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Abstract

This paper demonstrates that second-order calculations add
information about expected utilities when modeling impre-
cise information in decision models as intervals and employ-
ing the principle of maximizing the expected utility. Further-
more, due to the resulting warp in the distribution of belief
over the intervals of expected utilities, the conservative Γ-
maximin decision rule seems to be unnecessarily conserva-
tive and pessimistic as the belief in neighborhoods of points
near interval boundaries is significantly lower than in neigh-
borhoods near the centre. Due to this, a generalized expected
utility is proposed.

Introduction
In the basic model of Bayesian decision analysis, a deci-
sion maker is to choose an alternative/action from a non-
empty, finite set A = {A1, . . . , An} of possible alterna-
tives. Each alternative may end up with a finite set of conse-
quences, and the resulting consequence of each alternative
depends on the true (but probably unknown) state of nature
θ ∈ Θ = {θ1, . . . , θi, . . . , θk}. The corresponding outcome
is then evaluated by means of a utility function u satisfying

u(A× Θ) → R

(A, θ) �→ u(A, θ)
Since the true state of nature is unknown, the model as-
serts the knowledge of the probability distribution P (.) on
(Θ,Po(Θ)). The alternative A to choose is then the alterna-
tive which maximizes the expected utility, for all Ai ∈ A.
This selection procedure is commonly referred to as the
principle of maximizing the expected utility, and is argued
for in (von Neumann and Morgenstern 1947) and (Savage
1972), as it is implied from widely accepted axiom systems
defining formal models of rationality. Thus, a preference or-
dering relation � on A is implied from the magnitudes of
the different alternatives’ expected utility.

Definition 1 The principle of maximizing the expected util-
ity is accepted if a decision making agent chooses the alter-
native A∗, whenever

A∗ = argmax
A

(E(A))
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where

E(A) =
∑
θ∈Θ

u(A, θ) · P (θ)

for all A ∈ A.

An important relation in Bayesian decision analysis is then
Ai � Aj ⇐⇒ E(Ai) ≥ E(Aj) for any two alternatives
Ai, Aj ∈ A. However, even if a decision maker is able
to discriminate between different probabilities, very often
complete, adequate, and precise information is missing. The
requirement to provide numerically precise information in
such models has often been considered unrealistic in real-
life decision situations.

Due to this lack of information in real-life decisions, later
years of rather intense activities in the decision analysis
area have been focused on developing models and frame-
works handling this imprecision. Approaches based on up-
per and lower probabilities (Dempster 1967), sets of proba-
bility measures (Levi 1974; Walley 1991), and interval prob-
abilities (Weichselberger 1999), have prevailed. However,
the latter still do not admit for discrimination between dif-
ferent beliefs in different values, and selection problems
emerge when intervals of expected values are overlapping.

The expected utility of the alternatives are straightfor-
wardly calculated when all components are numerically pre-
cise. When the domains of the terms are given in convex sets
of probability and utility measures, this is not as straightfor-
ward. Proposed methods mainly involve finding lower and
upper bounds on expected utilities, derived from lower and
upper bounds on the probability and utility variables, yield-
ing interval-valued expected utilities to compare. However,
when comparing these directly, many decision problems will
lead to a partial preference order on A while the expected
utility intervals are overlapping. Due to this problem, some
authors suggest the Γ-maximin1 principle (Berger 1984;
Augustin 2001; Vidakovic 2000).

Definition 2 The Γ-maximin principle is accepted if a deci-
sion making agent chooses the alternative A∗, whenever

A∗ = arg max
A

(inf(E(A)))

1When loss functions are used instead of utility functions, the
rule is labeled Γ-minimax.



where

inf E(A) = inf
∑
θ∈Θ

u(A, θ) · P (θ)

for all A ∈ A.

Belief Distributions

To model imprecision, probability and value estimates can
be expressed by sets of probability distributions and utility
functions.

Definition 3 Given a finite sample space Θ and a σ-field Γ
of random events in Θ, the probability P (θi) of state θi is
expressed as the variable pi bounded by the following con-
straints

sup P (θi) = 1 − inf P (¬θi)∑
θi∈Θ pi = 1

Definition 4 Let L be a set of mappings L = {u(A×Θ) →
[0, 1]} where all u ∈ L are increasing. Given a subset U ⊂
L such that uij = {u(Ai, θj)u ∈ U} is a closed interval,
then the interval valued utilities are defined in terms of the
closed intervals uij .

