A Paraconsistent Logic Programming Approach for Querying Inconsistent
Knowledge Bases

Sandra de Amo
Universidade Federal de Uberlandia
Uberlandia-MG-Brazil
deamo@ufu.br

Abstract

When integrating data coming from multiple different
sources we are faced with the possibility of incon-
sistency in databases. A paraconsistent approach for
knowledge base integration allows keeping inconsistent
information and reasoning in its presence. In this paper,
we use a paraconsistent logicH|1) as the underly-

ing logic for the specification of P-Datalog, a deductive
query language for databases containing inconsistent in-
formation. We present a declarative semantics which
captures the desired meaning of a recursive query exe-
cuted over a database containing inconsistent facts and
whose rules allow infering information from inconsis-
tent premises. We also present a bottom-up evaluation
method for P-Datalog programs based on an alternating
fixpoint operator.

Introduction

The treatment of inconsistencies arising from the integra-
tion of multiple sources has been a topic increasingly stu-
died in the past years and has become an important field

Mobnica S. Pais

Centro Federal de Educagéo Tecnologica - CEFET

Urutai-GO-Brazil
monica@Icc.ufu.br

other. The new facts inferred frof are related to the facts
which would be inferred in each individual source integra-
ting KC. If an inferred factA is true in the global knowledge
base (the integrated one), then it would be locally inferred as
true inall individual sources. If it is globallgontroversial
then it would be locally inferred as true gomeindividual
sources and as false in others. If it is globdHise, then it
would be locally inferred as false &l individual sources.

The syntax of P-Datalog slightly differs from Datalog
syntax (Abiteboul, Vianu, and Hull 1995). As in Datalag
P-Datalog programs are set of rules where negation may ap-
pear in the body but not in the head of rules. P-Datalog pro-
grams may also include rules with the truth-value their
bodies. In fact, the main difference between P-Datalog and
Datalog” concerns their semantics. In the classical context
of Datalog, the rules are first-order formulas (Horn clauses
with (possibly) negated litterals in the body). The answers to
a Datalog query constitute a set of facts where each fact has
an associated truth-valugtrue), f (false) oru (unknown).

In our approach, the rules in a P-Datalog program are for-
mulas of aparaconsistent logit.FI1. This logic was orig-

of research in databases. Two basic approaches have beerinally introduced in (Carnielli, Marcos, and de Amo 2000;

followed in solving the inconsistency problem in know-

ledge bases : belief revision (Kifer and Lozinskii 1992;

Subrahmanian 1994) and paraconsistent logic (Blair and
Subrahmanian 1989). The goal of the first approach is to
make an inconsistent theory consistent, either by revising it
or by representing it by a consistent semantics. So, the main
concern of this approach is to avoid contradictions. On the

Carnielli and Marcos 2001; de Amo, Carnielli, and Marcos
2002) as a logical framework to model knowledge base in-
tegration. An answer to a P-Datalog query is a set of facts,
where each fact has an associated truth-value which cain be
(true),f (false),u (unknown) ori (inconsistent).

In order to define the 4-valued semantics of a P-Datalog
query, we take advantage of the natural 3-valued semantics

other hand, the paraconsistent approach allows reasoning inof the paraconsistent logld=I1 (where the truth-values are

the presence of inconsistency, and contradictory information
can be derived or introduced without trivialization.

In this paper, we introduce P-Datalog, a logic program-
ming language for querying databases containing inconsis-

t, f andi). In doing so, we follow the idea used to defining
the well-founded semantics of Datalogrograms. In this
classical setting, 2-valued first-order logic models are “in-
creased” with a third truth-value. In our setting, 3-valued

tencies. Our approch is paraconsistent, so inconsistenciesLFI1 models are increased with theknownu truth-value.

are not rejected. Our choice was motivated by the assump-
tion that, in most situations inconsistent information can be
useful, unavoidable and even desirable. Thus, discarding in-
consistent information implidesinginformation.

