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Abstract 

It has been well argued that correlation does not imply 
causation. Is the converse true: does non-correlation imply 
non-causation, or more plainly, does causation imply 
correlation? Here we argue that this is a useful intuition of 
the semantic essence of the faithfulness assumption of 
causal graphs. Although the statement is intuitively 
reasonable, it is not categorically true (but it is true with 
probability one), and this brings into question the validity of 
causal graphs. This work reviews Cartwright’s arguments 
against faithfulness and presents a philosophical case in 
favor of the faithfulness assumption. This work also shows 
how the causal graph formalism can be used to troubleshoot 
scenarios where faithfulness is violated. 

Introduction   

Causal graphs have been studied as such for more than a 
decade. Originally introduced as Bayesian nets (Pearl 
1988), they demonstrated the practicality of purely 
probabilistic reasoning to an AI community that believed 
probability theory was epistemologically inadequate even 
for mundane knowledge. Causal graphs gave both a 
compact representation of joint distributions of many 
variables, and sound and efficient inference algorithms.  
 
At that time, many groups sought alternatives to 
probability for the purpose of representing uncertain 
knowledge. Several groups pursued nonnumeric, or 
symbolic alternatives, such as endorsements or the various 
default logics. (See (Kanal and Lemmer 1986) for 
discussions.) The reasons for different strategies varied, 
but it would be fair to say that many believed that 
intelligent agents were capable of sophisticated reasoning 
strategies without numeric information, and furthermore, 
that accurate statistics were rarely available. This is 
obviously true in commonsense domains, but even in areas 
such as medical diagnosis, some diseases evolve so 
quickly that it is difficult to collect accurate statistics 
before the population changes significantly.  
 
Other groups, citing limitations of the expressive power of 
traditional probability, pursued alternate numeric calculi. 
This group formed the core of the early UAI (Uncertainty 
in Artificial Intelligence) community (Kanal and Lemmer 
1986). Three that became prominent were Certainty 
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Factors (the calculus driving expert systems like MYCIN), 
Fuzzy Logic, and belief functions (also known as 
Dempster-Shafer theory). Early papers on causal graphs 
also appeared at this time. The result was a thorough 
discussion of the foundations of uncertain reasoning. 
 
Initially, the ‘causal’ aspect of causal graphs was informal. 
In simple settings such as diagnostic bipartite causal 
graphs (e.g., the work of Peng and Reggia (1986) 
translated to causal graphs), this was abundantly clear. 
Root nodes were unconditionally independent diseases, 
leaf nodes were conditionally independent symptoms, and 
arrows pointed in the direction of causality. Causal graphs 
were found to have many useful qualitative interpretations. 
Pearl and Verma (1991) offered probabilistic definitions of 
potential and genuine causality that not only gave 
philosophical justification for this phenomenon, but also 
offered an algorithm for recovering causal structure from 
sufficiently rich numeric data. The algorithm could also 
identify certain spurious associations, that is, variables 
whose correlation was due to both variables being caused 
by a hidden unmeasured variable.  
 
The semantic correctness of Pearl and Verma’s inductive 
causation (IC) algorithm, rested on two important 
assumptions. The first was the availability of exact 
distributions. The second was the faithfulness (SGS 1993) 
assumption (also known as stability (Pearl 2000)), which, 
“conveys the assumption that all the independencies 
embedded in [the probability distribution] P are stable, that 
is, they are entailed by the structure of the model D and 
remain invariant to any change in the parameters ΘD” 
(Pearl 2000). The parameters are the numerical conditional 
probabilities stored at each node. 
 
Pearl justifies the faithfulness (stability) assumption with a 
visual analogy. Suppose we see a picture of a chair, and 
need to decide between theory T1, which states the object 
in the picture is a chair, and T2, which states the picture 
contains two chairs aligned so one hides the other. T1 is 
invariant to the angle of view, and T2 is unlikely. In this 
sense T1 is simpler than T2. 
 
Theoretical counterexamples to the faithfulness 
assumption exist. The construction is easy and similar to 
Simpson’s paradox, and moreover, the counterexamples 
can plausibly occur in real life. However, even though the 
counterexamples are theoretically unlikely (using a 
Bayesian analysis), the possibility is as troubling as 
Simpson’s paradox. 



 
In the sequel, we review terminology for causal graphs, 
causal terminology and algorithms for the construction of 
causal graphs from data. We review concerns about the 
faithfulness assumption, but argue that the intuitions are 
valid and useful. Moreover, in the event of a 
counterexample, we show how the formalism itself can be 
used to troubleshoot the model. 

