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Abstract

The principle of choice often expresed as a
continuity axiom recommends a single ordering o
both risklessand risky prospeds. An analyticd device
contributed by Pfanzagl is extended here to show that
riskless versus risky monetary comparisons ougtt to
be more nuanced, even from a perspedive
sympathetic to the usual axioms. Allais example
illustrates a related pdnt to oppae the usua theory.
Although the ntinuity difficulty is genuine, the
consequences of conceding frank namative tolerance
of some risklessrisky cortinuity violations on the
spedfic grounds reveded are not caastrophic for the
orthodoxaxioms.

Introduction

Von Neumann and Morgenstern’s (1953 axiomatic
development of expeded utility for dedsion making uncer
risk finds artificial intelligence aplication in the widely
fielded technique of influence diagrams. Normative
expeded uility aso looms large in a motivation o
orthodox Bayesianism, descended from Ramsey (1926
and Savage (1972, prevalent among urcetaintists in the
artificial intelligence @mmunity andin the world at large.

Criticism of the receéved dedsion axioms has often been
based on puze problems, where some peopl€e’'s intuitions
abou rationa risk-taking behavior conflict with expeded
utility principles. One of the best known and longest-lived
of these problems was posed by Maurice Allais (1953.

Some people prefer a lottery offering a 10% chance of
some positive anourt of money (cdl it great) and a
complementary chance of no gain na loss (cdl that 0)
rather than a lottery offering an 11% chance of a smaller-
than-great positive amount (cdl that good) and a
complementary chance of 0. The same people dso prefer
to take the good amourt rather than a lottery with an 8%
chance of good, a 10% chance of great, and a 1% chance
of 0. Thereis no uility function on{ 0, good, great } that
agrees with bah of these choices.

From its beginning, what spedfic asped of the receved
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theory Allais puzze thredens has been murky. The alitor
of Econometrica documented that difficulty in a note
which ran with Allais’ paper. Allais portrayed himself as
lancing Savage's sure-thing principle, but that principle
intentionally subsumes sveral strands of the von
Neumann and Morgenstern argument, and aher ideas as
well.

Ellsberg’'s (1961 threecolors puzzZle shares Allais
sure-thing target. Ellsberg, however, tells us of his more
spedfic doult, whether a dedsion maker seleds a single
probability distribution when gven a set of passble ones.

Only two dstinct outcomes appea among all of
Ell sberg's options. Presumably, youwould pick the option
with the greaer probability of the better outcome, if you
had chosen a specific probability to gude your chaoices.
Someone who hed could rejed al of the usual utility
theory except for probability dominance (which even
Allais acceted, seepage 518 d his 1953 @per), and till
give fully orthodoxanswersin Ell sberg.

In Allais, predse probabilities are given. Probability
dominancedoes nat dedde any of Allais' choices. The two
puzzes thus raise diff erent concerns, despite their common
sure-thing conflict. A target more spedfic than sure-thing
might help, both to settle whether Allaisredly did reved a
normative defed in orthodox theory, and if so, what
shoud be dore @ou it.

The thesis of this paper is that there is an authentic
difficulty in the recaved theory’s treament of choices
between cetainties and risky lotteries with money
outcomes, like the dhoice between good and the threeway
lottery in Allais. To establish the authenticity of the
difficulty, we recdl some theoreticd results of Johann
Pfanzagl (1959, whoisfairly described as working within
the von Neumann and Morgenstern tradition.

Pfanzagl’s investigations into the cetainty equivalents
of lotteries led to the regularization d some theretofore
informal dedsion modeling pradices, which was an
important advance Nevertheless loose threads remain.
Those ae eamined here, and found sufficient to
reommend toleration o behavior of which Allas
violations furnish famili ar examples.

The anomaly contradicts what is typicaly expresedin a
continuity axiom. Axiomatizaions differ, and elements of
the same principle might occur in aher axioms. The



establishment of one difficulty hardly excludes the
posshility of others. This much, however, is anomalous,
and it isthat which will be discussed here.

Dedsion theory has two roles: as a foundiional
comporent of other theories, and as an applied dscipline
in its own right. Unexplained nonrconforming bu
rationally tolerable behavior would imperil both.

