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Abstract
One of the main issue in formalizing the Data Integration
Systems (DIS) is the semantic characterization of its global
schema and the mappings with its source databases. Each
DIS must be robust enough in order to take in account the
incomplete and inconsistent information of its source data-
bases, typical in Web applications: the extension of source
databases change in an unpredictable way so that in differ-
ent time instances we pass from a consistent to inconsistent
DIS and viceversa. Thus, DIS will generally have possibly
infinite number of consistent repairs and their models and,
consequently, query answering in such DISs is very complex
and time consuming. The current systems adopt the two ex-
treme solutions for a query-answering: certain answers (true
in all models of a given DIS) or all possible answers (true
at any model). The first solution is to much strong require-
ment and practically non applicable in real situations, the sec-
ond one is less meaningful (not all possible Skolem-based
completions of an incomplete logical theory are plausible for
users) and time/space consuming (they may be infinite also).
In this paper we propose the middle solution between these
two extremes based on the plausible nonmonotonic query-
answering inference.

Introduction
Data integration is the problem of combining the data resid-
ing at different sources, and providing the user with a unified
view of these data, called global schema.
The global schema is therefore a reconciled view of the
information, which can be queried by the user. It can be
thought of as a set of virtual relations, in the sense that their
extensions are not actually stored anywhere. A data integra-
tion system frees the user from having to locate the sources
relevant to a query, interact with each source in isolation,
and manually combine the data from different sources.
Unlike a traditional query execution engine that commu-
nicates with a local storage manager to fetch the data, the
query execution plan in the Web based data integration must
obtain data from remote sources. A wrapper is a program
(method) which is specific to a data source, whose task is
to translate data from the source to a form that is usable by
the query processor (agent) of the system. Thus, the exten-
sion of source databases is unpredictable, may be partially
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incomplete and with possible conflicting, mutually incon-
sistent information w.r.t. a subset of integrity constraints de-
fined in a data integration systems.
An increasing amount of data is becoming available in the
World-Wide Web, and the data is managed under an increas-
ing diversity of data model and access mechanisms. Much
of this data is semistructured. By semistructured data we
mean data that has no absolute schema fixed in advance, and
whose structure may be irregular or incomplete. A new set
of requirements for query processing has emerged, as Inter-
net and web-based query systems have become more preva-
lent. In this emerging data management domain, queries are
posed over multiple semistructured information sources dis-
tributed across a wide-area network. Each source may be
autonomous and may potentially have data of a different for-
mat and new sources are frequently added.
In certain contexts, the query processing system will handle
a small number of concurrent queries; in others, there can be
hundreds or even thousands of simultaneous requests. These
different Internet query applications have many common re-
quirements, but also require certain context-specific behav-
iors.
In modern query processors the query is first parsed and then
passed to the query optimizer. The role of the optimizer is
to produce an efficient query execution plan; the optimizer
selects a query execution plan by searching a space of pos-
sible plans, and comparing their estimated cost. To evaluate
the cost of a query execution plan the optimizer relies on ex-
tensive statistics about the underlying data, such as sizes of
relations, sizes of domains and the selectivity of predicates.
However, data management systems for the Internet have
demonstrated a pressing need for new techniques. Since data
sources in this domain may be distributed, autonomous, and
heterogeneous, the query optimizer will often not have his-
tograms or any other quality statistics. Moreover, since the
data is only accessible via a wide-area network, the cost of
I/O operations is high, unpredictable and variable.
All these considerations, and from the fact that the DISs will
generally have possibly infinite number of consistent repairs
and their models and, consequently, query answering in such
DISs is very complex and time consuming. The current sys-
tems adopt the two extreme solutions for a query-answering:
certain answers (true in all models of a given DIS) or all
possible answers (true at any model). The first solution is



too much strong requirement and practically non applicable
in real situations, the second one is less meaningful (not all
possible Skolem-based completions of an incomplete logi-
cal theory are plausible for users) and time/space consum-
ing (they may be infinite also). In this paper we propose the
middle solution between these two extremes based on the
plausible nonmonotonic query-answering inference.
The plan of this paper is the following: After short intro-
duction to deductive logics and Data Integration Systems, In
Section 2 we introduce the model-theoretic structure for a
plausible query-answering in (inconsistent) data integration,
based on the abstract choice function over the set of possible
repairing of a DIS, and we show that such set is a closed set
in the class of all DISs. Finally, in Section 3 we present the
inference for query-answering in Data Integration Systems
with the proof that it is cumulative nonmonotonic inference
relation.

