
Expressive Power of Logic Frameworks with
Certainty Constraints

Nematollaah Shiri
Concordia University

Dept. of Computer Science & Software Engineering
Montreal, Quebec, Canada
shiri@cse.concordia.ca

Abstract

Uncertainty reasoning has been a challenging is-
sue in AI and database research. During the last
two decades, numerous frameworks have been pro-
posed by extending the standard logic program-
ming and deductive database systems. These
frameworks vary in different ways including the
way in which uncertainties are associated with the
facts and rules in programs. On the basis of this,
we have classified the approaches of these frame-
works into ”annotation based” (AB) and ”impli-
cation based” (IB). In the AB approach, uncer-
tainties are associated with the atoms whereas in
the IB approach they are associated with impli-
cations. Except for some particular cases, the ex-
act relationship between the two approaches has
not been studied previously, in that, the two are
treated as somewhat orthogonal and unrelated. In
this paper, we investigate this issue and introduce
the notion of certainty constraint. The purposes
are two fold. First, this notion supports the oper-
ations of selection and join by certainty, which are
often useful in query formulation and processing
in the context of uncertainty. Second and more
importantly, this notion ”relates” the expressive
power of the two approaches. To be precise, we
propose a transformation technique which estab-
lishes that the AB and IB approaches are equally
expressive when the rule bodies are extended with
certainty constraints. A consequence of this re-
sult is that, using the transformation technique,
we can adopt and use successful developments in
either approach.

Introduction

Many real-life applications require an ability to repre-
sent, manage, and reason with uncertain information.
Uncertainty arises when the information is of limited re-
liability, i.e., the truth of information is not established
definitely. Uncertainty is measured by some individual
or device, and is represented by associating with the
information a value coming from an appropriate do-
main. Silberschatz et al. (Silberschatz, Stonebraker, &

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Ullman 1991) identified uncertainty management as an
important challenge: “further research in uncertainty is
essential, as we must learn not only to cope with data
of limited reliability, but do so efficiently with massive
amounts of data.”

Logic database programming with the advantage of
being declarative and modular, and with its powerful
top-down and bottom-up query processing techniques
has been a primary choice for modeling uncertainty
for which numerous frameworks have been proposed
by extending the standard logic programming and
deductive databases with uncertainty (Shapiro 1983;
van Emden 1986; Subrahmanian 1987; Kifer & Li 1988;
Ng & Subrahmanian 1992; Dubois, Lang, & Prade 1991;
Fitting 1991; Kifer & Subrahmanian 1992; Lakshmanan
& Sadri 1994; ; Lakshmanan & Shiri 1996).

These proposals typically offer a framework in which
deduction is combined with some form of uncertainty,
including certainty values, fuzzy, probabilities, possibil-
ities, hybrid of numeric and symbolic formalisms, etc.
As in the standard case, these frameworks offer a declar-
ative semantics of programs. On the operational side,
this is supported by a sound and complete (or weakly
complete) proof theory and a corresponding fixpoint se-
mantics. On their approaches, these frameworks may
differ in several ways, e.g., (i) in the mathematical foun-
dation of the underlying uncertainty notion, (2) in the
way they manipulate uncertainties, and (3) in the way
uncertainties are associated with the facts and rules in
a program. On the basis of the third, these frameworks
are classified into annotation based (AB, for short) and
implication based (IB) approaches, as described below
(Lakshmanan & Shiri 2001b).

Two operations often useful in the context of uncer-
tainty for query formulation and processing are selec-
tion by certainty and join by certainty. For example,
the first operation may be used in queries such as: “list
all objects whose degree of redness is at least 0.8”. For
the join by certainty operation, an example would be re-
stricting the joins in a rule body to tuples whose certain-
ties stand in particular relationships. To support these
two operations, we introduce the notion of certainty
constraint, which may be added to rule bodies to re-
stricts their evaluations. In addition to support the two

useful operations, it turns out that this notion is more
important in that it “relate” the expressive power of the
AB and IB approaches, which were viewed as somewhat
orthogonal and not so related formalisms so far, except
in some special cases (For instance, the generalized AB
framework (GAP) can simulate, through the annota-
tion variables, the computation of the IB framework of
van Emden.) In this paper, we investigate the relative
expressive power of the AB and IB approaches. For our
result to be general in this study, we take a framework
independent approach by first introducing two generic
AB and IB frameworks, each of which would include the
main characteristics and common features of the corre-
sponding approach it represents. We will then extend
these generic frameworks with certainty constraints in
the rule bodies. As our main contribution in this pa-
per, we show that the generic AB and IB frameworks
are equally expressive, when extended with certainty
constraints.