P-Datalog is a language which allows infering facts from
a knowledge bask obtained by integrating local consistent
sources, which may be contradictory with respect to each

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The following example gives an idea of the issues treated
in this paper:

Example 1 (Motivation) Suppose we have the following
rule in a dishonest public contest for hiring civil servants:
“if there is some evidencthat the candidate is supported
by an influential person which is not a civil servant himself
and if the candidate has no debts towards the income tax
services then there is some evidence that this candidate will
have the job.” The intuitive meaning behind the expression

there is some evidends that this information is supported
by at leastone source, even though some sources may affirm
the contrary.

We can translate the above story in the following P-
Datalog progranP;jy:

job(x) — ~owe(x), supportedby(x,y)-job(y)

In the paraconsistent logid=11, an atomic formul&k(Z)
is verifiedif its truth-value ist ori (in a paraconsistent ap-
proach, inconsistencies are not rejected). So, inRhg
program, literalssupportedby(x,yjin the clause body) and
job(x) (in the clause head) represent information that is true
or controvertial. On the other hand, the literal®we(x)and
~ job(y) represensurenegative information: all sources of
information affirm the fact that has no records in the in-
come tax services files concerning debts and ghiatnot a
civil servant. Let us suppose that we have the following facts
stored in the integrated knowledge base:

I

{0 supportedby(charles,joseph)
o supportedby(joseph,charles)
o supportedby(paul,james)

e supportedby(john,kevin)

o supportedby(james,kevin)

e owe(james)

The symbolso ande attached to each fact in the know-
ledge base mean that the fackigreandcontroversia) res-
pectively. We notice that the facts stored in the knowledge
base must be explicitly declared as sure or controversials
(by attaching these symboisande). Following the closed-
world assumption, facts that are not in the knowledge base
are considered false.

We now show a 4-valued modglof P;,, which includes
the facts of the knowledge basethat is,J agrees withl
on the values obweandsupportedbyatoms. This 4-valued
modelJ contains the factgob(x) which correspond to the
answer to the query “For which people is there some evi-
dence that they will get the job "? As we will show later
(see Example 5), this modgis the well-founded semantics
of P;jq oninputl. The values of thpb atoms in the derived
knowledge basé are the following:

surely true job(paul) t
controversial job(john) [

surely false job(kevin), job(james) f
unknown job(charles), job(joseph) u

This model asserts that Jarrssely does not get the job

requirements: they do not have debts, they have the sup-
port of an influential person but they depend on each other:
Charles supports Joseph and Joseph supports Charles. The
only chance for Charles getting the job is if Joseph (his only
support) does not get it. And vice-versa, the only chance for
Joseph getting the job is if Charles (his only support) does
not get it. Therefore it is not possible to infer which one will
get the job: either Charles or Joseph. This means that this
information isunknown we cannot inferthe existence or
nonexistence of any source supporting it.

So, the answer to our query'For which people is there
some evidence that they will get the job "?is Paul and
John. Besides, we know that Paul surely gets the job, but in
John’s case, we only can affirm that it is controvertial that
he will get the job. That means: (1) From the point of view
of sources inC* (those affirming that Johis supported by
Kevin), John gets the job, (2) From the point of view of
sources iNKC~ (those affirming that Johis not supported
by Kevin), John does not get the job. So, in the integrated
knowledge bask, this derived information is controversial.

Differently from some approaches treating paraconsistent
query languages (Pereira and Alferes 1992; Sakama 1992;
Blair and Subrahmanian 1989; Subrahmanian 1994), our
well-founded semantics is a natural extension of the well-
founded semantics for Datalogprograms (Przymusinski
1990). In this paper, we also present a bottom-up evaluation
procedure for computing the well-founded semantics based
on the alternating fixpoint computation introduced in (Van
Gelder 1989).