Introduction to Deductive logic

The concepts introduced here, based on the work of Tarski,
are basic to the development of nonmonotonic logic in the
rest of the paper.
We assume that a fixed 2-valued (f -false, t-truee) object lan-
guage L is given. The details of L are left open, except that
it contains the standard connectives, ⇒,∧,∨ (material im-
plication, conjunction and disjunction respectively). Hence,
the set Φ of sentences of L is closed under the rules: f ∈ Φ
; if α, β ∈ Φ then α ⇒ β, α ∧ β, α ∨ β ∈ Φ. ¬α is taken
as a abbreviation of α ⇒ f. We use ∀ symbol for ”for all”
quantifier, and ∃ for existential quantifier.
By a consequence relation is a binary relation ` which takes
a set of sentences Γ ⊆ Φ as its first argument and a single
sentences α ∈ Φ as its second, denoted by Γ ` α. Equiv-
alently, we can define a consequence operation (infinitary)
mapping Cn : 2Φ → 2Φ (2Φ denotes the set of all subsets of
Φ), such that Cn(Γ) = {α | Γ ` α}, and viceversa, Γ ` α iff
α ∈ Cn(Γ). The finitary version of this operator is a map-
ping Cfin : Pfin(Φ) → 2Φ, where Pfin is a finitary pow-
erset operator. We write Cn(Γ,∆) instead of Cn(Γ

⋃
∆),

and Cn(α) instead of Cn({α}). The following table define
properties of the deductive monotonic consequence relation
(Reflexivity, Cut, Monotonicity and Compactness):
The finitistic or ”Gentzen-style” (Tab I):

α ∈ Γ implies Γ ` α

Γ
⋃

∆ ` α, ∀β ∈ ∆.(Γ ` β) implies Γ ` α

Γ ` α, Γ ⊆ ∆ implies ∆ ` α

if Γ ` α then for some finite ∆ ⊆ Γ, ∆ ` α
Tab I

The infinitistic or ”Tarski-style” (Tab II):

Γ ⊆ Cn(Γ)

∆ ⊆ Cn(Γ) implies Cn(Γ
⋃

∆) ⊆ Cn(Γ)

Γ ⊆ ∆ implies Cn(Γ) ⊆ Cn(∆)

Cn(Γ) ⊆
⋃
{Cn(∆) | ∆ ⊆ Γ and ∆ is finite }

Tab II
Example 1: the classical propositional logic is a deductive
logic.
�

It is easy to verify that Cn is a closure idempotent op-
erator: for any Γ, we obtain the closet set, called theory
T = Cn(Γ) = Cn(Cn(Γ)).
For Γ,∆ ⊆ Φ we shall say that Γ is consistent iff
Cn(Γ) 6= Φ and that Γ is consistent with ∆ iff
Cn(Γ,∆) 6= Φ. A set is inconsistent iff it is not con-
sistent.
A set Γ is L-maximal iff is consistent and for every ∆, if
Γ ⊆ ∆ and ∆ consistent, then Γ = ∆.
We denote by ML the set of all L-maximal sets,
and by TL the set of all theories in 2Φ, and by
|Γ| = {m ∈ ML | Γ ⊆ m} the set of all maximal
extensions of Γ.
For any deductive logic the following properties hold:
1. Every L-maximal set Γ is a theory (i.e., Γ = Cn(Γ)).
2. (Lindenbaum) Every consistent set is included in some
L-maximal theory.
3. if α /∈ Cn(Γ), then there exists a L-maximal theory m
such that Cn(Γ) ⊆ m and α /∈ m.
4. Cn(Γ) =

⋂
|Γ|, that is, α is a consequence of Γ iff α

belongs to every maximal extension of Γ.
So far, our discussion has been purely syntactical and
proof-theoretic. We shall also suppose that, with the lan-
guage L and the consequence operator Cn comes a suitable
semantics in the form of a set U (the universe), the elements
of which we shall call worlds, and the relation �⊆ U × 2Φ

of satisfaction between worlds and formulae: α ∈ Cn(Γ)
iff ∀u ∈ U .(u � Γ implies u � α).
We will use a deductive logics as underlying logic in order to
define the inference operator for (generally non-monotonic)
query-answering in general Data integration framework.