The rest of this paper is organized as follows. We
next review the basic concepts and techniques of logic
programming and deductive databases and introduce
some notations. In section 3, we introduce two generic
AB and IB frameworks, and then extend both certainty
constraints in the rule bodies. In section 4, we intro-
duce a transformation technique, using which we estab-
lish the equivalence of these generic AB and IB frame-
works which allow certainty constraints in the rule bod-
ies. This is followed by a discussion on the continuity
of the fixpoint operators. We conclude the paper with
some remarks and and future work.

Background and Notations

In this section, we review basic of logic programming
and deductive databases with uncertainty. This also
helps introducing the concepts and notations we use
in this paper. We assume the reader is familiar with
the foundations of logic programming (Lloyd 1987) and
deductive databases (Ceri, Gottlob, & Tanca 1989).

In his seminal work on quantitative deduction, van
Emden (van Emden 1986) proposed an IB framework,
by considering the subset of Prolog language (with-
out negation) in which the implications are associated
with certainty factors. Examples of some IB frame-
works include Fitting (Fitting 1988; 1991), Dubois et
al. (Dubois, Lang, & Prade 1991), and Lakshmanan
and Sadri (Lakshmanan & Sadri 1994;). Each rule r
in an IB framework is an expression of the form

r : A
α←− B1, . . . , Bn.

where A and Bi’s are atomic formulas, and α ∈ (0, 1] is
the rule certainty. As in the standard case, when n = 0,
we call r as fact. Intuitively, rule r asserts that “the cer-
tainty that the rule body implies the head is α.” In a
sense, α controls the “propagation” of truth from the
rule body to the head. Rule evaluation in (van Emden
1986) is as follows. Given an assignment of certain-
ties to the Bi’s, we first obtain the certainty of the rule

body as a whole, using min. This certainty is then mul-
tiplied by the rule certainty α, which yields a certainty
of the ground atom defined by the rule. Using max,
alternate derivations of this atom are combined into a
single certainty. This basically explains the notion of
rule evaluation in IB frameworks, modulo the fact that
the certainty domain and/or certainty functions could
be different from one framework to another. For rule
r above, we associate the triplet of certainty functions
〈fd, fp, fc〉 in which fd is the disjunction, fp is the prop-
agation, and fc is the conjunction function. The order
of functions listed in this triplet indicates, from right to
left, the order in which the functions are applied when
evaluating the rule, as described above. We will refer to
the collection of these functions as certainty functions.

In the AB approach, on the other hand, implication is
similar to the standard case, however, each atom in the
rule is associated with a certainty value or variable. To
be precise, a rule in an AB framework is an expression
of the form:

r : A : f(β1, . . . , βn) ← B1 : β1, . . . , Bn : βn.

where f is a computable n-ary function, which plays the
role of conjunction and propagation functions in the IB
frameworks mentioned above, and βi’s are annotation
constants or variables ranging over an appropriate cer-
tainty domain. This rule asserts “the certainty of A is
at least (or is in) f(β1, . . . , βn), whenever the certainty
of Bi is at least (or is in) βi, for 1 ≤ i ≤ n.” Exam-
ples of the AB frameworks include the annotated logic
programming of Subrahmanian (Subrahmanian 1987),
Kifer and Li (Kifer & Li 1988), the probabilistic logic
programming of Ng and Subrahmanian (Ng & Subrah-
manian 1992; 1993), and the generalized theory of an-
notated logic programming (GAP) of Kifer and Sub-
rahmanian (Kifer & Subrahmanian 1992).

