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Abstract 

Over the years numerous decision analytical models based 
on interval estimates of probabilities and utilities have been 
developed, and a few of these models have also been 
implemented into software. However, only one software, the 
Delta approach, are capable of handling probabilities, values 
and weights simultaneously, and also allow for comparative 
relations, which are very useful where the information 
quantity is limited. A major disadvantage with this method 
is that it only allows for single-level decision trees and 
cannot non-trivially be extended to handle multi-level 
decision trees. This paper generalizes the Delta approach 
into a method for handling multi-level decision trees. The 
straight-forward way of doing this is by using a multi-linear 
solver; however, this is very demanding from a 
computational point of view. The proposed solutions are 
instead to either recursively collapse the multi-level decision 
tree into a single-level tree or, preferably, use backward 
induction, thus mapping it to a bilinear problem. This can be 
solved by LP-based algorithms, which facilitate reasonable 
computational effort. 

Introduction 
Matrix, tree, and influence diagram are extensively used 
decision models, but since precise numeric data are 
normally the only input in the models, and since this type 
of data rarely can be obtained, they are less suitable for 
real-life decision-making. Various types of sensitivity 
analysis might be a partial solution for these tools, but even 
in small decision structures, such analysis is difficult to 
manage. (Danielson and Ekenberg 1998) 
A number of models, which include representations 
allowing for imprecise statements, have been developed 
over the past 50 years. However, the majority of the 
models focus more on representation, and less on 
evaluation and implementation. (Danielson and Ekenberg 
1998) Some approaches concerning evaluation have been 
suggested by, e.g., (Levi 1974) and (Gärdenfors and Sahlin 
1982), but do not address computational and 
implementational issues. 
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A systematic approach for interval multi-criteria 
decision analysis, addressing computational issues, is 
PRIME presented by (Salo and Hämäläinen 2001). PRIME 
is, however, primarily developed for multi-criteria 
decisions under certainty, thus there is no support for the 
construction and evaluation of decision trees involving 
several uncertain outcomes. There are also other software, 
see e.g. (Olson 1996) for a survey, but very few is capable 
of handling both probabilities and attributes simultaneously 
and does not allow for comparative relations, which is 
quite useful in situations where the information quantity is 
very limited. Most of them also provide very little 
information when the interval values of the alternatives are 
overlapping. 

The theories by (Park and Kim 1997) is one of the more 
interesting approaches capable of handling uncertain 
events in multi-criteria decisions, and also address some 
computational issues. The result is unfortunately only 
based on ordinal ranking with no support of sensitivity 
analysis and can not handle multi-level trees. 

The Delta method suggested by (Danielson 1997) is by 
far the most interesting approach of solving real-life 
decision situations. This approach can handle weights, 
probabilities, values and comparative relations 
simultaneously and is inspired by earlier work on handling 
decision problems involving a finite number of alternatives 
and consequences, see e.g., (Malmnäs 1994). 

However, the main disadvantage with the Delta method 
is that it only allows for single-level trees and cannot non-
trivially be extended to a multi-level approach. Since 
multi-level decision trees appear naturally in many real-life 
situations (e.g. events with dependent outcomes), it is of 
great importance being able to evaluate such a 
representation. 

This paper combines the Delta approach with a multi-
level decision tree structure, making the approach much 
more user friendly. For the approach to be interactively 
useful, it is less suitable to use a standard solver for bi- or 
multi-linear optimization problems. Instead we use a solver 
based on reductions to linear programming problems, 
solvable with the Simplex method (Danielson and 
Ekenberg 1998). 



The Delta Method 
The Delta method has been developed for real-life decision 
situations where imprecise information, in the form of 
interval statements and comparative relations, are 
provided. This does not force the decision maker to precise 
numerical numbers in cases where this is unrealistic. 
(Danielson and Ekenberg 1998) The method allows for two 
kinds of user statements. Interval statements of the form: 
“the probability of cij is between the numbers a and b” are 

translated into ],[)( bacp ij ∈ . Comparative relations of 

the form: “the value of cij is greater than the value of cik” 

is translated into an inequality vij > vik. 
The conjunction of probability constraints of the types 

above, together with the normalization constraint 
1)( =� ijcp  for each alternative ai involved, is called the 

probability base (P). The value base (V) consists of value 
constraints of the types above, but without the 
normalization constraint. A collection of interval 
constraints concerning the same set of variables is called a 
constraint set. For such a set of constraints to be 
meaningful, there must exist some vector of variable 
assignments that simultaneously satisfies each inequality, 
i.e., the system must be consistent. 

Evaluation of the alternatives is necessarily made pair-
wise when the alternatives are dependent, otherwise the 
result will be incorrect. (Danielson 1997) The main 
principle used for evaluation is the strength concept, a 
generalization of PMEU . 