The paper is organized as follows: Firstly, we briefly des-
cribe the basic notions of the loglid-11, then we introduce
P-Datalog programs and generalize the notion of database
instance to allow the storage of inconsistent information in
our knowledge bases. Next, we describe the well-founded
semantics of a P-Datalog program. Finally, we present a
bottom-up method for evaluating P-Datalog programs and
briefly discuss its implementation. Due to lack of space, the
proofs of the results in this paper are omitted.

LFI1 : A 3-valued Paraconsistent Logic

In this section we briefly describe the syntax and semantics
of LFI1 (Logic of Formal Inconsistency). A detailed pre-
sentation can be found in (Carnielli, Marcos, and de Amo
2000). The semantics of a P-Datalog program is based on
the semantics dfFI1. Even if P-Datalog programs consti-
tute a small fragment of the set bFI1 formulas (we only

because there is some evidence that he owes to the taxationconsider Prolog-like Horn clauses), inference in P-Datalog

office, and from this fact we can infer that Paulrely gets

the joh Indeed, Paul does not owe any tax return and he is
supported by James who is not a civil servant. It also can
be deduced that Kevidefinitely does not succeed in getting
the joh because nobody supports him. In John’s case, he
does not owe the taxation office but it is controversial that
he is supported by Kevin, who is not a public servant him-
self. Thus, it iscontroversial that John gets the joblotice

that in this case, aontroversial information was inferred
On the other hand, it is unknown that Charles and Joseph
succeed in the public contest. They fulfill almost all the

is based on the paraconsistent frameworkeifl .

LetR be a finite signature without functional symbols and
Var a set of variables symbols. We assume that formulas of
LFI1 are defined in the usual way, as in the classical first-
order logic setting, with the addition of a new symbedgtead
“itis inconsistent”). So, a formula dfFI1 is defined induc-
tively by the following statements (and only by them) :
eIf R is a predicate symbol of arity and x4, ..., x; are

constants or variables, thé?(z1, ..., z;) andz; = x5 are
atomic formulas or atoms. The former is calle@tional
atom and the latter amqualityatom.

e If I,G are formulas and: is a variable thed” v G, —F,
Vo F, 3z F andeF are formulas.
A sentencés a formula without free variables. factis a
relational atom without free variables. We denotefbyhe
set of facts.

Definition 1 Let R be a finite signature. Amterpretation
overR is an applicatio : 7 — {f (false),t (true),i (incon-
sistent)}.

An interpretation of facts can be extended to the propo-
sitional sentences in a natural way by using the connec-
tive matrices described in the tables below. The connec-
tive A is derived from the connectives, vV : A A B =
—(—-A Vv —=B) and the connective- is derived from—, V, e
tA— B=-(AVeA)VB.

Vv t | - °

t|t t t t f f

[S i it

flt i f f t | f
ATt T f — Tt i f
t]t i f t [t 1 f
i i i f it i f
fl|f f f flt t t

The extension of to the quantified sentences is obtained
by means of the concept diistribution quantifiers Basi-
cally, this concept translates our basic intuition that an uni-
versal quantifier should work as a kind of unbounded con-
junction and an existential quantifier as an unbounded dis-
junction. Due to lack of space, we do not present this exten-
sion here. For more details, see (Carnielli, Marcos, and de
Amo 2000). In fact, the formulas we will deal with in the

are variables and we denote Bya) the factR(ay, ..., ax),
whereay, ..., a; are constantsk(= arity of R).
Definition 3 (Paraconsistent Databases)et R be a

database schema, i.e., a set of relation names (or predicate
names). A3-valued instancever R (or a paraconsistent
databasg is an interpretatiod such that for each R R
the setlg = {a : 1(R(@)) =t or I(R(@)) = i} is finite. So,
an instance oveR can be viewed as a finite set of facts
over R, having truth-values ori. The facts which are not
in the instancd have truth-valud. A fact R(@) such that
I(R(@)) =i is intended to beontroversial i.e. there may be
evidence in favor of RZ) and also evidence against®.
On the other hand, if(R(@)) =t, R(a) is intended to be a
safe information.