We do not enter into a debate of which approach is
the best. Rather, we emphasize that different frame-
works may be appropriate for different applications.
Furthermore, different forms of manipulating uncer-
tainty may be required in some applications. See (Lak-
shmanan & Shiri 2001a) for a survey of uncertainty in
logic programming and deductive databases. Further
remarks on the AB and IB approaches are as follows.
While the way implication is treated in the AB ap-
proach is similar to the standard case, the way rules
are fired in the IB approach has a definite intuitive ap-
peal (Kifer & Subrahmanian 1992). The AB approach
in general is strictly more expressive than the IB. For
instance, as shown in (Kifer & Subrahmanian 1992),
the GAP framework can simulate the IB framework of
van Emden, through annotation variables. The down
side is that query processing (particularly resolution
and fixpoint evaluation) in the AB approach is more
complicated than the IB approach. For instance, un-
like in the IB approach, unification is more involved
in the AB approach, and resolution requires constraint
solving. With respect to the fixpoint computation, we
remark that the fixpoint operator in the IB approach

is continuous while it is not necessarily the case in the
AB. We will further comment on the continuity issue
later when we present our results.

Generic AB and IB Frameworks

As different AB or IB frameworks may have different
mathematical foundation of uncertainty and different
combination functions, for their comparison to make
sense, we introduce two generic frameworks, and AB
and an IB, each of which includes common features of
the corresponding framework it represents. We refer
to these generic frameworks as GAB and GIB, respec-
tively. We will introduce the notion of certainty con-
straint and further extend the GAB and GIB frame-
works to allow certainty constraints in the rule bodies.
We will then establish that these extended frameworks
are equally expressive – an important result which “con-
nects” the AB and IB approaches.

A useful operation in deductive databases and logic
programming with uncertainty is to select from a rela-
tion, every tuple whose associated certainty value is not
“less” than a specified threshold, e.g., as in the query
“find all the red objects whose degree of redness is at
least 0.75.” We call this operation as selection by cer-
tainty. Another useful operation in this context is join
by certainty, which amounts to prescribing that a pair of
tuples from two relations can be joined provided their
associated certainties stand in a certain relationship.
We can view the selection/join by certainty as filtering
mechanisms, by which we determine a (possibly empty)
subset of tuples to be considered for the selection/join
operations.

Neither of these operations is supported by any IB IB
framework, including the parametric framework. The
AB frameworks on the other hand enjoy a limited form
of these operations through annotation constants and
variables. We thus extend the AB and IB frameworks
to support these operations. This is done by allow-
ing certainty constraints in the rule bodies, defined for-
mally as follows. Borrowing the syntax proposed by
Halpern (Halpern 1990), given an atom A, we use the
term wt(A), read as weight of A, to denote the certainty
of A. A certainty constraint is a boolean expression or
a conjunction of such expressions each of which is of
the form “wt(A) θ ν” or “wt(A) θ wt(B)”, where A
and B are atoms, ν is a certainty constant or variable
over the certainty domain, and θ ∈ {≺,�,=, 6=,�,�}.
We can think of wt(A) as a function call, returning the
“current” certainty value associated with A, as the rule
evaluation continues.

As is customary, we assume that the underlying cer-
tainty domain, denoted T , is a complete lattice, par-
tially ordered by � ; we may also use its dual �. Also
some frameworks, e.g., (Kifer & Li 1988), use multiset
as the semantics structure. A multiset M is an anno-
tated set whose elements are of the form x : k, where
k denotes the multiplicity of x in M . Obviously, M re-
duces to a set if k ∈ {0, 1}. We will use {|· · ·|} to denote

multisets. Following our development of the paramet-
ric framework (Lakshmanan & Shiri 1996), the seman-
tics of the generic AB and IB frameworks we introduce
here is based on multisets. Furthermore, in order for
the comparison of the AB and IB frameworks to be fair
and make sense, we further assume that the certainty
functions employed are subject to the same collection of
reasonable properties, including monotonicity, continu-
ity (w.r.t. Scott’s topology), associativity, and commu-
tativity. See (Lakshmanan & Shiri 1996) for the com-
plete list of these properties and their justifications.

A Generic IB Framework
As the generic IB framework in this paper, we consider
the parametric framework (Lakshmanan & Shiri 1996),
which unifies and/or generalizes all the IB frameworks.
We further extend this generic language with certainty
constraints, denoted Cr, and defined below. Let us refer
to this extended generic IB framework as EGIB. Each
rule r in EGIB is an expression of the form:

r : p(Y) αr←− q1(Y 1), . . . , qn(Y n), Cr; 〈fd, fp, fc〉.
where p and q’s are atoms, αr ∈ T is the rule certainty,
Cr is (a possibility empty) conjunction of certainty con-
straints in the rule, and the combination functions from
right to left indicate conjunction, propagation, and dis-
junction functions.