It emerges that the portion o dedsion theory which
appeas largely untouched by the anomaly, the comparison
of risks with ather risks, looks much the same & the
familiar theory, and accomplishes amost al of the same
things in much the same ways.

Moreover, there isno pradicd cause to refrain from the
comparison d certainties with risks, only reason to take
some cae. The requisite degree of cae is drealy
exercised by many praditioners during uility curve and
subjedive probability assesanent, and ory dightly
excedls existing precaitionsin sensitivity analysis.

Dedsion Axioms

Many restatements of von Neumann and Morgenstern’s
axioms have gpeaed. The following acourt is typicd,
except that the cntinuity axiom is broken into two parts.

Lottery spedficaions are denoted as triples, eg.
(p:a b) Thefirst element p is the probability of receving
the second element, with a cmplementary probability,
1-p, of recaving the third element. The second @ third
element may be agrant or ancther lottery. The enclosing
devicemay be parentheses, square bradkets, or braces.

As is usual, the akioms and a theorem they imply are
written for dichotomous lotteries. The eay standard
extension from two to many alternatives is omitted here.

In writing abou the aioms, we shall use the symbad
“>" asin A= B. Thesymbad “~", asin A~ B, is $horthand
for A 2 B and B = A The symbd “>", as in
A> B, is dorthandfor A= B but not B> A.

A = B is often read “B is nat strictly preferred to A.”
While that is afine reading, consider also “It could happen
that the dedsion maker, holding B and being able to
exchange it fredy for A, would do so.” Exchanges figure
prominently in Pfanzagl’s work soonto be discussed, and
advice dou exchangesisthe paoint of the theory.

Ordering of Outcomes. For any oucomesa, b, c:a=b or
b>aorbath;ifa=band = ¢, thena=c;anda=a

Since our current concern is exclusively with money,
this axiom seems uncontroversial.

Transitivity. For any lotteries A, B, C: if A>=B andB >
C,thenA =C.

This axiom summarizes one view of the force of the
receved theory’s prescriptions. Suppase that one of the
lotteries A and C isto be chasen. Suppae we dso ndice
that there is a series of exchanges beginning with C and
ending with A which, if offered, we would accept at eath
step of the series, and there is at least one of those steps
which wewould na willi ngly unda

The eistence of such a series is a plausible rebutter to
the propasition that we ough to choose C in the adua
choicebefore us. When we dhoose A instead of C, then the
series’ existence furnishes a plausible explanation and
judtification d that choice

The aiom aso says that having found a strict, “one
way” series of free exchanges leading from C to A, then
we asme that there is no aher series of exchanges
leading from A bad to C. If that asuumption is corred,
then the force of the aguments of the precaling paragraph
is that much stronger. If not, however, then that would
contradict this axiom. The defea of that assumption will
be sdient in the upcoming dscusson d Pfanzagl
exchanges, and hov well exchange aguments fare withou
the @amption's bostering will influence the
recommendations for repairs.

Probability Dominance For any oucomes a, b where
a= b, and any probabilitiesp, g: p=2q = (p:a b) =
(g ab).

There ae some lotteries for which the diredion d free
exchange seans compelling. The aiom aso justifies our
notation for lotteries, in which orly the probabiliti es, and
nat the propasitions, appea.

Compound Probability. For any oucomes a, b
threeprobabilitiesp, g, r: [p: (g ab), (ra
(pg+r-pr: ab).

Independence For any probability p and any four lotteries
or outcomes A, B, C, and D: if A = Cand B = D, then
(p:A,B)=(p:C,D).

These two axioms expressand apply the notion that the
scope of the theory is restricted to situations where dl that
matters to the dedsion maker are the grants and whether or
nat he or she atains them, as gauged by probabiliti es. That
ideahas arealy been woven into the notation chasen for
lotteries, as just noted.

Compound pobability extends the ideain a blunt and
straightforward way. Independence has historicdly been
controversial, but it has a simple exchange interpretation.
If we owned ( p: C, D), then we would be willi ng to swap
C to get A if the propasition whaose probability is p comes
true. We @uld commit to doso in advance of knowing the
truth. Similarly, we @muld commit in advanceto swap D to
get B. The original lottery plus these two commitments is
constructively identicd to aayuiring the lottery (p: A, B)
on the same propasitions. But we do nd care éou the
propasitions, only the probabiliti es, and so the aiom is
asumed as gated.