Definition: The strength ijδ  of alternative ai compared 

to aj denotes the expression =− )()( ji aEVaEV  

� � ⋅−⋅
k l jljlikik cvcpcvcp )()()()( . 

To analyze the strength of the alternatives, )max( ijδ  is 

calculated, which means that the feasible solutions to the 
constraints in P and V that are most favorable to )( iaEV  
and demeaning to )( jaEV  are chosen. In similar manners 

)min( ijδ  is calculated. Thus, the concept of strength 

expresses the maximum differences between the 
alternatives under consideration. It is however used in a 
comparative way so that the maximum and minimum is 
calculated. The strength evaluation requires bilinear 
optimization which is computationally demanding using 
standard approaches, but this can be reduced to linear 
programming problems, solvable with the Simplex method. 
(Danielson and Ekenberg 1998) 

Often the probability, value and weight distributions are 
not uniform; rather some points are more likely than 
others. The Delta approach is taking this into account using 
triangle shaped distributions in the form of an interval and 
a contraction point (the most likely value), see figure 1. 
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Figure 1: Distribution of probabilities, values and weights, 
using interval and contraction point. 

A problem with evaluating interval statements is that the 
results could be overlapping, i.e., an alternative might not 
be dominating1 for all instances of the feasible values in 
the probability and value bases. A suggested solution is to 
further investigate in which regions of the bases the 
respective alternatives are dominating. For this purpose, 
the hull cut is introduced in the framework. 

The hull cut can be seen as generalized sensitivity 
analyses to be carried out to determine the stability of the 
relation between the alternatives under consideration. The 
hull cut avoids the complexity in combinatorial analyses, 
but it is still possible to study the stability of a result by 
gaining a better understanding of how important the 
interval boundary points are. This is taken into account by 
cutting off the dominated regions indirectly using the hull 
cut operation. This is denoted cutting the bases, and the 
amount of cutting is indicated as a percentage p, which can 
range from 0 % to 100 %. For a 100 % cut, the bases are 
transformed into single points (contraction points), and the 
evaluation becomes the calculation of the ordinary 
expected value. 

Multi-Level Decision Trees 
As has been described, the Delta approach is a single-level 
approach, not able to construct multi-level decision trees. 
However, single-level trees and decision tables are only 
two different ways of describing the situation containing 
the same amount of data. In situations involving multiple 
choices in a certain order, or where the outcome of one 
event affects the next, the multi-level decision tree is much 
more appropriate and contains more information of the 
decision situation. Multi-level decision trees are also very 
useful in complex decision situations, where the decision 
tree provides a graphical representation of the decision and 
shows all the relations between choices and uncertain 
factors (Hammond et al. 2002). 

Decisions under risk is often given a tree representation, 
described in, e.g., (Raiffa 1968), and consists of a base, 
                                                           
1Alternative i dominates alternative j iff )min( ijδ  > 0. 

 



representing a decision, a set of intermediary (event) 
nodes, representing some kind of uncertainty and 
consequence nodes, representing possible final outcomes, 
se figure 2. 

 

 
Figure 2: A multi-level decision tree. 

Usually the maximization of the expected value is used 
as the evaluation rule. The expected value of alternative ai 
is calculated according to the following formula: 

⋅⋅⋅=�
=

...)()(()(
21

1
ije

n

j
ijei cpcpaEV

i

))()()(
1 ijijeije cvcpcp

imim
⋅⋅

−
, where )( ije cp

k
 denote the 

probability of event ek (towards cij) and )( ijcv  the value 

of the consequence cij. ],...,1[ imk ∈  where mi is the 
level, in terms of depth, where consequence cij is located. 

in  is the number of consequences in the alternative ai. 

Since neither the probabilities nor the values are fixed 
numbers, the evaluation of the expected value yields multi-
linear objective functions. 

Tree Collapse 
A multi-linear function is very problematical from a 
computational viewpoint, so to maintain all Delta features, 
including relations between arbitrary consequences; one 
solution could be to recursively collapse the multi-level 
tree into a single-level, thus mapping it to a bilinear 
problem. The collapse is straight-forward in that each path 
in the tree is replaced by a consequence representing the 
joint event chain leading up to the final consequence. 

The probability of a consequence in a collapsed tree is 
defined as a joint probability )(ϕ , and the probability of an 
event on the path from the decision node to the 
consequence is defined as a local probability )(γ . The 
upper and lower joint probability is calculated through 

multiplying the upper and lower local probabilities 
respectively. This is the purpose of algorithm 1. 