P-Datalog is an extension of Datalo¢Abiteboul, Vianu,
and Hull 1995). This well-known deductive query language
uses the classical first order logic as its underlying logic, and
a Datalog query applies over a classical database instance,
i.e. a finite first-order interpretation. Rather than classi-
cal first-order logic, P-Datalog uses the paraconsistent logic
LFI1 as its underlying logic, and P-Datalog queries apply
over paraconsistent databases. P-Datalog programs are first-
order Horn clauses as in Datalogrograms, i.e. first-order
clauses with positive and negative literals in their bodies.
Negation in P-Datalog (as well as in Datafggs understood
asnegation by defaultWe will denote this negation by the
symbol~. The negation- used inLFI1 is theweak nega-
tion. The relationship between these two negations is given
by:~ A=-AA—-eAand—A =~ AV eA. The intuitive
meaning of default and weak negations is the following: (1)
the ground formula~ R(&) is verified by a paraconsistent

next sections are Horn clauses, which are interpreted over adatabase if the fact R(@) is not inl (i.e., R(@) is surely
finite Herbrand Universe. So, the universal quantifiers ap- false); (2) the ground formulaR(q) is verified byl if the
pearing in the clauses can be viewed as a bounded conjunc-fact R(a) is in | as controversial or if it is not i (i.e., the

tion.

We denote bypom the Herbrand Universe & (the cons-
tant symbols oR). In fact, we are supposing that the uni-
verse domain of any interpretationis Dom (thus, ¢ inter-
prets the constant symbols by themselves)vaduationis
an applicatiorv : Var — Dom.

Definition 2 Let F(zy,...,x,) be a formula of LFI1

with free variables zi,...,2,, v a valuation and
0 an interpretation. We say thatd,v) satisfies
F(z1,...,xz,) (denoted by(d,v) | F(z1,...,x,)) Iff

0(Fv(x1),....v(xn) /21, ... xs]) ISt ori. If (6,v) E F for

each valuatiornv, we say that is a modelof F' (denoted
0 = F). We also say thak' is verifiedor satisfiedby ¢.

The Query Language P-Datalog
In this section we use the logical formalidtfl1l to gene-

ralize the notion of database instance to allow the storage of

inconsistent information in our databases. We also introduce
the query language P-Datalog which is designed to query

only thing we can affirm is thak(@) is not surely true).

Definition 4 (P-Datalog Programs) A P-Datalogprogram

is a finite set of ruled. «— L4, ..., L,, whereL is a literal

of the form R(#), and L; are literals of the form:R(«) or

~ R(4). R is arelation name andis a free tuple of appro-
priate arity. The literal is called theheadof the rule. The
literals Ly, ..., L,, are called théody. One requires also that
each variable occurring in the head of the rule must occur in
at least one of the free tuples in the body.

We denote bych(P) the set of relations (predicates) ap-
pearing inP, by adom(P) the set of constants appearing in
P and byB(P) all facts of the formR(@) whereR € sch(P)
anda is a tuple of constants indom(P) (the Herbrand
Base of P). The set of relations which appear in the head of
rules are called thntensional relationsand is denoted by
idb(P). The set of those appearing only in the body of rules
are calledextensional relationsind is denoted bydb(P).

In fact, the seedb(P) contains only the relation® where
R(a) is afactinl.

databases containing inconsistent information. We assume Definition 5 (P-Datalog Query) A P-Datalog query is a
that the reader is familiar with traditional database termino- pair (P,Q(us, ..., u,)) WhereP is a P-Datalog progrand) €
logy (Abiteboul, Vianu, and Hull 1995). In what follows, we idb(P) andus, ..., u,, are variables or constantsddom(P)
denote byR(«) the formulaR(u, ..., u), whereuy, ..., ug (n is thearity of the relation®).