However, to enable a better qualification of the various pos-
sible functions, second-order estimates, such as distribu-
tions expressing various beliefs, can be defined over an n-
dimensional space, where each dimension corresponds to
possible probabilities of an event or utilities of a conse-
quence. In this way, the distributions can be used to express
varying strength of beliefs in different probability or utility
vectors.

Definition 5 Let a unit cube be represented by B = [0, 1]k.
A belief distribution over B is a positive distribution F de-
fined on B such that∫

B

F (x) dVb(x) = 1

where VB is a k-dimensional Lebesgue measure on B.
The set of all belief distributions over B is denoted by
BD(B). In some cases, we will denote a unit cube by
kB = (b1, . . . , bk) to make the number of dimensions and
the labels of the dimensions clearer.

It is useful to distinguish between unit cubes representing
possible first-order probability distributions on a set of mu-
tually exclusive events, and unit cubes representing first-
order utility distributions.

Definition 6 A P-unit cube is a unit cube BP = [0, 1]k

where F (x) > 0 ⇒ ∑k
i=1 xi = 1. A V-unit cube BV lacks

this condition.

If there is positive support on a convex set in a BP -cube, the
set of possible probability distributions correspond to coher-
ent probability (Walley 1991) and feasible interval probabil-
ity (Weichselberger 1999).

Local Distributions

The only information available in a given decision situation
often is local over a subset of lower dimension. As is argued
in (Ekenberg, Danielson, and Larsson 2005), this is captured
by the central concept of S-projections.

Definition 7 Let B = (b1, . . . , bk) and A =
(bi1 , . . . , bis), ij ∈ {1, . . . , k} be unit cubes. Let
F ∈ BD(B), and let

fA(x) =
∫

B\A

F (x) dVB\A(x)

Then fA is the S-projection of F on A.

It can be shown that an S-projection of a belief distribution
always is a belief distribution (Ekenberg, Danielson, and
Thorbiörnson 2005). A special kind of projection is when
belief distributions over the axes of a unit cube B are S-
projections of a belief distribution over B.

Definition 8 Given a unit cube B = (b1, . . . , bk) and a dis-
tribution F ∈ BD(B). Then the distribution fi(xi) ob-
tained by

fi(xi) =
∫

B̄i

F (x) dVB̄i
(x)

where B̄i = (b1, . . . , bi−1, bi+1, . . . , bk), is a belief distri-
bution over the bi-axis. Such a distribution will be referred
to as a local distribution.

The rationale behind the local distributions is that the result-
ing belief in, e.g., the point 0.1 in a sense is the sum of all
beliefs over the vectors where 0.1 is the first component, i.e.,
the totality of belief in this point.

Distributions over Expected Utility Spaces

Let BV = [0, 1]k be a unit cube with an associated belief
distribution F . Then the local distributions fi(xi) can be
calculated through the concept of S-projections. Then the
following rule for the distribution over the sum z =

∑
xi

has well-defined semantics.

Definition 9 The belief distribution h(z) on a sum z =∑k
i=1 xi of a set of (independent) variables {xi}k

i=1, asso-
ciated with belief distributions fi(xi), is given by evaluating
the integral

h(z) =
∫
Sz

k∏
i=1

fi(xi) dSz

where Sz = {(x1, . . . , xk)z =
∑k

i=1 xi} ⊂ [0, 1]k, 0 ≤
z ≤ k, and dSz is the surface area element.

Theorem 1 The function h(z) given in Definition 9 is a be-
lief distribution.



Proof.∫ 1

0

h(z) dz =
∫ 1

0

(∫
Sz

k∏
i=1

fi(xi) dSz

)
dz =

∫ 1

0

. . .

∫ 1

0

k∏
i=1

fi(xi) dx1 . . . dxk =

(∫ 1

0

f1(x1) dx1

)
· . . . ·

( ∫ 1

0

fk(xk) dxk

)
= 1k = 1

�
Definition 10 Given a belief distribution F over a cube B,
the centroid Fc of F is

Fc =
∫

B

xF (x) dVB(x)

where VB is some k-dimensional Lebesgue measure on B.