The notion of program satisfaction is similar to that
of the parametric framework except that here certainty
constraints should also be taken into account. Let P
be a program in the EGIB framework. A valuation v
of P is a mapping from the Herbrand base BP of P to
the certainty domain T , which assigns to each ground
atom A in BP , a certainty value in T , that is, v(A) ∈
T . We use P ∗ to denote the ground instantiation of
P , i.e., the collection of variable-free instances of every
rule in P . Let Cr ≡ C1, . . . , Ck be the conjunction of
certainty constraints specified in the body of a rule r ∈
P , where C`, 1 ≤ ` ≤ k, is either an expression of the
form (1) wt(qi(Y i)) θ σ or (2) wt(qi(Y i)) θ wt(qj(Y j)),
θ is a comparison operator, and σ ∈ T .

Given a valuation v, we say v satisfies a certainty
constraint Ci, denoted |=v Ci, provided v(Bi) θ σ is true
in case (1), and v(Bi) θ v(Bj) is true in case (2), where
Bi is a ground instance of the atomic formula qi(Y i).
We say that v satisfies C1, . . . , Ck, provided |=v C`, for
all `, 1 ≤ ` ≤ k. We use these definitions to formalize
the notion of program satisfaction, as follows.

Let r be any rule in an EGIB program P and v
be any valuation of P . For any ground instance ρ
of r, we say that v satisfies ρ, denoted |=v ρ, iff
fp(αr, fc({|v(B1), . . . , v(Bn)|}))� v(A) and |=v Cr. We
say that v satisfies r, denoted |=v r, iff v satisfies every
instance of r. Finally, we say v satisfies P , denoted
|=v P , iff (1) ∀r ∈ P : |=v r, and (2) ∀A ∈ BP : v(A) �
fd(X), where X = {|fp(αr, fc({|v(B1), . . . , v(Bn)|})) |
(A αr←− B1, . . . , Bn, Cr; 〈fd, fp, fc〉) ∈ P ∗ and |=v Cr|}.

Unlike in standard logic programming and deductive
databases, when uncertainty is present, it is possible

that a rule r in P is satisfied by a valuation v while P
itself is not satisfied. The last condition above is con-
cerned with this case stating that in order for v to also
satisfy for P , the certainty assigned to any ground atom
A by v is not less than A’s certainty derived from P ,
which is obtained by applying the disjunction function
fd to the multiset X of certainties derived from every
instance ρ of r ∈ P whose head is A such that |=v ρ.

A Generic AB Framework
In this section we introduce a generic AB framework,
GAB, that includes essential features of the AB ap-
proach. To this end, following our approach in the de-
velopment of the parametric framework (Lakshmanan
& Shiri 2001b). In order for the comparison of GAB and
GIB to make sense, we require that the GAB framework
uses multiset as its underlying semantics structure. We
further assume that the combination functions allowed
in GAB are subject to the same postulates in the GIB.
Note that the annotation function used in the rule head
in an AB framework plays the role of both conjunction
and propagation functions. Also note that the GAB
framework so defined does not exactly correspond to
any existing AB framework. A technical issue here to
note is that while the immediate consequence operator
TP used to define the fixpoint semantics of logic pro-
grams P is continuous in standard logic programming
and IB frameworks, it is not the case for almost all AB
frameworks, indicating that the least fixpoint evalua-
tion of programs in AB frameworks may not terminate
in finite time. We elaborate on this issue in the closing
section.

Next we allow certainty constraints in the GAB
framework. The syntax of a rule r in the extended
GAB framework, called EGAB, is an expression of the
form:
p(Y) : f(V1, . . . , Vn)←q1(Y 1) : V1, . . . , qn(Y n) : Vn, Cr.

where Vi is a certainty constant or variable, for 1 ≤ i ≤
n, and the constraint Cr is a conjunction of boolean
expression of the form Vi θ Vj or Vi θ σ, where θ is a
comparison operator, and σ is a certainty value in T .

The following example, adopted from (Lakshmanan
1994), illustrates the use of certainty constraints.