That the aioms entail a restriction onthe scope of the
theory was fully adknowledged by von Neumann and
Morgenstern. Casinos plainly operate on aher principles,
emphasizing the reaedional posshilities of gambling.
Other occasions of risk may be ungeasant.
Continuity of Risk. For any oucomesa=b > c=>d, and
for probability q in the interval ( 0, 1), then there is a
unique probability p in the interval ( 0, 1 ) such that
(g:b,c) ~(p:ad).

The aiom is phrased so as to confine its sope to

and any
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comparisons among risky lotteries, and to leave open for
the moment the question d comparison d risklessto risky
prospeds. The uniqueness of p could be replaced with a
simple istence asumption; transitivity and probability
dominancewould establish its uniquenessif p existed.
Expeded Utility Theorem. There eists a function U()
whose domain is the set of outcomesin theinterval [ x,y ],
such that for lotteriesA = (p: a,b)andC=(q: ¢, d) with
outcomes in the interval ( X,y ): A=2C = pU(a) +
(1-p)U(b)=qu(c)+(1-q)u(d).

A sketch proof appeas in the gpendix. Except for its
steps (1) and (2), readers will recmgnize the method d
proof as a dose paraphrase of the usua contemporary
proofs of the rrespondng recdved theorem, eg.
compare with that of Peal (1988. The exceptiona steps
(1) and (2) revive Ramsey’s “ethicdly neutral propasition
of probability one-half.”

The method d prodf is visibly to construct a series of
accetable free echanges lealing from C to A. An
expeded utility cdculation, then, expeditiously deteds the
existence of an exchange series withou the bother of
acdually constructing ore. If the outcome of the cadculation
is a strict inequality, then we asume from transitivity that
thereis no series of free exchangesin the other diredion.

Finaly for this sdion, here is a version d usud,
recaved continuity axiom.

Continuity. For any oucomesa= b = c: thereis a unique
probability p for which (p: a ¢) ~b.

Pfanzagl

If the receved version d the @rtinuity axiom is acceted,
then it is easily understood hav the quantity b mentioned
in the akiom statement came to be cdled the “cetainty
equivalent” of the lottery ( p: a, ¢ ). Johann Pfanzagl
(1959 accepted the recdved axioms, and proposed a
further axiom of his own,

Consistency. For amourts of money a, b, ¢, and x if
(p:a c)~b,then (p: atx, ctx ) ~ b+x.

Among Pfanzagl’ s arguments was one based uponwhat
will be cdled here a ‘Pfanzagl exchange.” Someone who
owned the lottery ( p: a+x, c+x ) would fredy trade it for
the lottery (p: a, ¢) onthe same eventsif a'so gven aside
payment of x. The dedsion maker's stuations before and
after the exchange ae identicd if the payment coincides
with the resolution o the lottery, and the situation
improves (asuuming the usual ideas about the diredion o
time preference) if x > 0 and the money is paid now, while
the lottery is held to maturity.

We shall dencte the situation o receving alottery L and
aside payment of x as{ L, x}. Unless sated atherwise, we
shall mean that x is paid now, and that lottery L is resolved
sometime later. The two elements are not otherwise bound
to ore ancther. The money (if x > 0) may be spent and the
lottery may be exchanged as the dedsion maker wishes.

Pfanzagl went on to show that only two families of

utility functions (i.e. the functions au() + b, a > 0; all of
which read the same epeded uility dedsions as U()
itself) conform to bah the usua axioms and Hs
consistency axiom. One family, exporentia utility,
displays constant risk aversion, i.e. the cetainty equivalent
of alottery does nat change if the dedsion maker’s wedth
changes. The other, linea utility, displays a spedal kind o
constant risk aversion. It always values lotteries as equal to
their expeded money value, regardlessof existing wedth.

A full appredation d the role of risk aversion in
dedsions came dter Pfanzagl’s dudies, based on the
seminal work of Pratt (1964). It soon kecane gparent that
constant risk aversion was descriptively hopeless and that
any namative cae for obligatory constant risk aversion
was untenable.

