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Abstract
The principle of choice often expressed as a
continuity axiom recommends a single ordering of
both riskless and risky prospects. An analytical device
contributed by Pfanzagl is extended here to show that
riskless versus risky monetary comparisons ought to
be more nuanced, even from a perspective
sympathetic to the usual axioms. Allais’ example
ill ustrates a related point to oppose the usual theory.
Although the continuity diff iculty is genuine, the
consequences of conceding frank normative tolerance
of some riskless-risky continuity violations on the
specific grounds revealed are not catastrophic for the
orthodox axioms.

Introduction 

Von Neumann and Morgenstern’s (1953) axiomatic
development of expected utilit y for decision making under
risk finds artificial intelli gence application in the widely
fielded technique of influence diagrams. Normative
expected utilit y also looms large in a motivation of
orthodox Bayesianism, descended from Ramsey (1926)
and Savage (1972), prevalent among uncertaintists in the
artificial intelli gence community and in the world at large.

Criticism of the received decision axioms has often been
based on puzzle problems, where some people’s intuitions
about rational risk-taking behavior conflict with expected
utilit y principles. One of the best known and longest-lived
of these problems was posed by Maurice Allais (1953).

Some people prefer a lottery offering a 10% chance of
some positive amount of money (call it great) and a
complementary chance of no gain nor loss (call that 0)
rather than a lottery offering an 11% chance of a smaller-
than-great positive amount (call that good) and a
complementary chance of 0. The same people also prefer
to take the good amount rather than a lottery with an 89%
chance of good, a 10% chance of great, and a 1% chance
of 0. There is no utilit y function on { 0, good, great } that
agrees with both of these choices.

From its beginning, what specific aspect of the received
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theory Allais’ puzzle threatens has been murky. The editor
of Econometrica documented that diff iculty in a note
which ran with Allais’ paper. Allais portrayed himself as
lancing Savage’s sure-thing principle, but that principle
intentionally subsumes several strands of the von
Neumann and Morgenstern argument, and other ideas as
well .

Ellsberg’s (1961) three-colors puzzle shares Allais’
sure-thing target. Ellsberg, however, tells us of his more
specific doubt, whether a decision maker selects a single
probabilit y distribution when given a set of possible ones.

Only two distinct outcomes appear among all of
Ellsberg’s options. Presumably, you would pick the option
with the greater probabilit y of the better outcome, if you
had chosen a specific probability to guide your choices.
Someone who had could reject all of the usual utilit y
theory except for probabilit y dominance (which even
Allais accepted, see page 518 of his 1953 paper), and still
give fully orthodox answers in Ellsberg.

In Allais, precise probabiliti es are given. Probabilit y
dominance does not decide any of Allais’ choices. The two
puzzles thus raise different concerns, despite their common
sure-thing conflict. A target more specific than sure-thing
might help, both to settle whether Allais really did reveal a
normative defect in orthodox theory, and if so, what
should be done about it.

The thesis of this paper is that there is an authentic
diff iculty in the received theory’s treatment of choices
between certainties and risky lotteries with money
outcomes, like the choice between good and the three-way
lottery in Allais. To establish the authenticity of the
diff iculty, we recall some theoretical results of Johann
Pfanzagl (1959), who is fairly described as working within
the von Neumann and Morgenstern tradition.

Pfanzagl’s investigations into the certainty equivalents
of lotteries led to the regularization of some theretofore
informal decision modeling practices, which was an
important advance. Nevertheless, loose threads remain.
Those are examined here, and found suff icient to
recommend toleration of behavior of which Allais
violations furnish famili ar examples.

The anomaly contradicts what is typically expressed in a
continuity axiom. Axiomatizations differ, and elements of
the same principle might occur in other axioms. The



establishment of one diff iculty hardly excludes the
possibilit y of others. This much, however, is anomalous,
and it is that which will be discussed here.

Decision theory has two roles: as a foundational
component of other theories, and as an applied discipline
in its own right. Unexplained non-conforming but
rationally tolerable behavior would imperil both.

It emerges that the portion of decision theory which
appears largely untouched by the anomaly, the comparison
of risks with other risks, looks much the same as the
famili ar theory, and accomplishes almost all of the same
things in much the same ways.

Moreover, there is no practical cause to refrain from the
comparison of certainties with risks, only reason to take
some care. The requisite degree of care is already
exercised by many practitioners during utilit y curve and
subjective probabilit y assessment, and only slightly
exceeds existing precautions in sensitivity analysis.