Consider a medical application where uncertain
knowledge about particular diseases and symptoms is
represented as the following program, in which we as-
sume the triplet of certainty functions associated with
each rule is 〈max, ∗,min〉.

r1 : disease(X, D) 0.8←− has(X, S), symptom(D,S),
wt(has(X, S)) � 0.8,

wt(symptom(D,S)) � 0.9.

r2 : disease(X, D) 0.9←− family history(X, D),
hereditary(D),
wt(family history(X, D)) � 0.8,

wt(hereditary(D)) � 0.7.

The use of constraints is viewed as a filtering mecha-

nism. For instance, the likelihood of X having disease
D is computed (by r1) only when X has a symptom
S with certainty � 0.8, and S is associated with D
with certainty � 0.9. In particular, conclusions with
“insignificant” certainties are automatically pruned.

Note that the extended GAB framework so defined
is strictly more expressive than the GAB, and hence
more expressive that any basic AB framework. This
is because in the former, we can express a relationship
between two annotations, while this could not be done
in existing AB frameworks. For instance, suppose we
want to perform a join operation on relations q and r
for those tuples tq ∈ q and tr ∈ r such that the certainty
of tq is not “less” than the certainty of tr. While this
cannot be expressed in any existing AB framework, it
can be expressed as the following rule in the extended
GAB:

p(Y) : f(V1, V2)←q(Y 1) : V1, r(Y 2) : V2, V1 � V2.

where f is any allowable annotation function that sat-
isfies the postulates.

Equivalence of EGAB and EGIB

In this section, we show that the generic EGAB and
EGIB frameworks with certainty constraints are equally
expressive. This is formally stated as follows. We use
D to denote the input set of facts, also called extensi-
nal database, which is essentially a collection of atom-
certainty pairs. For a program P and input collection
of facts D, we use P (D) to denote the set of atom-
certainty paris obtained by a fixpoint evaluation of P
on D.
Theorem: Given any program PA in the EGAB
framework, there exists a program PI in EGIB such
that for every input database D, program PI computes
the same atom-certainty pairs as PA computes on D.
That is, PA(D) = PI(D), for all input database D.

Proof Sketch. The idea of the proof is based on sim-
ulation of programs in one formalism within the other.
We use a transformation technique to establish this
equivelence. That is, given any rule r in EGAB or
EGIB, our transformation yields an equivalent rule r

′

in the other framework, in the sense that on every in-
put database D, r and its transformed expression r

′

define the same multiset of atom-certainty pairs. This
is done in two parts, by first assuimg r is in EGAB and
then consider the case where r is a rule in EGAB. The
transformation procedure is defined as follows.

First, consider the EGAB rule r in PA defined earlier,
repeated here for convenience.

r : p(Y) : f(V1, . . . , Vn)←q1(Y 1) : V1, . . . , qn(Y n) : Vn, Cr.

This rule can be expressed as the following EGIB rule
in which > is the top value in the certainty domain T .

r
′
: p(Y) >←− q1(Y 1), . . . , qn(Y n), C ′

r; 〈fd, fp, fc〉.

where C ′
r is Cr with annotation variable Vi replaced

by wt(qi(Y i)), for 1 ≤ i ≤ n. Here fd is the disjunc-
tion function associated with the predicate p defined
by r, and fp is any propagation function satisfying the
postulates which, among others, is required to satisfy
fp(α,>) = α, ∀α ∈ T .

Now suppose r is the following EGIB rule in PI .

r : p(Y) αr←− q1(Y 1), . . . , qn(Y n), Cr; 〈fd, fp, fc〉.
This rule can be expressed as the EGAB rule:

p(Y) : fp(αr, fc(V1, . . . , Vn))← q1(Y 1) : V1, . . .

qn(Y n) : Vn, C ′
r.

where C ′
r is the certainty constraint Cr in which the

weight term wt(qi(Y i)) replaced by the annotation vari-
able Vi, for 1 ≤ i ≤ n.

It follows from the transformation above that the re-
sulting rule is equivalent to the given rule, in the sense
that they compute the same atom-certainty pairs. Sim-
ilarly, given any r in a EGIB program, we can express r
as a rule in EGAB in which the annotation of each atom
can be extracted from the weight terms wt in the con-
straints in r, the rest of constraints in r would become
the constraints in the EGAB rule, and the annotation
function in the rule is determined from the conjunc-
tion and propagation functions together used to define
the head constraints. This equivalence at the rule level
implies equivalence at the program level, since, by con-
struction, the disjunction function associated with the
head predicate in r and r

′
are identical.