People gpea typicdly to be deaeasingly paositive risk
averse, espedally when fadng aduarialy fair or favorable
risks. That is, people seem to value lotteries at less than
their aduaria value (the positive part). Further, the dfed
deaeases as people get richer, e.g. perhaps one reeds
(.5 $12Q - $100), a favorable lottery, when poa, but
maybe accets it when richer. There is nothing irrational
abou that pattern of behavior.

Pfanzagl’s proposed axiom was therefore rejeded as an
obligatory feaure of rational choice, but is not held to be
irrational if that is how you fed abou risk. Praditioners
were cattioned that if a situation like { ( p: a, ¢), x }
appeaed in adedsion problem, then it was to be recast as
the lottery ( p: atx, c+x ), and rever the other way around
Indeed, al outcomes were to be mded as the “terminal
wedth” for utility computation puposes if there was any
chance of ambiguity (athoughlottery outcomes routinely
continue to appea in problem statements described as
changesin wedth, aswe do here).

A further refinement of pradice darified the “buying’
and “selling” price of a lottery. Both puchases and sales
obviously change the dedsion maker’s wedth, and so may
affea the willingress to accept a lottery and the value
imputed to it. The “selling price” was defined as the wedth
change mrrespondng to the “cetainty equivalent” that
appeas in the mntinuity axiom statement. The buying
price for the lottery ( p: a, ¢ ) becane that amourt b for
which the lottery ( p: a-b, c-b) has a cetainty equivalent
of O (that is, the status quo as asessd at one's wedth
before aquiring the lottery).

It is essy to show that the buying and selling prices
agreein signfor all utility functions, and so agreein value
a zeo. It is also a standard result that for deaeasingly
pasitive risk averse dedsion makers, the way most people
seam to be, the buying priceis lessthan the sdlling price
when bah are positive.

It is uncontroversial that the modeling conventions and
definiti ons which acaommodate non-constant risk aversion
are mnsistent in the sense that the same @nstellation o
risks and gants will yield the same expeded utility values
regardless of how the problem is described. The
conventions and dfinitions do nd deny Pfanzagl's
observationthat { (p: a, c), x} restates ( p: a+x, c+x), but
rather they integrate thisfad into dedsion pradice



A Pfanzagl Exchange Puzze

A deaeasingly paositive risk averse dedsion maker has
initial wedth w and hdds a favorable and acceptable
lottery ( p: & ¢ ) whose selling price is s and whose
buying priceis b, s> b > 0. If asked, and after consulting
the recaved theory for guidance the dedsion maker
asserts that he or she will accet no sum lessthan s in
exchange for the lottery, as the theory coursels.

The dedsion maker is offered the mbination
{ (p: ab, c-b), b} toreplacethe lottery he or she owns,
and accepts this Pfanzagl exchange for the (dlightly)
superior situation that it is compared with the original
lottery. An oppatunity to consume, perhaps to enjoy a
med at an expensive restaurant, then presents itself, which
leads the dedsion maker to spend the b to experience the
good The eperience ends while the residual lottery,
(p: a-b, c-b), remains pending.

A lottery deder then dffers to take the residual |ottery
from the dedsion maker withou compensation to either
party. From the deder’s point of view, this may be agood
ded, sincethe aduarial value of thelottery is pasitive.

After consulting the recaved theory, the dedsion maker,
whose wedth is once ajain w, cdculates the selling price
of the lottery as zero. Finding zero to be offered, the
dedsion maker surrenders the lottery to the deder, as the
theory courselsto befair.

A series of free echanges thus exists in which the
dedsion maker would sell the origina lottery (literaly,
accet a sum of money and surrender the lottery) for less
than s. Part of our confidence in the reasonablenessof the
receved theory is the ssamption d the transitivity axiom
that no such series exists. Had the deder offered b at the
outset for ( p: a, ¢ ), the eistence of this sries would
rebut to the dedsion maker’'s assertion that the minimum
selling price, determined by the riskless sim that appeas
in the recaved continuity axiom, wass.

An aggressve deder could resolve the impass & the
outset by writing the cmbination{ ( p: a-b,c-b), b} and
making the Pfanzegl exchange, which is a riskless
transadion for both parties. The deder would then produce
arestaurant guide, let nature take its course, and acast the
dedsion maker as he or she left the edery.