 Notation and terminology   

A causal graph is a pair (D,P), where D=(V,E) is a directed 
graph, where V is a set of variables and E is a set of 
directed edges (arcs) between variables. P is a probability 
distribution over the variables in V. For any variable A, 
parents(A) denotes the parents of A, the direct predecessors 
of A, or the direct causes of A. Associated with A is a local 
distribution f(A, parents(A)), which gives a distribution for 
A for any set of values that the parents(A) take on.  
Moreover, the distribution P can be decomposed into these 
independent conditional distributions at the nodes. 
Commonly f is the familiar discrete conditional probability 
distribution. For the present, it suffices to say that the 
formalism generalizes beyond discrete and Gaussian 
variables (in the form of structure equations, or path 
analysis), but for this discussion, we use discrete 
distributions in the text and a Gaussian example in images. 
 
For discrete variables, the graph’s structure encodes the 
information that P factors into the product of the 
conditional distributions stored at the nodes. That is, 
 

                   P(v0,...,vn) = Πi P(vi|parents(vi).             (1) 
 
Variables A, B are conditionally independent given a set of 
variables C if  

P(A,B|C) = P(A|C)·P(B|C) 
 

for all outcomes of A, B and C. If C is empty, then A,B are 
unconditionally independent. The factorization in Equation 
1 has the property that vertices obey the Markov 
Condition, that a vertex is conditionally independent of its 
non-descendants given its parents. In the setting of a causal 
graph, the Markov condition implies many other 
conditional independencies. These can be detected from D 
alone using a graph-theoretic criterion called d-separation. 
(Pearl  2000).  
 
Definition 1. (Potential Cause) (Pearl and Verma, 1991) 
A is a potential cause of C if there is a variable B and a 
context (set of variables) S such that 

i. A, B are independent given S, 
ii. there is no set D such that A,C are conditionally 

independent given D, and 
iii. B, C are dependent. 

A simplified version of Pearl’s causal graph construction 
(IC-algorithm) follows. 
 

1. For each pair of vertices A,B in V, search for a 
subset S of V  (including the empty set) such that A 
is conditionally independent of B given S. If no such 
S exists, add an undirected edge between A and B. 

2. For each collinear triple of vertices A—C—B, 
where A and B are not directly connected, test 
whether A, B and C satisfy the relationship of 
potential cause as in Definition 1. If yes, add head-
to-head arrows at C. Repeat this step until no more 
arrows can be added. (It is acceptable to obtain 
double-ended arrows, but this is not discussed here.) 

3. For all remaining undirected arcs, add arrows, but 
do not create any new structures like those in Step 
2, or directed cycles. Given these constraints, 
certain arcs may be oriented in either direction. 
Such arcs should be left undirected. 

 
The output of this algorithm is a graph containing 
undirected arcs, directed arcs (arrows), and arcs directed in 
both directions. Directed arcs indicate causal links. Arcs 
directed at both ends indicate the location of hidden causal 
variables. Undirected arcs indicate insufficient information 
to orient an arc.  
 
When constructing the directed causal graph from data, 
this algorithm twice makes critical use of the faithfulness 
assumption. In Step 1, it places an arc between two nodes, 
only if no set S makes them independent. Under the usual 
interpretation of faithfulness, the absence of any form of 
independence forces a link to be added, since the only 
dependencies are those implied by structure.  
 
We argue that the intuition behind faithfulness is the idea 
that causation implies correlation. Under this 
interpretation, we think of the IC-algorithm in terms of the 
complementary action of not adding a link when 
independence is discovered. All links added to the graph 
have the potential of being oriented to imply causation. 
Thus, independence (or the lack of dependence, or non-
correlation) in any setting means no causal link is added, 
or, non-correlation implies non-causation. 
 
The faithfulness assumption is also used in Step 2, 
embedded in the definition of potential cause. Under the 
usual interpretation of faithfulness, consider all possible 
orientations of the arcs connecting A, B, C as shown in 
Figure 1. 