Decision Axioms

Many restatements of von Neumann and Morgenstern’s
axioms have appeared. The following account is typical,
except that the continuity axiom is broken into two parts.

Lottery specifications are denoted as triples, e.g.
( p: a, b ) The first element p is the probabilit y of receiving
the second element, with a complementary probabilit y,
1-p, of receiving the third element. The second or third
element may be a grant or another lottery. The enclosing
device may be parentheses, square brackets, or braces.

As is usual, the axioms and a theorem they imply are
written for dichotomous lotteries. The easy standard
extension from two to many alternatives is omitted here.

In writing about the axioms, we shall use the symbol
“≥” , as in A ≥ B. The symbol “~” , as in A ~ B, is shorthand
for A ≥ B and B ≥ A. The symbol “>” , as in
A > B, is shorthand for A ≥ B but not B ≥ A.

A ≥ B is often read “B is not strictly preferred to A.”
While that is a fine reading, consider also “ It could happen
that the decision maker, holding B and being able to
exchange it freely for A, would do so.” Exchanges figure
prominently in Pfanzagl’s work soon to be discussed, and
advice about exchanges is the point of the theory.

Ordering of Outcomes. For any outcomes a, b, c: a ≥ b or
b ≥ a or both; if a ≥ b and b≥ c, then a ≥ c; and a ≥ a.

Since our current concern is exclusively with money,
this axiom seems uncontroversial.

Transitivity. For any lotteries A, B, C: if A ≥ B and B ≥
C, then A ≥ C.

This axiom summarizes one view of the force of the
received theory’s prescriptions. Suppose that one of the
lotteries A and C is to be chosen. Suppose we also notice
that there is a series of exchanges beginning with C and
ending with A which, if offered, we would accept at each
step of the series, and there is at least one of those steps
which we would not willi ngly undo.

The existence of such a series is a plausible rebutter to
the proposition that we ought to choose C in the actual
choice before us. When we choose A instead of C, then the
series’ existence furnishes a plausible explanation and
justification of that choice.

The axiom also says that having found a strict, “one
way” series of free exchanges leading from C to A, then
we assume that there is no other series of exchanges
leading from A back to C. If that assumption is correct,
then the force of the arguments of the preceding paragraph
is that much stronger. If not, however, then that would
contradict this axiom. The defeat of that assumption will
be salient in the upcoming discussion of Pfanzagl
exchanges, and how well exchange arguments fare without
the assumption’s bolstering will i nfluence the
recommendations for repairs.

Probabili ty Dominance. For any outcomes a, b where
a ≥ b, and any probabiliti es p, q: p ≥ q ⇔ ( p: a, b )  ≥
( q:  a, b ).

There are some lotteries for which the direction of free
exchange seems compelli ng. The axiom also justifies our
notation for lotteries, in which only the probabiliti es, and
not the propositions, appear.

Compound Probabili ty. For any outcomes a, b and any
three probabiliti es p, q, r:  [ p: ( q:  a, b ), ( r: a, b ) ]  ~
( pq + r - pr:  a, b ).

Independence. For any probabilit y p and any four lotteries
or outcomes A, B, C, and D: if A ≥ C and B ≥ D, then
( p: A, B ) ≥ ( p: C, D ).

These two axioms express and apply the notion that the
scope of the theory is restricted to situations where all that
matters to the decision maker are the grants and whether or
not he or she attains them, as gauged by probabiliti es. That
idea has already been woven into the notation chosen for
lotteries, as just noted.

Compound probabilit y extends the idea in a blunt and
straightforward way. Independence has historically been
controversial, but it has a simple exchange interpretation.
If we owned ( p: C, D ), then we would be willi ng to swap
C to get A if the proposition whose probabilit y is p comes
true. We could commit to do so in advance of knowing the
truth. Similarly, we could commit in advance to swap D to
get B. The original lottery plus these two commitments is
constructively identical to acquiring the lottery ( p: A, B )
on the same propositions. But we do not care about the
propositions, only the probabiliti es, and so the axiom is
assumed as stated.

That the axioms entail a restriction on the scope of the
theory was fully acknowledged by von Neumann and
Morgenstern. Casinos plainly operate on other principles,
emphasizing the recreational possibiliti es of gambling.
Other occasions of risk may be unpleasant.