Algorithm 1 
A unique path in a decision tree is a set of edges 

)}(),...,({)( 1 inii cececE =  leading from the root node to a 
consequence ci, where n is determined by the level of depth 
of ci. Given a unique path: 

Let minϕ
icp  denote the lower joint probability for 

consequence ci occurring, such that 
)(...)( minminmin

1 ieiec cpcpp
ni

γγϕ ⋅⋅= . )(min
ie cp

j

γ  denotes the 

lower local probability of the uncertain event represented 
by edge ej (on the unique path towards ci, i.e. not 
necessarily independent), and where j is the level, in terms 
of depth, from the alternative. 

Let maxϕ
icp  denote the upper joint probability for 

consequence ci occurring, such that 
)(...)( maxmaxmax

1 ieiec cpcpp
ni

γγϕ ⋅⋅= . )(max
ie cp

j

γ  denotes the 

upper probability of the uncertain event represented by 
edge ej (on the unique path towards ci, i.e. not necessarily 
independent), and where j is the level, in terms of depth, 
from the alternative. 

Three major issues have arisen during the collapse; 
distribution of contraction points, probability propagation 
and incongruence of intermediary values. The remainder of 
the chapter will discuss those properties as they are 
calculated in a collapsed tree. 

Distribution of Contraction Points 
Given a multi-level asymmetric decision tree with no 
probabilities explicitly set by the decision maker, a tree 
collapse distributes the probability evenly, since the 
collapse equals the probability of all consequences. 
However, with no probabilities set the most intuitive 
implication, when no other information is available, is that 
the probability distribution is between 0 and 1 and the most 
likely probability (the contraction point) is dependent on 
the level of depth where the consequence is located. 

Given ]1 ,0[)(),(),(),,( 21321 2211
∈cpcpcpccp eeee

γγγγ , where 

),( 211
ccpe

γ  is the probability interval preceding 

)(),( 21 22
cpcp ee

γγ ; the most likely probability, i.e. the joint 

contraction point 
ϕ

ick , should, in an intuitive interpretation, 

be 2
1

3
=

ϕ
ck  and 4

1
21

, =
ϕϕ
cc kk , if no explicit contraction 

points are set. However, this does not hold when the 
decision tree is collapsed to a single-level. Since no 
probability is explicitly set, the tree collapse assumes that 



the three consequences occur with the same probability, 

thus 3
1

321
,, =

ϕϕϕ
ccc kkk . 

The approach for solving this matter is to use the most 
likely probability for each edge between the root and the 
consequence, i.e. the local contraction point, and multiply 
them, according to algorithm 2. 

Algorithm 2 
Given a unique path: 

�  Let 
ϕ

ick  denote the joint contraction point for 

consequence ci, such that )(...)( ieiec ckckk
nii

γγϕ
⋅⋅= , 

where )( ie ck
j

γ
 denotes the local contraction point of 

edge ej, (towards ci) where j is the level, in terms of 
depth, from the alternative. 

Probability Propagation 
The problem with probability propagation becomes evident 
in a multi-level decision tree having at least two levels, 
where an outcome at level one has two (or more) children 
nodes. The joint probability of the two nodes are 

)(),( 121 211
cpccpp eec

γγϕ ⋅=  and )(),( 221 212
cpccpp eec

γγϕ ⋅= , 

where )( ie cp
x

γ  denotes the local probability of the event in 

level x (towards ci), thus ϕ
icp  depends on the probability of 

its predecessors. 
In a tree collapse with the probability explicitly set to e.g., 

xcpcp ee =)(),( 21 22

γγ , and no probability set in e1, thus 

]1,0[),( 211
∈ccpe

γ , results in ],0[
1

xpc ∈ϕ  and ],0[
2

xpc ∈ϕ . 

However, since c1 and c2 share the same predecessor e1, the 
probability should be equal at all times, thus ϕϕ

21 cc pp = , 

e.g. if bpc =ϕ
1

, then bpc =ϕ
2

. Without some kind of 

comparative relation like ϕϕ
21 cc pp =  explicitly set, the tree 

collapse assumes ϕ
1cp  and ϕ

2cp  as being independent of 

each other, thus not necessarily ϕϕ
21 cc pp = . 

Example 
As can be seen in Figure 3, the probability propagation of 
c2 and c3 are ].50 ,0[,

32
∈ϕϕ

cc pp , which is correct given the 

input. 
 

 
Figure 3: Incorrect evaluation result due to the problem with 
probability propagation. 

Since they share the same predecessor and 
.50 )(),( 21 22

=cpcp ee
γγ , and 0

1
=ϕ

cU , 1
2

=ϕ
cU , 1

3
−=ϕ

cU , 

the expected utility should be 0, minmax
11

=aa EUEU , but the 

result is 5.0max
1

=aEU  and 5.0min
1

−=aEU , which can be 

seen at 0% contraction in the evaluation graph. 