Figure 1 
 

Using the faithfulness assumption in the traditional sense, 
independencies in the data are implied by structure only, 
and the head-to-head structure is the only one of the four 
that implies the data. 
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Under our interpretation, the assumption that causation 
implies correlation rules out the first three possibilities, by 
reasoning as follows.  Consider a setting where A and B 
are independent, and there is a path from A to B. If 
causation implies correlation, the first two orientations are 
easily ruled out, since A and B are not correlated. In the 
third case, one also expects correlations between effects of 
a common cause. However, it is straightforward to use the 
factorization properties of a causal graph to verify that 
only the last graph is always consistent with the definition 
of potential cause, regardless of assignment of conditional 
probability distributions to the vertices. That is, the 
definition of potential cause is based on the assumption 
that causation implies correlation. 
 
A causal inference algorithm such as this one can’t do 
much without an assumption like this, although it is easy to 
construct counterexamples that show the faithfulness 
assumption to be imperfect. Consider a graph such as that 
in Figure 2(a), below.  

 
 
     
 

 
 

                  (a)                                     (b) 
                                    Figure 2 

 
Because small (3 node) graphs with no unconditional 
independence can have three different labelings (that is, 
the first three labelings in Figure 1), the graph in Figure 
2(a) is the smallest graph that the IC-algorithm, or 
TETRAD (SGS 1993), can orient. However, it is 
straightforward to construct a graph with the topology of 
Figure 2(b): just use the graph in Figure 2(a) to compute 
the conditional probability distributions for each node in 
the second graph. Although this is a simple exercise, it is 
interesting for two reasons: 1) it introduces an arc where 
none existed before, and 2) the causal directions of the 
original arcs in Figure 2(a) are reversed. 
 
To give this some meaning, we borrow from a real-life 
example (Dennis et al, 1993). A recent study showed that 
sunscreen users may be at increased risk of melanoma. For 
the present discussion, we adjusted the distribution so that 
sunscreen (B) has no effect on melanoma (A). However, 
further study reveals light-skinned people use sunscreen 
more often than darker-skinner people. Because natural 
pigmentation (C) also offers protection from melanoma, by 
chance, the inverse relationship between these two causal 
influences makes the two influences exactly cancel each 
other out. However, applying the IC-algorithm blindly 
leads to an incorrect result – that melanoma and sunscreen 
usage have causal influence on pigmentation, as in Figure 
2(b). This construction is similar to, and provides a causal 
variation of, Simpson’s paradox by reversing causal 

direction. Although this is implausible in this setting, we 
provide a possible interpretation. The determination of the 
actual relationships may have consequences for policy 
makers in public health and for consumers. 
 
How does this impact the enterprise of causal inference 
from observational data? 

Cartwright’s critique of faithfulness 

A counterexample to a premise is generally certain death 
for a theory. A single counterexample (and there are 
infinitely many in the present case) shows that we cannot 
say that causation implies correlation (in the usual sense of 
the first order logic), which we have argued above is the 
intuition of the faithfulness assumption. 
 
However, it is possible to argue that probability of 
correlation given causation has measure one. For two 
variables A and C, for any distribution of A, there is 
exactly one joint distribution of A, C such that the two 
variables are independent, but in all the remaining 
uncountably many distributions, the two variables are 
dependent.  
 
This ingenious Bayesian argument is used for the 
faithfulness assumption, and assumes that all probability 
distributions are equally likely. This latter assumption runs 
into difficulty, clearly expressed by Cartwright (1999). She 
states  

It is not uncommon for advocates of DAG-techniques 
to argue that cases of cancellation will be extremely 
rare, rare enough to count as non-existent. That seems 
to me unlikely, both in the engineered devices that are 
sometimes used to illustrate the techniques and in the 
socio-economic and medical cases to which we hope 
to apply the techniques. For these are cases where 
means are adjusted to ends and where unwanted side 
effected tend to be eliminated wherever possibly, 
either by following an explicit plan or by less 
systematic fiddling.  

 
Elsewhere (Cartwright, 2003), she goes into considerably 
more detail. In essence, she states that Pearl’s argument 
puts “structure first”, and parameters second. However, 
she claims that one cannot have one without the other, and 
gives a convincing example. Birth-control pills may cause 
thrombosis, and thus we try to weaken the strength with 
which they so do. Thus, she concludes “Getting the 
cancellation that stability/faithfulness prohibits is 
important to us”. More generally, she argues, that 
probability and causal structures constrain each other. If 
the probabilities are fixed, then we are constrained from 
building certain causal structures, or, (in the case of 
faithfulness), vice-versa.  
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It may be easier in applied science and/or engineering to 
design a counterprocess to cancel certain effects of a 
process than it is to eliminate the process causing the effect 
in the first place. Thus, a case can be made that Nature, as 
engineer, frequently uses the same ploy. For example, we 
talk about the balance of nature. Since the theory of causal 
graphs cannot get far without the faithfulness assumption, 
this is potentially devastating. 
 