Continuity of Risk. For any outcomes a ≥ b > c ≥ d, and
for probabilit y q in the interval ( 0, 1 ), then there is a
unique probabilit y p in the interval ( 0, 1 ) such that
( q: b, c )  ~ ( p: a, d ).

The axiom is phrased so as to confine its scope to



comparisons among risky lotteries, and to leave open for
the moment the question of comparison of riskless to risky
prospects. The uniqueness of p could be replaced with a
simple existence assumption; transitivity and probabilit y
dominance would establish its uniqueness if p existed.

Expected Utili ty Theorem. There exists a function U()
whose domain is the set of outcomes in the interval [ x, y ],
such that for lotteries A = ( p:  a, b ) and C = ( q: c, d ) with
outcomes in the interval ( x, y ): A ≥ C ⇔ pU( a ) +
( 1 - p )U( b ) ≥ qU( c ) + ( 1 - q )U( d ).

A sketch proof appears in the appendix. Except for its
steps (1) and (2), readers will recognize the method of
proof as a close paraphrase of the usual contemporary
proofs of the corresponding received theorem, e.g.
compare with that of Pearl (1988). The exceptional steps
(1) and (2) revive Ramsey’s “ethically neutral proposition
of probabilit y one-half.”

The method of proof is visibly to construct a series of
acceptable free exchanges leading from C to A. An
expected utilit y calculation, then, expeditiously detects the
existence of an exchange series without the bother of
actually constructing one. If the outcome of the calculation
is a strict inequality, then we assume from transitivity that
there is no series of free exchanges in the other direction.

Finally for this section, here is a version of usual,
received continuity axiom.

Continuity. For any outcomes a ≥ b ≥ c: there is a unique
probabilit y p for which ( p: a, c ) ~ b.

Pfanzagl

If the received version of the continuity axiom is accepted,
then it is easily understood how the quantity b mentioned
in the axiom statement came to be called the “certainty
equivalent” of the lottery ( p: a, c ). Johann Pfanzagl
(1959) accepted the received axioms, and proposed a
further axiom of his own,

Consistency. For amounts of money a, b, c, and x: if
( p: a, c ) ~ b, then ( p: a+x, c+x ) ~ b+x.

Among Pfanzagl’s arguments  was one based upon what
will be called here a “Pfanzagl exchange.” Someone who
owned the lottery ( p: a+x, c+x ) would freely trade it for
the lottery ( p: a, c ) on the same events if also given a side
payment of x. The decision maker’s situations before and
after the exchange are identical if the payment coincides
with the resolution of the lottery, and the situation
improves (assuming the usual ideas about the direction of
time preference) if x > 0 and the money is paid now, while
the lottery is held to maturity.

We shall denote the situation of receiving a lottery L and
a side payment of x as { L, x } . Unless stated otherwise, we
shall mean that x is paid now, and that lottery L is resolved
sometime later. The two elements are not otherwise bound
to one another. The money (if x > 0) may be spent and the
lottery may be exchanged as the decision maker wishes.

Pfanzagl went on to show that only two famili es of

utilit y functions (i.e. the functions aU() + b, a > 0; all of
which reach the same expected utilit y decisions as U()
itself) conform to both the usual axioms and his
consistency axiom. One family, exponential utilit y,
displays constant risk aversion, i.e. the certainty equivalent
of a lottery does not change if the decision maker’s wealth
changes. The other, linear utilit y, displays a special kind of
constant risk aversion. It always values lotteries as equal to
their expected money value, regardless of existing wealth.

A full appreciation of the role of risk aversion in
decisions came after Pfanzagl’s studies, based on the
seminal work of Pratt (1964). It soon became apparent that
constant risk aversion was descriptively hopeless, and that
any normative case for obligatory constant risk aversion
was untenable.

People appear typically to be decreasingly positive risk
averse, especially when facing actuarially fair or favorable
risks. That is, people seem to value lotteries at less than
their actuarial value (the positive part). Further, the effect
decreases as people get richer, e.g. perhaps one rejects
( .5: $120, - $100 ), a favorable lottery, when poor, but
maybe accepts it when richer. There is nothing irrational
about that pattern of behavior.