Technical preliminaries for Data Integration
In this section we illustrate the formalization of a data in-
tegration system (Lenzerini 2002) , which is based on the
relational model with integrity constraints.
In the relational model, predicate symbols are used to de-
note the relations in the database, whereas constant symbols
denote the values stored in relations. We assume to have a
fixed (infinite) alphabet of constants , and, if not specified
otherwise, we will consider only databases over such an al-
phabet. In such a setting, the UNA unique name assumption
(that is, to assume that different constants denote different
objects) is implicit.
A relational schema (or simply schema) is constituted by:
1. An alphabet A of predicate (or relation) symbols, each



one with the associated arity. i.e., the number of arguments
of the predicate (or, attributes of the relation).
2. A set ΣG of integrity constraints, i.e., assertions on the
symbols of the alphabet A that express conditions that are
intended to be satisfied in every database coherent with the
schema.
A relational database (or simply, database) DB for a
schema C is a set of relations with constants as atomic val-
ues, and with one relation rDB of arity n for each predicate
symbol r of arity n in the alphabet A: the relation rDB is the
interpretation in DB of the predicate symbol r, in the sense
that it contains the set of tuples that satisfy the predicate r in
DB.
A relational query is a formula that specifies a set of tuples
to be retrieved from a database. The answer to a query q of
arity n over a database DB for G, denoted qDB, is the set
of n-tuples of constants (c1, . . . , cn), such that, when sub-
stituting each xi with ci, the formula
∃(y1, . . . , yn).q(x1, . . . , xn, y1, . . . , ym) evaluates to true in
DB.
We now turn our attention to the notion of data integration
system.

Definition 1 A data integration system I is a triple I =
〈G,S,M〉, where G is the global schema, S is the source
schema of all source databases, and M is the mapping be-
tween G and S.

with the following characteristics:
• The global schema is expressed in the relational model

with constraints ΣG .
• The source schema is expressed without integrity con-

straints. We denote by D the current extension of all
source databases represented by this source schema.

• The mapping M is defined following the GLAV
(global/Local-as-view) approach, by the set of assertions
of the form:
qS ⇒ qG or qG ⇒ qS

where qS and qG are two queries of the same arity, re-
spectively over the source schema S, and over the global
schema G. Queries qS are expressed in a query language
LM,S over the alphabet of a source databases AS , and
queries gG are expressed in a query language LM,G over
the alphabet AG of a global schema.

We call global database for I, or simply database for I, any
database for G. A database B for I is said to be legal with
respect to D if:
• B satisfies the integrity constraints ΣG of G;
• B satisfies M with respect to D.
Intuitively, the source schema describes the structure of the
sources, where the real data are, while the global schema
provides a reconciled, integrated, and virtual view of the un-
derlying sources. The assertions in the mapping establish
the connection between the elements of the global schema
and those of the source schema.
Queries to I are posed in terms of the global schema G, and
are expressed in a query language LQ over the alphabet AG.

A query is intended to provide the specification of which
data to extract from the virtual database represented by the
integration system.
The above definition of data integration system is general
enough to capture virtually all approaches in the literature.
Obviously, the nature of a specific approach depends on the
characteristics of the mapping, and on the expressive power
of the various schema and query languages. For example
(Majkić 2004) , if we use the negation in query languages
then we introduce a kind of general closed world assump-
tion, and the inference query-answering operator becomes
nonmonotonic.

Semantics for plausible query answering in
data integration

The essential idea behind semantic modelling of non-
monotonic inference goes back to McCarthy’s classical pa-
per on circumscription (McCarthy 1980): the essential
model-theoretic idea is to single out only a subset of ”min-
imal” models. Shoham (Shoham 1987) generalized the
concept of circumscription, or minimal entailment, to a
more abstract notion: preferential entailment. Different
other approaches are used in order to generalize the seman-
tics for nonmonotonic reasoning, (S.Kraus, D.Lehmann, &
M.Magidor 1990; S.Lindstrom ; N.Friedman & J.Y.Halpern
1996), based on preference structures and choice functions,
and in (D.Lehman ) is presented the comparison between
these two semantic approaches. In this section is presented
a reexamination of a choice function approach.
In the following we denote the fixed part of a DIS I =
〈G,S,M〉 (i.e., without the extension of its source data
bases D) by Ifix, so that we denote by I = (Ifix,D). In-
formally, Ifix is the set of sentences (usually universally
quantified) of integrity constraints over global schema and
mapping assertions (sentences). It may be the case that, for
a given source data base extension D, I = (Ifix,D) is in-
consistent. We denote with D �I Ifix the fact that for this
extension of a source databases D all integrity constraints
and mappings are satisfied. In this case we say that D is
consistent w.r.t. Ifix; otherwise we say that D is inconsis-
tent w.r.t. Ifix.
We denote by U the set of all consistent DISs. It is easy
to verify that each model of a consistent DIS I is a L-
maximal set of the underlying deductive logic L for data
integration systems (consider that a models of Φ are inter-
pretations f : Φ → 2, i.e. subset of mappings f ∈ 2Φ