Revisiting the sunscreen example, this provides an unusual 
meta-interpretation for Figure 2(a). Perhaps sunscreen 
usage and melanoma independently conspire to eliminate 
the causal power of skin pigmentation. This doesn’t seem 
plausible. However, in a world where we don’t know the 
true number of causal influences on any effect, it seems 
possible, if experimental error is considered, that some pair 
of them might almost exactly cancel, and that we might 
have unfortunately picked that pair.  

Whether causation implies correlation 

An assumption that precedes the faithfulness assumption is 
an assumption regarding the existence of causality. Karl 
Pearson saw cause and effect as an old and simplistic 
concept, as extreme cases on a continuum of dependence, 
rendered obsolete by the new ideas of association. 
Cartwright’s view suggests that the new theories of 
causation seem to be too accident-prone to be trusted. 
 
This is our view: The world we inhabit cannot be 
experienced directly. It is knowable only through our 
senses, which vary widely among individuals, and 
measurable only through devices constructed in that same 
world that are subject to some error. However, simple 
direct cause and effect relationships may properly exist in 
this world, and may be measurable in some sense, but the 
outdegree and indegree of every node may be prohibitively 
high. If causation doesn’t properly exist in the real world, 
we could, as in other mathematical sciences, use causality 
as an idealization from which to make predictions about 
interventions. 
 
In this ideal world, causality exists. In this ideal world, 
causality implies correlation, almost always. “Almost 
always” is used in the same sense as elsewhere in 
mathematics: there are at most countably many exceptions 
to an uncountable number of truths.  
 
This is qualitatively and philosophically different from the 
converse idea that correlation implies causation, which is a 
logical error. Even if we assume that the presence of 
correlation between two variables implies the presence of 
causation, the correlation says nothing about the direction 
of causation, and furthermore, correlation can be explained 
by both variables being caused by some third variable. The 
next problem is measurement (Kyburg 1984). 
 

In the case of discrete variables, we run into a host of 
epistemological problems. The very first is that of natural 
kinds. If we want to measure the proportion of birds that 
fly, we need a criterion to determine to distinguish birds 
from non-birds. As well, we need a definition of what it 
means to be able to fly. Even if this is possible, there is the 
problem of knowing when we have found all the entities 
we wish to call birds. There is also the fact that world 
doesn’t stay still while we are counting: as Bacchus (1989) 
observes, we might do our counting in the spring, when 
most birds are flightless nestlings. 
 
These problems get even more complicated once we try to 
measure continuous variables, whether with sticks and 
springs or laser beams. A practical theory of causation 
must address these questions of measurement, even if the 
ideas are theoretically robust. 
 
However, to get any data in the first place (apart from 
ideally generated distributions), we must accept statistical, 
or measurement, correlation as a proxy for actual 
correlation. This may seem like a sleight-of-hand, but 
other methods for reliable causal inferences are subject to 
practical problems. For instance, Robins and Wasserman 
(1999), state that 

We are not claiming that inferring causal relationships 
empirically is impossible. Randomized studies with 
complete compliance are a well-known example 
where reliable causal inference is possible. 

 
The many practical difficulties inherent in collecting 
samples for studies, and many practical difficulties 
regarding compliance, in the view of Robins and 
Wasserman, do not undermine the idea of randomized 
studies enough to abandon the idea. (In fact, much simpler 
statistical inferences are subject to practical problems.) 
 
A counterargument is that one may inspect samples and 
discard them if they are found not to be representative, and 
one may observe noncompliance. However, suppose the 
measured correlations are close to correct, but exist for the 
kind of reasons (i.e., cancellation) Cartwright posits. If that 
is the case, we still have a means for testing the predictive 
power of the theory. This is illustrated in the next section 
with an example exploring the sunscreen example using a 
causal visualization tool developed in our group. 

Testing causal theories 

A useful feature of causal theories is that they give us, 
under certain assumptions, the computational power to 
distinguish between seeing and setting. (Freedman (1997) 
uses the terms observation and intervention.) Seeing is the 
common procedure of computing a conditional 
expectation—given a subpopulation of a known 
population, what is the posterior distribution of all related 
variables in the subpopulation? For example, we may wish 



to compute p(M|see(S)), the probability that someone we 
see using sunscreen might develop melanoma. This can be 
computed as the ordinary conditional probability P(M|S). 