Centroids are preserved under projections, in the sense that
the centroid of an S-projection of F on A ⊂ im F share co-
ordinates with the centroid of F (Ekenberg, Danielson, and
Thorbiörnson 2005). Thus, a local distribution of a belief
distribution preserves the centroid in that dimension. From
(Ekenberg, Danielson, and Thorbiörnson 2005), it is clear
that the centroid is multiplicative, i.e., for two local belief
distributions f and g on independent variables x and y with
centroids fc and gc, the centroid of the distribution on their
product x · y is given by fc · gc. An equally important prop-
erty in decision analysis is that the centroid is additive as
well.
Theorem 2 The horizontal centroid hc of h, where h is de-
fined as in Definition 9, is the sum of the horizontal centroids
of each fi, i.e., the horizontal centroid is additive.

Proof.

hc =
∫ 1

0

z · h(z) dz =
∫ 1

0

z
(∫

Sz

k∏
i=1

fi(xi) dSz

)
dz =

∫ 1

0

(∫
Sz

( k∑
i=1

xi

) k∏
i=1

fi(xi) dSz

)
dz =

∫
. . .

∫
[0,1]k

( k∑
i=1

xi

) k∏
i=1

fi(xi) dx1 . . . dxk =

∫
. . .

∫
[0,1]k

x1 ·
( k∏

i=1

fi(xi)
)

+ . . . +

+ xk ·
( k∏

i=1

fi(xi)
)

dx1 . . . dxk =

∫
. . .

∫
[0,1]k

x1 ·
( k∏

i=1

fi(xi)
)
dx1 . . . dxk + . . . +

+
∫

. . .

∫
[0,1]k

xk ·
( k∏

i=1

fi(xi)
)
dx1 . . . dxk =

(∫ 1

0

x1 ·f1(x1) dx1

)
· . . . ·

( ∫ 1

0

fk(xk) dxk

)
+ . . .+

+
(∫ 1

0

f1(x1) dx1

)
· . . . ·

(∫ 1

0

xk · fk(xk) dxk

)
=

f1c · 1k−1 + . . . + fkc · 1k−1 =
k∑

i=1

fic

�
When calculating expected utilities, each term is a product
of a probability and a utility. Since we handle probabilities
and utilities independently, the belief in each term is a prod-
uct of beliefs. From this reasoning, the following rule of for
the distribution over the line segment of possible expected
values follows.

Definition 11 Given one probability unit cube BP =
(p1, . . . , pk) and a utility unit cube BV = (u1, . . . , uk), an
expected utility unit cube, denoted BEU , is the cross product
BEU = BP × BV .

Thus, given any point e = (p1, u1, p2, u2, . . . , pk, uk) ∈
BEU , there is an expected utility z ∈ [0, 1] such that z =
p1 · u1 + p2 · u2 + . . . + pk · uk whenever

∑k
i=1 pi = 1.

Definition 12 The belief distribution h(z) on a sum z =∑k
i=1 piui of a set of products of two variables {pi ·ui}k

i=1,
associated with global belief distributions F (p1, . . . , pk)
and G(u1, . . . , uk) respectively, is given by evaluating the
integral

h(z) =
∫
Sz

F (p)G(u) dSz

where Sz = {(p1, u1, . . . , pk, uk)z =
∑k

i=1 pi · ui} ⊂
[0, 1]2k, 0 ≤ z ≤ 1, and dSz is the surface area element.2

Theorem 3 The function h(z) in Definition 12 is a belief
distribution.

Proof.∫ 1

0

h(z) dz =
∫ 1

0

(∫
Sz

F (p)G(u) dSz

)
dz =∫

BEU

F (p)G(u) dVBEU =(∫
BP

F (p) dVBP

)(∫
BV

G(u) dVBV

)
= 1 · 1

�
Theorem 4 The horizontal centroid hc of h, where h is de-
fined as in Definition 12, is the sum of the centroid products
fi ·gi, i.e., the horizontal centroid is additive and multiplica-
tive.

2In this definition we use p to denote the vector components
(p1, . . . , pk) which is a subset of the vector components included
in e = (p1, u1, . . . , pk, uk). The same meaning applies to the
vector u.