Example 2 (Running Example) Let us consider the same
situation presented in Example 1. The rufe,, and

the 3-valued instancé described in that example consti-
tutes a P-Datalog prograr® where sch(P) ={support-
edby, job, owg adom(P) = {charles, john, james, joseph,
paul, kevig and B(P) = {owe(charles)owe(joseph)sup-
portedby(charles,josephgupportedby(joseph,charles).}.

The intensional and extensional schemasdbeP) = {sup-
portedby, owg idb(P) = {job}. The pair (P;op,job(x)) is a
P-Datalog query (“For which people there is some evidence
that they will get the job "?). The paitHj,,job(K evin))
corresponds to the boolean query “Is there some evidence
that Kevin may get the job” ?

Answering P-Datalog Queries

In this section we introduce the well-founded semantics
for P-Datalog programs. The well-founded semantics of a
P-Datalog progran® is designed to capture the natural se-
mantics of queriesk®, Q(uq, ...,u,)) where@ € idb(P),
that is, what we expect to be their answers. Our ap-
proach is a natural extension of the well-founded seman-
tics for Datalog (Przymusinski 1990). Our definition of a
P-Datalog query makes use dfvalued instancesn which
facts may assume one of the four truth-values in thé/akt

= {true(t), fals€f), inconsistent) unknowrfu)}. We assume
that the reader is familiar with the notions of lattices, lattice
operators, monotonicity and continuity, fixpoints, etc. For
details, see (Lloyd 1993).

4-valued Models

Let us consider the complete latticda(, <), wheref < u <
i<t

Definition 6 Let P be a P-Datalog program. A-valued
instancel oversch(P) is an applicatiod : B(P) — {t, f,
u, i}.

The answer of a prograifi is a special 4-valued instance
which corresponds to the well-founded semantic®ofrhe
main goal of this section is to define this particular instance.

There is a natural ordering among 4-valued instances
over sch(P), defined by: I < J iff for each A € B(P),
[(A) <J(A).

The set of 4-valued instances of a P-Datalog progfam
is denoted by 4nstp. It is easy to verify that (d=stp, <)
constitutes a complete lattice. We denoteTbyhe maximal
4-valued instance (where all facts have truth-vajuend by
| the minimal 4-valued instance (where all facts have truth-
valuef).

We also represent a 4-valued instance by listing the
positive, inconsistent and negative facts, and omitting the
unknown ones.

Example 3 (4-valued instance)Let J be a 4-valued ins-
tance, wherd (p)=t, J(¢)=t, J(r)=u andJ(s)=f. J can be
written asJ = {op,oq, ~ s}. LetJ’ = {op,oq, es}. Then
J=xJ.

We extend the 3-valued connective matriced.Bfl, to
the following 4-valued matrices:
|

\ i
t
i
i
i

—_.C - -+
- C ==
—_ O = | =h

A f —
t f t
i f i
u f u

- C C C|C
— ~ = =
— —h —h —H —h

t |1
t |
i
ujlu
flf|f f f

It is important to note the difference between the first line
in the matrix of the— connective above and the same line of
its counterpart irLFI1: In P-Datalog, the truth-value of—
i isfand noti as inLFI1. Indeed, in P-Datalog we cannot
derive a controversial fact from a surely true one.

If F'is the body of a P-Datalog rule arddis a 4-valued
instance, we denote by(F') the truth-value associated to
F according to the matrices for the connectives given above.

Definition 7 Let P be a P-Datalog program. Ainstanti-
ated ruleof P is a rule where all variables are replaced
by constants imdom(P). We denote byround(P) the
set of instantiated rules dP. A 4-valued instancd over
sch(P) satisfiesa boolean combination of atoms inB(P)

iff J(«) € {t,i}. A 4-valued modedf P is a 4-valued ins-
tanced oversch(P) satisfying each rule iground(P), i.e.,
the truth-value of each rule irround(P) ist ori. So,J is

a model of theLFI1 formulas corresponding to the rules of
P (see definition 2). A 4-valued model M isinimaliff for

all M’ ¢ M, M’ is not a model.