 
Setting is about the consequences of actions (or 
interventions) and requires a subtler calculation. An 
individual wants to know the net effect of using sunscreen, 
for that individual, whether sunscreen use decreases or 
increases the overall probability of melanoma, in light of 
conflicting opinions. These two are computed as follows 
(Pearl, 2000): 
 

P(M|see(S))= p(M|DS)p(D|S)+p(M|¬DS)p(¬D|S), 
P(M|set(S)) =p(M|DS) p(D) + p(M|¬DS)p(¬D). 
 

Roughly, to compute the effect of setting S, we assume 
that the effect of sunscreen among all the Ds will have the 
same effect as it does among those who currently use 
sunscreen. (This explains the first multiplicative term in 
the second equation.) We make the same assumption for 
the ¬Ds. Although this formulation goes back to Stotz and 
Wold (1960), it has a simple implementation in causal 
graphs: erase arcs incoming to the set variable, and change 
all distributions involving the set variable accordingly. For 
correctness, see Pearl (2000). 
 

 
Figure 3. Melanoma does not respond much to changes in 
sunscreen. Added red arrows indicate mouse movement during 
interaction 
 
Suppose the resulting model is incorrect as a consequence 
of the case that causal relationships cancel each other out, 
showing melanoma and sunscreen as independent common 
causes of darkness (pigmentation) of skin, and 
mathematically is a minimal representation of possible 
causal relationships in a world coherent with the raw data. 
The user intuits this is incorrect and eventually constructs 
the correct model of causal relationships. 
 
Figure 3 shows the results of a user exploring seeing using 
a visualization tool we have developed (Neufeld et al, 
2005). The user grabs the value of the sunscreen variable, 
drags it up and down, and finds that sunscreen and 
melanoma are unrelated, as found by the original data 
mining tool (e.g., TETRAD). The statistical explanation is 
that darkness acts as a suppressor variable or confound. 
Light-skinned individuals are more likely to use sunscreen 
than dark-skinned people. However, they are also more 

likely to develop melanoma, exactly canceling the effect of 
the sunscreen. 
 
An experienced data analyst would revisit the data and ask 
what happens when sunscreen is manipulated after 
darkness is first fixed at some value Figure 4 illustrates 
what needs to be done. The user first chooses to see a fixed 
value for the darkness variable, and then sees a range of 
values for sunscreen by dragging it up and down. The pairs 
of before and after images in Figure 4 now reveal the 
correct relationship between sunscreen and melanoma. 
Whether darkness is high or low, fixing darkness, and then 
increasing sunscreen results in a decrease to melanoma.  
 

 
 

 
Figure 4. Melanoma responds to seeing changes in sunscreen 
within a skin type. The top pair of graphs shows the change in 
melanoma with sunscreen for light-skinned persons, and the 
bottom pair shows melanoma change for dark-skinned persons. 
Ranges differ, but melanoma incidence consistently decreases 
with increased sunscreen usage. 
 
The user needs to perform a double seeing operation 
because there are two paths of probabilistic influence from 
sunscreen to melanoma that cancel each other out.  
 
Because there are few potential confounds in this three 
node world, trying all see operations is not logistically 
difficult. However, in a richer dataset, this process may be 
cumbersome. Setting summarizes this combination of 
actions, as shown in Figure 5.  
 
Moreover, the predictions from the hypothesized cause-
effect relationships give us something we can plausibly 
check, if not in the real world, in the idealized world.  
 



 
 
Figure 5. Melanoma responds appropriately to setting of 
the sunscreen variable. 

Conclusions and ongoing work 

Faithfulness is presently defined as the assumption that all 
independencies are “true” independencies, that is, 
probabilistic independencies are causal independencies. 
We have replied to a criticism of faithfulness by 
suggesting that the intuitive semantic content of this 
assumption is that causation implies correlation. This 
idealization, which is almost always true, provides a basis 
for constructing and testing causal theories. We are 
exploring other characterizations. We have shown how 
predictions of such a theory can be explored, using a 
visualization tool that acts as a cognitive prosthetic 
(Neufeld et al, 2003). These predictions can be tested 
either against our intuitions or with experiments or further 
measurements, and the results can be used to further 
constrain the data mining tool. In ongoing work, we are 
looking both at improving the visualization tool, and at 
other characterizations and criticisms of faithfulness. 
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