which satisfy logical connectives (that is, f(¬α) = 1−f(α),
f(α ∧ β) = min(f(α), f(β)), etc.). Thus each model
m = {α ∈ Φ | f(α) = 1} is a closed set (theory in L, such
that m = Cn(m)). The Herbrand model is the restriction of
such closed set (that is, model) m to only ground atoms.
We define the mapping Mod : U → 2Φ, such that for any
consistent DIS, I ∈ U , the non-empty set Mod(I) is the set
of all models for this Data Integration System I.
Now, following (M.Arenas, L.Bertossi, & J.Chomicki
1999), given an extension D, possibly inconsistent with
Ifix, we say that, for a given extension (instance) D′ of
source databases, the DIS I ′ = (Ifix,D′) is a repair for



I iff D′
�I Ifix.

We denote by R(I) the set of all repairs of I; if I is consis-
tent, then R(I) = {I}.
We say that a sentence α holds in a state (i.e., DIS) I ∈ U
(relative to the DIS-structure IM and write IM I α iff for
every m ∈ Mod(I), α ∈ m. Intuitively, a sentence α is
true in the state I (consistent data integration system) just in
case α is true in all models ( set Mod(I)) of this consistent
DIS.
The set of consistent DISs in which α holds will be written
α̂ = {I ∈ U | IM I α} = {I ∈ U | α ∈

⋂
Mod(I)},

and for a set of sentences Γ:
Γ̂ =

⋂
({α̂ | α ∈ Γ} = {I ∈ U | Γ ⊆

⋂
Mod(I)}, so by

monotonicity of Cn, and the fact that
⋂

Mod(I) is a closed
set, that is

⋂
Mod(I) = Cn(

⋂
Mod(I)), we obtain

Γ̂ = {I ∈ U | Cn(Γ) ⊆
⋂

Mod(I)}, that is, Γ̂ is the set of
all DISs in which all sentences in Γ are accepted.
Given a set of consistent DISs, X ⊆ U , we may also define
the set th(X) of sentences that are accepted in all DISs in
X , i.e., th(X) = {α | X ⊆ α̂}.

Proposition 1 For any set X of consistent DISs the set of
accepted sentences th(X) is a theory in L.

Proof 1: th(X) = {α | X ⊆ α̂} = {α | ∀I ∈ X.α ∈⋂
Mod(I)} =

⋂
{
⋂

Mod(I) | I ∈ X}, thus from the fact
that the intersection of closed sets is closed set, we obtain
that th(X) is a theory. In the singleton case we obtain the
theory th({I}) =

⋂
Mod(I), while th({}) = Φ.

�

It is easy to verify these two mappings form a Galois con-
nection between P(Φ) and P(U), that is hold
1. if Γ ⊆ ∆ then ∆̂ ⊆ Γ̂,
2. if X ⊆ Y then th(Y ) ⊆ th(X),
3. Γ ⊆ th(Γ̂),
4. X ⊆ t̂h(X).
Thus the mapping CI = ̂◦ th : P(U) → P(U) is a closure
operation on the set of DISs, that is hold for all X,Y ∈ U :
1. X ⊆ CI(X) = ̂{α | X ⊆ α̂} =

⋂
{α̂ | X ⊆ α̂},

2. if X ⊆ Y then CI(X) ⊆ CI(Y ),
3. CI(X) = CI(CI(X)).

Proposition 2 Each closed (sub)set X ⊆ U is the set of all
repairs of some data integration system I. We denote by
Uclo the set of all closed subsets of U.