Extended P-Datalog programs

The well-founded semantics is based on the notion of stable
models. Stable models are usually defined as fixpoint of an
immediate consequence operator. Following the same idea
underlying the definition of 3-stable models in (Przymusin-
ski 1990), we introduce the notion ektended P-Datalog
programs We will see that for such programs we can define
an immediate consequence operator which is monotonic and
S0, has a unique least fixpoint.

Definition 8 An extended P-Datalog programis a
P-Datalog program where (1) negative faetsi do not
appear in the body of rules and (2) truth-valtes u andi
may occur as literals in the body of rules.

Next we define theimmediate consequence operator 4-
Tp associated to an extended progrdm

Definition 9 Let P be an extended P-Datalog program. The
immediate consequence operatof 4-associated taP is a
mapping 47 : 4-Instp — 4-Instp defined as follows.
Let J be a 4-valued instance aatde B(P), then

max{J(Fy)} ifthere are rulesd — F},
{ in ground(P) 0 < k£ < n.

otherwise

4-Tp(J)(A) .

The following lemma says that the immediate conse-

job(charles)— t,supportedby(charles,joseph)

guence operator for extended programs have a least fixpoint. job(joseph)— t,supportedby(joseph,charles)

Lemma 1 Let P be an extended P-Datalog program. Then
4-Tp is monotonic and the sequence 14-(L)};>o is in-
creasing and converges to the least fixpoint &af - Be-
sides, P has a unique 4-valued minimal model that equals
the least fixpoint of 4Fp (denoted byP(L)).

4-stable Models

According to (Przymusinski 1990), the semantics of a
Datalog" programP is anappropriate3-valued model of

P. We extend this idea to P-Datalog programs and intro-
duce the 4-stable Models, a classsplecialmodels. The
semantics of a P-Datalog query will be the intersection of
all 4-stable models.

Let P be a P-Datalog program arda paraconsistent
database (3-valued) instance. We denoté’pthe program
obtained fromP by adding toP unit clausesA < for each
A such that(A) =t, and a clausel < i for eachA such
thatl(A) =i. From now on, we suppose that our programs
include these clauses corresponding to the input facts of
Thus, as mentioned in the introduction, P-Datalog programs
may include rules with the truth-valuén their bodies.

LetI be a 4-valued instance oveth(P). Thepositivized
ground versionof P according tol (denotedpg(P, 1)), is
the P-Datalog program obtained frgmound(P) by replac-
ing each negative literal A by I1(~A) (i.e, by its respective
truth value:t, f, u, i). So,pg(P,I) is an extended P-Datalog
program, i.e., a program without negation. By lemma 1,
the least fixpoinpg(P, I)(L) of its immediate consequence
operator exists. It contains all facts that are inferred fidm

;slu.pported by(paul,james)-
supportedby(charles,joseph}
supportedby(john,kevir) i

The minimal 4-valued model @’ is obtained by iterating
4-Tp(L) up to a fixpoint. The first execution of Zp yields
4-TL, (L) = {~ job(charles) ~ job(joseph) ~ job(paul)
~ job(john), ~ job(james) ~ job(kevin}. We can verify
that 47°2,(1)= 4-T%,(L) = {o job(paul), e job(john), ~
job(james) ~ job(kevin)}. Thus conseqp(J) = J and so,
J is a 4stable modebf P. We notice that the instanck
coincides withl for the atomssupportedby andowe.

Well-founded Semantics

P-Datalog programs generally may have several 4-stable
models, and each P-Datalog program has at least one
4-stable model (see theorem 4). Then it is reasonable to say
that the desired answer to a P-Datalog query consists of the
positive, inconsistentand negative facts belonging il
4-stable models of the program.