The following example illustrates the transformation
procedure. Let P be the following program in EGAB.

r1 : disease(X, D) : 0.8 ∗min(V1, V2) ←
has(X, S) : V1, symptom(D,S) : V2,

V1 � 0.8, V2 � 0.9.

r2 : disease(X, D) : 0.9 ∗min(V1, V2) ←
family history(X, D) : V1,

hereditary(D) : V2, V1 � 0.8, V2 � 0.7.

Following the transformation method proposed
above, P would be transformed into an equivalent pro-
gram in EGIB defined in Example ??, assuming that
max is the disjunction function associated with every
predicate in P .

Note that although query processing in the AB
framework of Kifer and Subrahmanian (Kifer & Sub-
rahmanian 1992) may in general call for constraint
solvers, constraints are not explicitly allowed in users’
programs. Recall that a restricted form of constraints
is implicitly allowed in the basic AB framework, i.e., as-
sociating the same annotation variable with more than
one atom in the rule body, or associating an annota-
tion constant. Adding constraints strictly increases the
expressive power of the parametric and the AB frame-
works. This also provides us with a common ground for
comparing EGAB and EGIB. Our result above shows
that when constraints are added, the extended GAB
and GIB have the same expressive power.

Concluding Remarks and Future Work
In this paper we studied the expressive power of the AB
and IB frameworks with uncertainty. As these frame-
works differ in various ways, we first developed a generic
framework that possess common features of AB frame-
works. Similarly, we proposed a generic IB framework
that includes common features of IB frameworks. We
then extended these generic frameworks with certainty
constraints, mainly to support the operations of selec-
tion/join by certainty. More importantly, this exten-
sion shed light on the expressive power of the AB and
IB frameworks. More precisely, we showed the AB and
IB approaches are equally expressive, when they are
extended with certainty constraints.

While the fixpoint operator of the IB frameworks
are continuous, the increased expressive power gained
by allowing certainty constraints comes at the expense
of continuity; the fixpoint operator of the EGIB is no
longer continuous. This is true even for the majority of
the proposed AB frameworks. The following example
illustrates this point.

Let us now consider the following EGIB program P ,
in in which T = [0, 1] is the underlying certainty lattice.

r1 : p(X, Y) 1←− e(X, Y); 〈find, ∗,min〉.

r2 : p(X, Y) 1←− e(X, Z), p(Z, Y); 〈find, ∗,min〉.

r3 : r(X, Y) 1←− p(X, Y), q(X, Y), wt(p(X, Y)) �
wt(q(X, Y)); 〈find, ∗,min〉.

where find(α, β) = α+β−αβ is the independence func-
tion, in the probabilistic sense. Suppose D = {e(1, 1) :
0.5, e(1, 2) : 0.5, q(1, 2) : 1} is the set of input facts.
Using a fixpoint evaluation of P , the certainty associ-
ated with atom r(1, 2) will be 0, obtained only at the
limit (after ω steps). This is denoted as Tω

P (r(1, 2)) = 0.
However, we can see that Tω+1

P (r(1, 2)) = 1, which is
different than its certainty at the limit. This indicates
that the fixpoint operator TP is not continuous, a de-
sired property that is lost.

Another impact of adding constraints to rule bodies
is on the termination and complexity properties. We
can give examples of programs in the EGIB framework
whose evaluation terminates, while the corresponding
programs with the constraints dropped may not termi-
nate. This is illustrated in the following example.

Consider a program in EGIB that includes the rules
r1 and r2 defined in the above example. The fixpoint
evaluation of this program does not terminate on the
input set D introduced above. Now consider the EGIB
program in which rule r2 is replaced with r

′

2:

r
′

2 : p(X, Y) 1←− e(X, Z), p(Z, Y), wt(e(X, Y)) � 1,

wt(p(X, Y)) � 1; 〈find, ∗,min〉

That is, Q = {r1, r
′

2}. It can be easily verified that
the fixpoint evaluation of Q on D terminates in two
iterations. This is because the first certainty constraint
in r

′

2 ensures that this rule never fires.

More work is required to characterize the termination
and complexity of these frameworks, when recursive
predicates are associated with disjunction functions,
such as find, which tend to increase indefinitely unless
supplied with the top certainty value. Another inter-
esting direction to explore is to study the containment
problem in the presence of the certainty constraints
along our development in the context of the parametric
framework (Lakshmanan & Shiri 2001b).