Proof 2: Let X be the set of all repairs of some DIS I1.
Let prove that X = CI(X). From the property of closure
operator, holds that X ⊆ CI(X). Let I ∈ CI(X) and prove
that I ∈ X .
From I ∈ CI(X) we have that I ∈

⋂
{α̂ | X ⊆ α̂} =⋂

{α̂ | I ′ ∈ α̂ for all I ′ ∈ X}. Suppose that I /∈ X , i.e. that
I is not a repair of I1 so that does not satisfy the constraints
in I1, but it is not possible because all members in the set⋂
{α̂ | I ′ ∈ α̂ for all I ′ ∈ X} satisfy such constraints.

�

Example 2: For a consistent DIS I ∈ U , we have that X =
{I} = R(I) is closed subset of U , that is {I} = CI({I}).

�

Let us describe the semantics for plausible query answering
in data integration system I = 〈G,S,M〉 by the following
structure:

Definition 2 A DIS-structure based on the deductive logic
L is a tuple IM =< U,Mod, F >, where F : Uclo →
P(U) is a choice function such that for any inconsistent
Data Integration System I takes its preferred repairs, that
is for any I ∈ U holds:
F (R(I)) ⊆ R(I),
where R(I) is a closed subset of U composed by alll repairs
of I.

Example 3: For a consistent DIS I ∈ U , we have that
R(I) = {I} , thus F (R(I)) = F ({I}) ⊆ R({I}) = {I}.
So, we obtain that F ({I}) = {I}.

Cumulative inference for query-answering in
data integration

Instead of monotonic deduction, presented in the introduc-
tion, we will consider nonmonotonic inference, considering
that, generally, the query-answering in data integration is
nonmonotonic (for example, when we use negation operator
in query languages, in the case of incomplete information
in sources, or in the case when we consider only a subset
of preferred repairs for mutually inconsistent information
coming from different source databases).
The natural way to relax the monotonicity property can
be obtained by introducing the Cautious monotonicity: it
was introduced by Gabbay (D.Gabbay ) for finite set of
premises (Gentzen-style), and by Makinson (D.Makinson
) (Tarski-style) for a more general infinite set of premises.
The last one is a necessary condition in the data integration
framework: the incomplete information introduce Skolem
functions and infinite Herbrand bases, so that, together with
recursive logic specification of a global schema constraints,
the models for databases are possibly infinite.
The following table presents the definition for a cumulative
nonmonotonic inference relation `C and operation CC

(Reflexivity, Cut and Cautious monotonicity):

Finitistic or ”Gentzen-style” (Tab III):

α ∈ Γ implies Γ `C α

Γ
⋃

∆ `C α, ∀β ∈ ∆.(Γ `C β) implies Γ `C α

∀β ∈ ∆.(Γ `C β), Γ `C α implies Γ
⋃

∆ `C α
Tab III

Infinitistic or ”Tarski-style” (Tab IV):

Γ ⊆ CC(Γ)

∆ ⊆ CC(Γ) implies CC(Γ
⋃

∆) ⊆ CC(Γ)

∆ ⊆ CC(Γ) implies Cn(Γ) ⊆ CC(Γ
⋃

∆)
Tab IV



It is easy to verify that the Cut and Cautious monotonicity
can be combined into a simple principle of cumulation:

Γ ⊆ ∆ ⊆ CC(Γ) implies CC(Γ) = CC(∆)

or to the following two conditions (S.Kraus, D.Lehmann,
& M.Magidor 1990):

• Right Weakening: if ∀α ∈ ∆. Γ `C α, and ∆ ` β,
then Γ `C β
that is, Cn(CC(Γ)) ⊆ CC(Γ)

• Left Logic Equivalence: if ∀α.(Γ ` α iff ∆ ` α), then
Γ `C β iff ∆ `C β
that is, Cn(Γ)) = Cn(∆) implies CC(Γ)) = CC(∆)

The common idea in the literature on nonmonotonic reason-
ing is the following: α is a nonmonotonic consequence of Γ,
that is Γ `C α, just in the case α holds in all those Γ-states
(in our case Γ-DISs repairs) that are maximally plausible.
Formally we represented this idea by introducing a choice
function F which, given a set R(I) of all repairs of DID I,
picks out the set F (R(I)) of all the ”best” repairs in R(I).
For the DIS-structure IM, based on the deductive logic L,
we define the following relation � between sets of sentences
and single sentences:

• Γ � α iff F (Γ̂) ⊆ α̂

We have to demonstrate that this relation is nonmonotonic
consequence (or plausible inference). First, this definition
will in general lead to � being nonmonotonic, since
there is no guarantee that F (Γ̂) ⊆ α̂ will imply that
F (Γ̂

⋃
{α}) ⊆ α̂.