Definition 11 Let P be a P-Datalog program. Theell-
founded semantiasf P is a 4-valued instance consisting of
the positive, inconsistent and negative facts belonging to all
4-stable models oP. This semantics is denoted B/ .

Bottom-up Evaluation of P-Datalog Queries

andI, by assuming the values for the negative premises as The previous description of the well-founded semantics, al-

given byI.

We denotepg(P,I)(L) by conseqp(I), i.e. conseqp(I)
is the least fixpoint of the extended P-Datalog program
pg(P,T).

Definition 10 Let P be a P-Datalog program. A 4-valued
instanceI over sch(P) is a 4-stable modelof P iff
conseqp(I) =1.

The following example illustrates the notion of 4-stable
model:

Example 4 (4-stable model)Consider the P-Datalog pro-
gramP;j,;, given in the example 1 and the input instadce

surelytrue t supportedby(charles,joseph),
supportedby(joseph,charles),
supportedby(paul,james),
supportedby(james,kevin),job(paul)
job(james), job(kevin)
supportedby(john,kevin), job(john),
owe(james)

unknown u job(charles), job(joseph)

Let us check thal is a 4-stable model aP;,;. For this,
we have to computeonseq(J) and show thatonseq(J) =
J. The programP’ = pg(P,J) is

surely false f
controversial i

though effective, is inefficient. It involves checking all pos-
sible 4-valued instances of a program, determining which
are 4-stable models, and then taking their intersection.

A much simpler method is based on ailternating
fixpoint computation (Van Gelder 1989), that converges
to the well-founded semantics. The idea of the method
is as follows. We define an alternating sequefitg;>o
of 4-valued instances that are underestimates and over-
estimates of the facts known in every 4-stable model of
P. The sequence is defined as follow$; 1 and
I,+1 = conseqp(I;), fori > 0.

Theorem 1 The operatoronseqp is antimonotonic. That
is, iIf I < J thenconseqp(J) < conseqp(I).

>From this theorem, we can easily see that:
*) I,

shshis--shshies...
...<

Lijitshias- - sLshxIh

Thus the even subsequence is increasing and the odd one
is decreasing. Because there are finitely many 4-valued ins-
tances relatively to a given prograf, each of these se-
guences becomes constant at some pding; = Iap 12 =
I2k:0+4 = and12j0+1 = 12‘7‘04,3 = I2j0+a = ..., for some
ko > 0 and somgjy > 0.

Let I, be theleast upper boundf the increasing se-
quencel, = lub{I};>0, and letl* be thegreatest lower
bound of the decreasing sequenc® = glb{I2;t1}i>0-
From (), it follows thatI, < I*.

Theorem 2 LetI be a 4-valued instance of a P-Datalog pro-
gram. Therconseqp (1) = I* andconsegp (I*) = L.

>From the 4-valued instancés andI* we can define the
4-valued instanc&; which coincides with the well-founded
semantics of a P-Datalog program, as we will see in
Theorem 4.

Definition 12 Let I be a 4-valued instance of a P-Datalog
programpP, consisting of the facts known in bolh andI*,
that is:

L.(A) =T*(A)
L.(A) =T*(A)
I.(A) =T*(A)
otherwise

t

i
f

L(A)

t
i
) f
u

Theorem 3 LetI be a 4-valued instance of a P-Datalog pro-
gramP. Thenl, x I < I*.

The fixpoint construction yields the well-founded seman-
tics for P-Datalog programs. The following theorem is the
main result of this paper. It shows that each P-Datalog pro-
gram has at least one 4-stable mod¢) @nd that the well-
founded semantics coincides wikh.