This is not a Dutch book poblem. Nobody exploits
anybodyelse, and the deder can tell the dedsion maker all
abou the plan. Note dso that except for that
misunderstanding abou what the minimum selling priceis,
the theory gives the dedsion maker good advice
throughou. The Pfanzagl exchange is harmless and what
the theory coursels at the restaurant doa acarately
refleds the dedsion maker's preferences and
circumstances at the time.

The story presents no dfficulty for the user of a wnstant
risk aversion uility function, for whom the buying and
salling prices are equal. Nor would there be adifficulty for
the user of any utility function if the buying and selling
prices of the original lottery ( p: &, c) were zeo.

The story ill ustrates that it may be difficult in principle
to answer the question “What sum of money is worth the

same to you as owning the lottery L?” For many people,
including some willi ng to consult the theory for advice, the
truth is “It depends.” The recadved continuity axiom
asaumes a different kind d answer, and requires that kind
of answer for its confident and unteeded application.

That is, regardless of any spedfic “value” that may or
may nat be asciated with a lottery, the lottery might be
willi ngly exchanged for any of several amounts. The bases
for that diversity of answers to the question d worth are
themselves principles of choice used in bulding the
theory, in concert with the nature of money and its uses.

Allais violations appea to be a occasion when
something upon which the truthful answer depends is
relevant. Among the possble mnsiderations is the
following hypdheticd series of exchanges.

Let L be the threeway lottery in Allais, and L* be that
lottery with ead of its outcomes reduced by the anount
good. The combination {L*, good} is nat inferior to L.
Suppase one has consumption oppatunities (or exisitng
family resporsihiliti es, or other pressng resource daims),
so that one has immediate uses for some part ¢ of good
besides gaming.

Depending uponthe buying price of L* and the size of
c, it coud be that good-c aone is preferred to
{L*, good-c}; if so, then youwould gve avay the residual
lottery if you could. The state good-c and the satisfadion
of the acmpeting claims for resources can be diredly
achieved by chocsing good, but cahna be diredly
achieved by choasing L.

A strong continuity principle beset by paradox when
confronted with the implicaions of what money is and
how it can be used furnishes no gounds for rgeding as
irrational violations of the principlein monetary problems.

Attention now turns to the extent of the damage and to
strategies for repair.

Consequencesfor Other Theories

The recdved axioms' domain o origin is Von Neumann
and Morgenstern’s game theory. Pfanzagl pointed ou that
von Neumann and Morgenstern's concept of “strategic
equivalence” adoped by them for n-person games,
implies the same requirement as his own consistency
axiom, that utility functions be @ther linea or exporential.

As we have seen, restricting the form of the utility
function to that extent is now widely held to be unsuitable
for general-purpose dedsion theory. On the other hand, it
is quite posdble that the spedfic domain o strategic
choice may have dtributes which justify the restriction.
Clealy, von Neumann and Morgenstern thougtt that such
atributes were present, athoughthey presumably did na
know how the dtributesimply the restriction.

If they are right abou the atributes, then the aioms, in
the mntext that von Neumann and Morgenstern deployed
them, would be immune to Pfanzagl exchange puzzles of
the kind dscused in this paper. While puzzles do reved a
difficulty in generalizing the aioms to ather domains, no



change in the theory of the spedfic domain is necessarily
suppated by the existence of challenges in generaizing
one of its elements.

In discussng aher theories which rely on expeded
utility, let us begin by saying that confining the theory’s
scope in money choices to comparisons among risks and
between risks and the status quo is not even remotely being
advocated here. Nevertheless it is interesting to consider
how littl e diff erence that would make to expeded uility’s
role s afounchtional element of some other theories.

For example, experiment design in statistics, to the
extent that it involves money, like the epenses of
experiments, rarely offers a literal stipend a fine & an
aternative to urcertain and costly experimentation. Insofar
as experiment design involves things other than money,
such as the indienable worth of aiding the progress of
knowledge, then it is untouched by anything said here.

