better suited than
first-order ones for modelling incomplete knowledge. In this
paper, we show effects of multiplying interval estimates in
decision trees. We have demonstrated that second-order be-
lief adds information when handling aggregations of interval
representations, such as in decision trees or probabilistic net-
works, and that interval estimates (upper and lower bounds)
in themselves are incomplete.

The results apply equally to all approaches which do not
explicitly deal with belief distributions. Focussing only on
first-order concepts does not provide the complete picture.
The second-order effects are still present regardless of the

precise beliefs of the decision maker. The rationale behind
this fact is that we have demonstrated that multiplied distri-
butions sharpen (warp) significantly compared to their com-
ponent distributions. Secondly, the multiplied distributions
dramatically concentrate their mass to the lower values com-
pared to their component distributions. This also means that
due to the dual warp effect, calculations using the centroid,
instead of the complete intervals, provide a very good es-
timate already at quite shallow tree depths. Thus, while a
complete use of second order information is complicated,
the centroid is a very good candidate for practical purposes.
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