An implementation of the EGIB is underway by ex-
tending our implementation (Shiri & Zheng 2004) of
a fragment of the parametric framework. Query pro-
cessing and unification here are more complicated due
to the presence of the certainty constraints in the rule
bodies.

Acknowledgements

The author would like to thank Dr. Laks Lakshmanan
and anonymous reviewers for helpful discussions and
valuable comments.

References

Ceri S.; Gottlob G.; and Tanca L. 1989. What you al-
ways wanted to know about datalog (and never dared
to ask). IEEE Transactions on Knowledge and Data
Engineering 1(1).
Dubois Didier; Lang Jérôme; and Prade Henri. 1991.
Towards possibilistic logic programming. In Proc. 8th
Intl. Conf. on Logic Programming, 581–596.
Fitting M.C. 1988. Logic programming on a topolog-
ical bilattice. Fundamenta Informaticae 11:209–218.
Fitting M.C. 1991. Bilattices and the semantics of
logic programming. Journal of Logic Programming
11:91–116.
Halpern, J.Y. 1990. An analysis of first-order logics
of probability. Journal of AI 46:311–350.
Kifer, M., and Li, A. 1988. On the semantics of rule-
based expert systems with uncertainty. In Gyssens,
M.; Paradaens, J.; and van Gucht, D., eds., 2nd Intl.
Conf. on Database Theory, 102–117. LNCS-326.
Kifer M., and Subrahmanian V.S. 1992. Theory of
generalized annotated logic programming and its ap-
plications. Journal of Logic Programming 12:335–367.
Lakshmanan, Laks V.S., and Sadri, F. 1994. Proba-
bilistic deductive databases. In Proc. Intl. Logic Pro-
gramming Symposium, 254–268. Ithaca, NY, MIT
Press.
Lakshmanan Laks V.S., and Sadri F. 1994. Model-
ing uncertainty in deductive databases. In Proc. Intl.
Conf. on Database Expert Systems and Applications
(DEXA ’94). Athens, Greece, LNCS-856.
Lakshmanan, Laks V.S., and Shiri, Nematollaah.
1996. A parametric approach to deductive databases
with uncertainty. In Proc. Intl. Workshop on Logic in
Databases (LID’96), 61–81. Italy, LNCS-1154.

Lakshmanan, Laks V.S., and Shiri, Nematollaah.
2001a. Logic programming and deductive databases
with uncertainty: A survey. In Encyclopedia of Com-
puter Science and Technology, Volume 45. Marcel
Dekker, Inc. New York. 155–176.
Lakshmanan Laks V.S., and Shiri Nematollaah. 2001b.
A parametric approach to deductive databases with
uncertainty. IEEE Transactions on Knowledge and
Data Engineering 13(4):554–570.
Lakshmanan, Laks V.S. 1994. An epistemic founda-
tion for logic programming with uncertainty. In Proc.
14th Conf. on the Foundations of Software Technology
and Theoretical Computer Science (FST and TCS’94).
LNCS-880.
Lloyd J. W. 1987. Foundations of Logic Programming.
Springer-Verlag, second edition.
Ng R.T., and Subrahmanian V.S. 1992. Probabilis-
tic logic programming. Information and Computation
101(2):150–201.
Ng R.T., and Subrahmanian V.S. 1993. A semantical
framework for supporting subjective and conditional
probabilities in deductive databases. Automated Rea-
soning 10(2):191–235.
Shapiro E. 1983. Logic programs with uncertainties:
a tool for implementing expert systems. In Proc. IJ-
CAI’83, 529–532. William Kaufmann.
Shiri, N., and Zheng, Z. H. 2004. Challenges in fixpoint
computation with multisets. In Proc. 3rd Intl Symp.
Foundations of Information and Knowledge Systems
(FoIKS ’04), Vienna, Austria, February 17–20.
Silberschatz Avi; Stonebraker Michael; and Ullman
J.D. 1991. Database systems: Achievements and op-
portunities. Communications of the ACM 34:110–120.
Subrahmanian V.S. 1987. On the semantics of quanti-
tative logic programs. In Proc. 4th IEEE Symposium
on Logic Programming, 173–182.
van Emden M.H. 1986. Quantitative deduction and
its fixpoint theory. Journal of Logic Programming
4(1):37–53.