Theorem 4 For each P-Datalog prograf
> IYis a4-stable model aP.
> pief =T1r,

We illustrate this computation in our running example:

Example 5 (I computation) Consider again the program
Pj, and the database instantef the running example 1.
Note that forIy the value of all facts i§, and for each > 1,

I, agrees with the input on the predicatesupportedbyand
owe Therefore we only show the inferrgdb-facts:

Io= {~job(charles) ~ job(james)~ job(john),
~ job(joseph) ~ job(kevin) ~ job(paul}.

I, = {ojob(charles) o job(james) e job(john),
o job(joseph) ~ job(kevin) o job(paul}.

I, = {~job(charles)~ job(james)e job(john)
~ job(joseph) ~ job(kevin) ~ job(paul}.

Is = {o]job(charles)~ job(james)e job(john),
o job(joseph) ~ job(kevin) o job(paul}

I, = {~job(charles)~ job(james)e job(john),
~ job(joseph) ~ job(kevin) o job(paul}.

Is = {ojob(charles) ~ job(james) e job(john),
o job(joseph) ~ job(kevin) o job(paul}

Is = {~ job(charles)~ job(james)e job(john),

~ job(joseph) ~ job(kevin) o job(paul}.
I. = I andl* = I5. ThusI ={~ job(james)e job(john),
~ job(kevin) o job(paul)}. This is exactly the natural an-
swer for P;,;, we have informally discussed in example 1.

Implementation Issues

We have decided to implement the P-Datalog prover as a
separate system and further to integrate it in a relational
database system. For now, the P-Datalog prover is a helpful
tool for validating the well-founded semantics we have pro-
posed for P-Datalog programs. It has been implemented in
Objective Caml (Leroy 2002). The OCaml compiler gene-
rates code whose executing time is comparabledg@*
code, and it includes libraries for several platforms. Those
characteristics and also the functional programming quali-
ties allowed us to focus on the difficulties of our application
and to develop a preliminary succinct solution.

Acknowledgments

Ménica S.Pais was supported by an individual grant from
CAPES-Brazil.

References

Abiteboul, S.; Vianu, V.; and Hull, R. 199%oundations
of DatabasesAddison-Wesley.

Blair, H., and Subrahmanian, V. 1989. Paraconsistent logic
programming.Theoretical Computer Sciend85-154.

Carnielli, W. A., and Marcos, J. 2001. A taxonomy of
C-systems. IrProceedings of the Il World Congress on
Paraconsistency (WCP20Q@)-94.

Carnielli, W. A.; Marcos, J.; and de Amo, S. 2000. For-
mal inconsistency and evolutionary databaskesgic and
Logical Philosophy8:115-152.

de Amo, S.; Carnielli, W. A.; and Marcos, J. 2002. A
logical framework for integration inconsistent information
in multiple database$=OIKS 2002, LNC2284:67-84.

Kifer, M., and Lozinskii, E. 1992. A logic for reasoning
with inconsistencyJournal of Automated Reasoniig@9—
215,

Leroy, X. 2002. The objective caml system - release 3.06.
Documentation and user’s manual.

Lloyd, J. 1993. Foundations of Logic Programming
Springer-Verlag.

Pereira, L. M., and Alferes, J. J. 1992. Well founded se-
mantics for logic programs with explicit negation. Hu-
ropean Conference on Atrtificial Intelligenct02—-106.

Przymusinski, T. C. 1990. Well-founded semantics co-
incides with three-valued stable semanti€aindamentae
Informaticae, XI11445-463.

Sakama, C. 1992. Extended well-founded semantics for
paraconsistent logic programs. Rroceedings of the In-
ternational Conference on Fifth Generation Computer Sys-
tems 592-599.

Subrahmanian, V. S. 1994, Amalgamating knowledge
bases ACM Transaction on Database Systen®42):291—
331.

Van Gelder, A. 1989. The alternating fixpoint of logic
programs with negation. IfProceedings of the eighth
ACM Symposium on Principles of Database Systems-ACM
PODS’89 1-10.