Proof. From Theorem 2, the following can be derived.

hc =
∫ 1

0

z · h(z) dz =
∫ 1

0

z
(∫

Sz

F (p) · G(u) dSz

)
dz =

∫ 1

0

(
k∑

i=1

piui)
( ∫

Sz

F (p) · G(u) dSz

)
dz =

((∫ 1

0

p1 · f1(p1) dp1

)(∫ 1

0

u1 · g1(u1) du1

)
· . . . ·

·
(∫ 1

0

fk(pk) dpk

)( ∫ 1

0

gk(uk) duk

))
+ . . . +

+

((∫ 1

0

f1(p1) dp1

)( ∫ 1

0

g1(u1) du1

)
· . . . ·

·
(∫ 1

0

pk·fk(pk) dpk

)( ∫ 1

0

uk·gk(uk) duk

))
=

k∑
i=1

ficgic

�

Belief on Expected Utilities
When making pure interval assignments, there is still a be-
lief in all intermediate points, even if it is sometimes low
(zero in the extreme case). For presentational purposes, we
assume below that the beliefs in the feasible values are at
least uniformly distributed and we show effects of this as-
sumption when exposing variables for binary operators em-
ployed when calculating expected utilities. This does not
mean that the warp effects discussed are present only in
these cases.

Example
The following example considers the rudimentary expected
utility calculation where Θ = {θ1, θ2}, i.e., there are two
uncertain outcomes. Assume that the belief is uniformly
distributed over all possible probability and utility distribu-
tions. In this case we have two 2-dimensional unit cubes,
BV = (u1, u2) and BP = (p1, p2). Over BV the be-
lief distribution is G(u) = 1, since the belief is uniformly
distributed. Regarding BP , the belief distribution over the
surface p1 + p2 = 1 is F (p) = 1√

2
(this surface is a line

with length
√

2). Through the transformation (p1, p2) =
P (p) = ( p√

2
,
√

2−p√
2

), 0 ≤ p ≤ √
2, BP may be replaced

with the line segment [0,
√

2]. Furthermore, from the con-
cept of S-projections, the local distributions over the axis is
f1(p1) = f2(p2) = g1(u1) = g2(u2) = 1.

Consider the 3-dimensional space obtained by BV ×
[0,

√
2], in this space, each vector of points (p, u1, u2) now

represents a possible expected utility, i.e., given any point
in this space there is an expected utility z ∈ [0, 1] such that
p√
2
u1 +

√
2−p√
2

u2 = z. The belief in a given z is then ob-
tained by summing up all beliefs of the vectors in the space

[0, 1] × [0,
√

2] which fulfill z = p√
2
u1 +

√
2−p√
2

u2, i.e., we
have a surface integral.

Figure 1 Surface of points fulfilling z = 0.25

Figure 2 Surface of points fulfilling z = 0.5

In general, finding such areas through calculus is performed
through parameterization. In this case, we wish to find
the area of the surface S ∈ [0, 1] × [0,

√
2] given by

F(u1, u2, p) =
√

2(z − u2) − z(u1 − u2) = 0, where
z ∈ [0, 1] represents a possible expected utility.

We may regard the graph p = g(u1, u2) as a parametric
surface S with parameterization

u1 = x, u2 = y, p =
√

2(z − u2)
u1 − u2

The domain D of g(u1, u2) in the u1u2-plane where 0 ≤
g(u1, u2) ≤

√
2 is D = {(u1, u2)0 ≤ u1 ≤ z ⇔ z ≤ u1 ≤

1} ∪ {(u1, u2)z ≤ u1 ≤ 1 ⇔ 0 ≤ u2 ≤ z}. The area of the
surface over the two subsets of the domain D is equal due
to symmetry, and the parametric region coincides with D,
so the surface integral over S can be expressed as a double



integral over D,

h(z) =
∫∫

S dS =

2
∫ z

0

∫ 1

z

√
1 +

(
∂g
∂x

)2

+
(

∂g
∂y

)2

dydx =

2
∫ z
0

∫ 1
z

√√√√√1+

(
√

2(z−u2)
(u1−u2)2

)2

+

(
√

2(z−u2)
(u1−u2)2

−
√

2
u1−u2

)2

dydx=

2
∫ z

0

∫ 1

z

√
1 + 2

(
(z−u2)

(u1−u2)2

)2

+
(

(z−u1)
(u1−u2)2

)2

dydx

Monte Carlo-integration of this expression leads to the graph
in Figure 3 below. As can be seen, the belief is more con-
centrated towards the centroid than in uniform distributions,
i.e., the distribution is concave.

Figure 3 Shape of belief distribution h(z)
in Example 1 obtained from Monte Carlo-
integration.

According to Definition 12, the belief in a certain z is de-
rived from the area of each such surface when the compo-
nent distributions are uniform. For z = 0 and z = 1, the
surface will have an area of zero.