Clearly, one the best preferred Γ
⋃
{α}-states may fail

to be a best preferred member of the more inclusive
class of Γ-states. Therefore, it need not be the case
that F (Γ̂

⋃
{α}) ⊆ Γ̂. Neither does it follow that

F (Γ̂
⋃
{α}) ⊆ α̂.

Different choices on the selection function F will give rise
to different non monotonic logics:

Example 4: Let consider the choice function, in the case of
the so called minimal repairs w.r.t. set inclusion preference
criterion (M.Arenas, L.Bertossi, & J.Chomicki 1999): the
distance between two database instances D1 and D2 is their
symmetric difference δ(D1,D2) = (D1−D2)

⋃
(D2−D1).

It is minimal under set inclusion in the class of instances
that satisfy Ifix.
Other example for the choice function is the minimal
cardinality preference criterion (M.Dalal 1988): used in
order to minimize deletions and insertions of tuples during
a repairing.
�

Let now show the fundamental property of the introduced
relation � form Data Integration Systems:

Proposition 3 If IM is a DIS-structure based on the deduc-
tive logic L then � is a cumulative inference relation based
on L. We define the cumulative operation C, as follows:
for any Γ ⊆ Φ, C(Γ) = {α | Γ � α}.

Proof is analog to the proof of the Lemma 4.4. in
(S.Lindstrom ).
�

Let now consider the problem of a plausible query-
answering in Data Integration Systems. Let q(x) ∈ LQ be
an user query over a global schema G of the (possibly in-
consistent) Data integration system I = 〈G,S,M〉. We can
consider the set of sentences th(R(I)) = {α | R(I) ⊆ α̂},
where R(I) is a set all repairs of I, and define the relation
�I as follows:

• I �I q(c) iff th(R(I)) � q(c)

where q(c) is a (ground) sentence obtained by substitution
of a variables in x by database constants in a query formula.
Thus, a plausible answer to the query q(x) can be defined
by this cumulative nonmonotonic inference as follows:

qDB = {q(c) | I �I q(c), c is a tuple of constants of
a fixed DIS alphabet}.

This plausible query-answering in DISs is a general
one: it holds for any particular query language LQ, any kind
of mappings between source databases and a global schema,
and in presence of incomplete and inconsistent information.

Example 5: Let us see, that in the case of a consis-
tent DIS, this plausible answering correspond to the certain
(or known) ansering to queries.
When DIS I is consistent, then R(I) = {I}, and
th(R(I)) = th({I}) =

⋂
Mod(I), thus, for any given

query q(x) we have that:

• I �I q(c) iff th({I}) � q(c) iff F (t̂h({I}) ⊆

q̂(c)

So, from the fact that F (t̂h({I}) = F (CI(I)) =

F ({I}) = {I}, and the fact that q̂(c) = {I ′ ∈ U | q(c) ∈⋂
Mod(I ′)}, we obtain that must hold

{I} ⊆ {I ′ ∈ U | q(c) ∈
⋂

Mod(I ′)}, that is must hold
q(c) ∈

⋂
Mod(I)}. That is, q(c) must hold in all models of

this consistent I, i.e., q(c) is a certain (or known) answer of
this Data Integration System.
�

Conclusion
The problem of answering queries in Data Integration sys-
tems raises a multitude of challenges, ranging from theoreti-
cal foundations to considerations of a more practical nature.
The algorithms for answering queries using views are al-
ready incorporated into a number of data integration systems
with integrity constraints to obtain certain answers. The dif-
ficulties basically arise because of the need of dealing with
incomplete information and, moreover, with mutually in-
consistent information which comes from different source
databases: in such case we need some kind of plausible
query-answering. A number of different partial solutions,
based on the model-theoretic approach are adopted in prac-
tice, without an unifying general framework. We presented



such general framework for plausible query-answering in-
ference, based on choice functions. As result we obtained a
cumulative nonmonotonic inference for query-answering in
data integration.
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