Prominent among the theoreticd uses of the receved
theory is its contribution to gambling-based semantics and
justifications for subjedive probability. But the isaue there
isto show how probahiliti esin the open urit interval (0 1)
can describe degrees of uncertainty. Since the basic
expeded utlity theorem is aure, both as to truth and as
to method d demonstration, the aguments based uponit
are dso seaurein (0 1). Asfor how the boundng integers
denating certainty might be mbined with fradions
denating urcertainty, that point was well covered by Boole
in the Nineteenth Century.

Confinement of scope of continuity would na entirely
moat Allais critique. He discusses at length the problem
of “nea certainties” No reasonable theory could
recommend any dramatic distinction between the anourt b
andtherisk (.999 b b+1 ), which must be similar in affed
and effed to b itself. The lottery even shares with money a
key feaure which drives the Pfanzagl exchange puzze,
effedive fungbility. If those truly are the odds, then |
might well offer to pay the restauranteur (.999 b b+1) for
my med, andwe would bah cdl it square.

While this untidiness may be a oncern for theorists
relying uponexpeded uility, it is not a new concern. It is
well known that judgments abou very small probabiliti es
(i.e. a cmmon spedes of nea certainty) are fraught (von
Winterfeldt and Edwards 1986). Maybe, then, what Allais
is telling theorists abou nea certainty is ©mething that
they would discover for themselves onenough

Conseyuencesfor Dedsion Craft

There is a cae for retaining the @ntinuity axiom
unaltered, wartsand al. The alvice the theory gives is
good advice, well worth thinking about. In the Pfanzagl
exchange puzze, “Hold ou for a better price” and “Under
the new circumstances, settle for less’ are both defensible
based on the information that would be available to any
advisor at the times when adviceis ugh.

S0, too, isthe alvicein Allais good Savage recourts his
mental journey from champion d the receéved theory,
through hs descent into violation, to his re-embrace of

orthodoxy His epiphany came when he mnstructed ore of
those series of exchanges the theory guarantees to exist.

He imagined literal lottery tickets, and saw the catainty
of good as owning three blocks of tickets whase
probabiliti es of winning add upto 100%. Both of Allais
hypaheticds, he then redized, ask whether he would
forfeit a “1% chance of good” ticket in order to exchange a
“10% of good” ticket block for a “10% chance of great”
block.

This is an atogether sensible way to view the situation.
There ae other ways, too. Allais origina responcents,
likely among them European survivors of a then-recent
devastating war, might have seen that the cetainty of
good, with the right to leare the encourter with it in hand,
buys foodand fuel, whil e the illi quid chance of good in the
other chaicehas no current use except to be held or traded.

Nevertheless that Savage's is not the only way to look
at the stuation furnishes no argument for not at least
considering the theory’s perspedive. The aility of the
recaved theory to provide its perspedive relies on its
unmodified axioms.

A rational person might consider a choice from the
theory’s perspedive and then dedine its advice in some
situations where monetary certainties and rea certainties
contend with heatier risks. On this view, what the
receved continuity axiom says abou risks and certainties
is rationaly tenable, but compliance is not rationaly
obligatory. That has me implicaions for pradicd
dedsion modeling.

One pradicd task is the assssnent of a dedsion
maker's utility curve and subjedive probabiliti es, often
based on hypdtheticd betting. As von Winterfeldt and
Edwards (1986 report, praditioners have long keen wary
of posing for curve assessment purposes hypaheticd bets
which feaure dhoices between risks and amourts for sure.
The basis for that wariness may be cncen abou a
psychoogicd “certainty effed,” whose ampiricd
foundationis arely in part attributable to Allais. Be that as
it may, the precaitions arealy in paceseem adequate to
prevent miscdibration from anything dscussed here.

Later on in a dedsion modeling episode @mes
sensitivity analysis, which chedks that utility and
probability values found to be aucia to the fina
remommendation have been acarately measured. “Nea
cetainties,” for example, might and already do receve
some of the atentionthey need at this point.

The ontinuity anomaly is not a matter of acarate
measurement. It isthe situation itself that warrants srutiny
for variably risk-averse dedsion makers. Thus, existing
consensus pradice shodd be enlarged to include re-
examination d al choice junctures which dfer the
possbility of relesse, or nea-releasse, from monetary
uncertainty, whether or not the numbers involved present a
“close cdl” in expeded utility value.