Decision Rule
To illustrate the need for a new decision rule within this
framework, we will consider the following decision situation
under risk. In the decision matrix below, p ij corresponds to
P (θj |Ai) and uij corresponds to u(θj |Ai)

θ1 θ2

A1 p11 ∈ [0.05; 1], u11 ∈ [70; 80] p12 ∈ [0; 0.95], u12 ∈ [10; 90]

A2 p21 ∈ [0.3; 0.4], u21 ∈ [70; 80] p22 ∈ [0.6; 0.7], u22 ∈ [10; 90]

A3 p31 = 0.4, u31 ∈ [70; 80] p32 = 0.6, u32 ∈ [10; 90]

Figure 4 Decision matrix with three alternatives
and two uncertain states.

To receive a weak preference order on this three alternatives,
one proposed candidate is the Γ-maximin decision rule. Em-
ploying Γ-maximin will give us the order A3 
 A2 
 A1,
thus the decision maker is obliged to choose A3 if accepting
Γ-maximin.

However, for presentational purposes in this paper we as-
sume that if the decision maker states his belief through in-
tervals, then she has uniform belief on each interval, i.e., the

belief in all feasible points is equal. Let z1, z2, z3 be vari-
ables representing possible expected utilities of A1, A2, A3

respectively, and let h1(z1), h2(z2), h3(z3) denote the belief
distributions on the possible expected utilities of each alter-
native. Through Monte Carlo simulations3 we obtain the
shapes of the belief distributions on the possible expected
values.

Figure 5 Belief distribution on z1

Figure 6 Belief distribution on z2

Figure 7 Belief distribution on z3

From Theorem 4, it is clear that the horizontal centroid is
additive, meaning that

h1c = 0.525 · 75 + 0.475 · 50 = 63.125
h2c = 0.35 · 75 + 0.65 · 50 = 58.75
h3c = 0.4 · 75 + 0.6 · 50 = 60

3Simulations performed with the software Crystal Ball, 300 000
trials.



As can be seen in Figures 5-7 above, when basing a deci-
sion on lower bounds (which is the case in the Γ-maximin
decision rule), the decision is based on points which do not
represent the decision maker’s implicit belief in an adequate
manner. Furthermore, since the belief distributions over
the expected value intervals are not uniform, even in cases
where the decision maker states the initial belief in terms of
uniform belief, a decision rule should take account of the
fact that belief tend to focus on sub-intervals containing the
centroid.

In the light of this, basing a decision only on extreme
points such as lower bounds seems to be too conservative
and unnecessarily pessimistic. If a weak preference order
is desired (avoiding situations like, e.g., indecision or in-
comparability) the following decision rule based on a gener-
alized expected utility is suggested, which basically can be
described as the expected utility vector at the centroid of a
belief distribution h as defined in Definition 12 (Ekenberg
and Thorbiörnson 2001).

Definition 13 The principle of maximizing the generalized
expected utility is accepted if a decision making agent
chooses the alternative A∗, whenever

A∗ = argmax
A

(G(A))

for all A ∈ A, where G(A) = hc as defined in Definition
12.

This decision rule is a good candidate when the belief distri-
butions have a major part of the belief mass concentrated
to some, relatively small, neighborhood of each centroid.
Furthermore, it seems very attractive from a computational
viewpoint due to the properties of the centroid. Note that
employing this rule yields the preference order A1 
 A3 

A2 in the example given in this section.

Concluding Remarks
When a decision maker is modeling uncertain and imprecise
information in terms of first-order information such as in-
tervals or convex sets of probability and utility distributions,
we assume, only for presentational purposes, that the initial
belief is uniformly distributed on the input variables if not
stated otherwise. However, uniform distributions on pos-
sible first-order probability and utility distributions lead to
severely non-uniform distributions on the possible expected
utilities. Regardless of whether the decision maker’s be-
lief is uniform or not, expressed or implied, this warp effect
presents additional information of value for making a well-
informed decision. The use of uniform belief in the paper is
for presentational clarity is does not constitute a delimiting
property. In fact, having non-uniform centre-weighted belief
adds even more to the warp effects.

This calls for that decision rules based on interval extreme
points do not account for a decision maker’s belief, in the
sense that the second-order belief in neighborhoods of ex-
pected utility points near interval boundaries is significantly
lower than neighborhoods containing the centroid or lying
closer to the center of the expected utility interval. As the
information given in this warp effect of second-order belief

is derived purely from the properties of the expected utility
formula, and how this formula combines our beliefs and de-
sires into real numbers representing a preference order, the
implication is that the interior of the intervals should be ac-
counted for to at least the same extent as the interval bound-
aries.
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