Incongruence of Intermediary Values 
Intermediary value statements lead to similar problems as 
the probability propagation. The problem is that when 
performing the tree collapse, the final value of a 
consequence ϕ

ijcu  becomes independent of shared 

predecessors (intermediary nodes). Given acue =)( 12

γ , 

bacue +=)( 22

γ , where 0>b , and the common 

predecessor ],[),( 211
dcccue ∈γ , this will result in 

],[
1

dacauc ++∈ϕ  and ],[
2

dbacbauc ++++∈ϕ  Since 

ϕ
1cu  and ϕ

2cu  may be overlapping, i.e., 

)()( cbada ++>+ , and the information about the 
predecessor will be lost in the tree collapse, a final 
comparative relation (relations between final values) 
saying ϕϕ

21 cc uu >  would be accepted, despite that 

acue =)( 12

γ , bacue +=)( 22

γ . 

Example 
Figure 4 shows a decision situation with the intermediate 
values ]1000,0[),( 211

=ccue
γ , 100)( 12

−=cue
γ  and 

0)( 22
=cue

γ . 
 

 
Figure 4: Intermediary value statements 



For these consequences, the minimum and maximum joint 
values are calculated: 

100)100(0)(),( 121
minmin

211
−=−+=+= cuccuu eec

γγϕ  

=+= )(),( 121
maxmax

211
cuccuu eec

γγϕ 900)100(1000 =−+=  

]900 ,100[
1

−∈ϕ
cu  

000)(),( 221
minmin

212
=+=+= cuccuu eec

γγϕ  

100001000)(),( 221
maxmax

212
=+=+= cuccuu eec

γγϕ  

]0001 ,0[
2

∈ϕ
cu  

When looking at ]900 ,100[
1

−∈ϕ
cu  and ]0001 ,0[

2
∈ϕ

cu , the 

comparative relation ϕϕ
21 cc uu >  could be accepted. 

However, the information of the intermediate relation has 
disappeared in the tree collapse and the comparative 
relation is unfortunately inconsistent since 

<−−∈ ]100,100[ maxmin
111

γγϕ
eec uuu

]0,0[ maxmin
112

++∈ γγϕ
eec uuu . 

Backward Induction 
The abovementioned problems could be solved using a 
modified version of the backward induction (also known as 
the rollback method) instead of a tree collapse. Backward 
induction is an iterative process for solving finite extensive 
form or sequential games.  A drawback with the backward 
induction is that statements expressing relations between 
nodes with different direct predecessors cannot be set. 
However, relations between nodes having the same direct 
predecessor are still possible with the method of backward 
induction. See algorithm 3.  

Algorithm 3 
Maximizing expected utility of strategy a1, with 
intermediary values and also intermediary comparative 
relations present, using backward induction, gives the 
following expression: 

1. =),...,( 111
max

ke ccU
i

ϕ +⋅ )()(sup( 1111 cucp
ii ee

γγ

))()(... 11 keke cucp
ii

γγ ⋅+ , where 

),...,( 111
max

ke ccu
x

ϕ  is the maximum expected utility of 

event ex (towards c11,…,c1k), and x being the level. 
)( 11cp

xe
γ  denotes the local probability of the event in 

level x (towards c11), )( 11cu
xe

γ  is the local utility of the 

event in level x (towards c11). 
2. Continuing on the next level: 

=
−

),...,( 111
max

)1( me ccU
i

ϕ

+⋅
−−

),...,((),...,(sup( 111111 )1()1( keke ccuccp
ii

γγ  

++ ...)),...,( 111
max

ke ccU
i

ϕ

+⋅+
−−

),...,((),...,( 11
max

11 )1()1( mlemle ccuccp
ii

ϕγ

)),...,( 11
max

mle ccU
i

ϕ  

The backward induction repeats, until finally the 
maximum expected utility is calculated through: 
3. =max

1

ϕ
aEU +⋅ ),...(),...(sup( 111

max
111 11 nene ccUccp ϕγ  

max
11

max
11 111

)),...(),...(... γϕγ
arperpe UccUccp +⋅+  

(no comparative relations between the alternatives) 

Minimizing expected utility of strategy a1, using backward 
induction, is performed in the same manner. 

Concluding Remarks 
Since multi-level decision trees appear naturally in many 
real-life situations, it is important to be able to evaluate 
such a representation. This paper generalizes a method for 
handling single-level decision trees, when vague and 
numerically imprecise information prevail, into a method 
for handling multi-level decision trees. Instrumental 
concepts required for the transformation has been 
presented as well as a discussion of some vital issues 
linked with the various transformations. 

The proposed solutions are to either recursively collapse 
the multi-level decision tree into a single-level tree or, 
preferably, use backward induction, thus mapping it to a 
bilinear problem. This can be solved by the LP-based 
algorithms in (Danielson and Ekenberg 1998), which 
facilitate reasonable computational effort. 
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