Also urlike eisting sensitivity analysis, this cheding
must be dore & the problem description level, not on the
model. Modelers routinely “rearange” lotteries leading to
chaoices into choices between lotteries, and vice versa. The
isale of concern is whether or not the adua dedsion



Situation, as oppased to its “equivalent” model, offers the
posshility of release.

The release that the sensitivity analyst is looking for is
the gpeaance of resources which are @le to leave the
frame of the problem. One example would be aterminal
grant, like the one in Allais' problem (if you chocse good
for sure, then bah youand the money leave the problem).

For ancther instance, in a dightly more complicaed
version d the ealier Pfanzegl exchange puzzle, suppcose
the dedsion maker were offered the oppatunity to replace
(p: a, b) with either the Pfanzagl exchange or else the
amourt (b + s)/2. That amourt is lessthan s, and the theory
would bluntly coursel rejeding it, even as the Pfanzagl
exchange isremgnized to be harmless

A shrewd courselor would ask the dedsion maker “how
sure ae you that you will hold orto that side payment of
b?” The dedsion maker may in fad be better off taking the
(b + 9)/2, despiteits being lessthan s.

Then again, the dedsion maker might intend to hdd
onto the side payment through the resolution d the
residual lottery (of pasitive value to the dedsion maker if
his or her wedth is greaer than w, asit now is, and will be
so long as the side payment is held). If deders lurk and
bistros bedon, then there is no way to know which is
redly the better exchange, except to ask.

Conclusions

The receved dedsion theory has difficulty when variably
risk averse dedsion makers compare monetary certainties
with monetary risks. Apped to the theory thus fails to
exclude Allais violations, among dher things, from
rational respedability. Nettlesome thoughthat may be, the
consequences of the anomaly are neverthelessmild.

There is <ant thred to the use of the expeded utility
arguments as comporents of other theories, nor is any
strenuots reform of dedsion analyticd routine indicated.
The recaved theory as it stands reliably provides advice
worthy of consideration, abeit not of uncriticd
compliance, by areasoning agent confronting risk.

Still, however mild, there redly is a problem with the
usua dedsion theory when it confronts variable risk
aversion and liquidity. That warrants ©me caition kefore
implementing the theory’s prescriptions, or deaying the
irrationality of other incompatible alvice
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Appendix

Expeaed Utility Theorem. There exists a function U()
whose domain is the set of outcomesin theinterva [ x, y ],
such that for lotteriesA = (p: a b)andC=(q: ¢, d) with
outcomes in the interval ( X,y ): A>2C = pU(a) +
(1-p)U(b)=qu(c)+(1-q)u(d).

Sketch Prodf. Despite the lack of a spedficaion d how
riskless amourts are wmpared with risky lotteries, the
proof of the theorem is very similar to the proofs of the
correspondng theorem from the receved axioms.

The basic steps are: (1) for zin ( X, y ) define U( z) asthe
probability for which ( .5:z, x) ~[U(z):y, x]. The
existence and uriquenessof that probability for a given z
foll ows from continuity of risk.

For the O diredion:

(2) Observethat A = Cjustwhen (.5A,x)=(.5C, x),
from independence and the ordering d outcomes. Note
that in applying the independence aiom here, lotteries
have been compared orly with lotteries, and risklessgrants
compared orly with risklessgrants.

(3 From compound pobability, ( 5 A, x ) ~
[pr (B5ax),(5bx)]l,and (5 C, x) ~
[g:(.5:¢,x),(.5:d,x)]

(4) By independence substitute [ U( a ): vy, x ] for
(.54 x), and substitute similarly for the lotteriesin b, c,
and d ontheright sides of thetilde expressonsin step 3.
(5) Rearange the resulting { p: [ ( U( a ): vy, x ],
[ UG b ) vy, x ] }by compound pobability to
[pU(a) +(1-p)U(b): vy,x], and procea similarly for
the other expressonin c and d

(6) Since the lotteries from (5) both involve the same
prizes, conclude from probability dominance that
pu(a) +(1-p) U(b)=quU(c) +(1-q)u(d).

The agument for the converse goplies geps parald to (2)
through(5) in reverse order. //