Pfanzagl’s proposed axiom was therefore rejected as an
obligatory feature of rational choice, but is not held to be
irrational if that is how you feel about risk. Practitioners
were cautioned that if a situation like { ( p: a, c ), x }
appeared in a decision problem, then it was to be recast as
the lottery ( p: a+x, c+x ), and never the other way around.
Indeed, all outcomes were to be coded as the “terminal
wealth” for utilit y computation purposes if there was any
chance of ambiguity (although lottery outcomes routinely
continue to appear in problem statements described as
changes in wealth, as we do here).

A further refinement of practice clarified the “buying”
and “selli ng” price of a lottery. Both purchases and sales
obviously change the decision maker’s wealth, and so may
affect the willi ngness to accept a lottery and the value
imputed to it. The “selli ng price” was defined as the wealth
change corresponding to the “certainty equivalent” that
appears in the continuity axiom statement. The buying
price for the lottery ( p:  a, c ) became that amount b for
which the lottery ( p: a-b,  c-b ) has a certainty equivalent
of 0 (that is, the status quo as assessed at one’s wealth
before acquiring the lottery).

It is easy to show that the buying and selli ng prices
agree in sign for all utilit y functions, and so agree in value
at zero. It is also a standard result that for decreasingly
positive risk averse decision makers, the way most people
seem to be, the buying price is less than the selli ng price
when both are positive.

It is uncontroversial that the modeling conventions and
definitions which accommodate non-constant risk aversion
are consistent in the sense that the same constellation of
risks and grants will yield the same expected utilit y values
regardless of how the problem is described. The
conventions and definitions do not deny Pfanzagl’s
observation that { ( p: a, c ), x } restates ( p: a+x, c+x ), but
rather they integrate this fact into decision practice.



A Pfanzagl Exchange Puzzle

A decreasingly positive risk averse decision maker has
initial wealth w and holds a favorable and acceptable
lottery ( p: a, c )  whose selli ng price is s and whose
buying price is b, s > b > 0. If asked, and after consulting
the received theory for guidance, the decision maker
asserts that he or she will accept no sum less than s in
exchange for the lottery, as the theory counsels.

The decision maker is offered the combination
{ ( p: a-b,  c-b ), b } to replace the lottery he or she owns,
and accepts this Pfanzagl exchange for the (slightly)
superior situation that it is compared with the original
lottery. An opportunity to consume, perhaps to enjoy a
meal at an expensive restaurant, then presents itself, which
leads the decision maker to spend the b to experience the
good. The experience ends while the residual lottery,
( p: a-b,  c-b ), remains pending.

A lottery dealer then offers to take the residual lottery
from the decision maker without compensation to either
party. From the dealer’s point of view, this may be a good
deal, since the actuarial value of the lottery is positive.

After consulting the received theory, the decision maker,
whose wealth is once again w, calculates the selli ng price
of the lottery as zero. Finding zero to be offered, the
decision maker surrenders the lottery to the dealer, as the
theory counsels to be fair.

A series of free exchanges thus exists in which the
decision maker would sell the original lottery (literally,
accept a sum of money and surrender the lottery) for less
than s. Part of our confidence in the reasonableness of the
received theory is the assumption of the transitivity axiom
that no such series exists. Had the dealer offered b at the
outset for ( p: a, c ), the existence of this series would
rebut to the decision maker’s assertion that the minimum
selli ng price, determined by the riskless sum that appears
in the received continuity axiom, was s.

An aggressive dealer could resolve the impasse at the
outset by writing the combination { ( p: a-b, c-b ), b } and
making the Pfanzagl exchange, which is a riskless
transaction for both parties. The dealer would then produce
a restaurant guide, let nature take its course, and accost the
decision maker as he or she left the eatery.

This is not a Dutch book problem. Nobody exploits
anybody else, and the dealer can tell the decision maker all
about the plan. Note also that except for that
misunderstanding about what the minimum selli ng price is,
the theory gives the decision maker good advice
throughout. The Pfanzagl exchange is harmless, and what
the theory counsels at the restaurant door accurately
reflects the decision maker’s preferences and
circumstances at the time.

The story presents no diff iculty for the user of a constant
risk aversion utilit y function, for whom the buying and
selli ng prices are equal. Nor would there be a diff iculty for
the user of any utilit y function if the buying and selli ng
prices of the original lottery ( p: a, c ) were zero.

The story ill ustrates that it may be diff icult in principle
to answer the question “What sum of money is worth the

same to you as owning the lottery L?” For many people,
including some willi ng to consult the theory for advice, the
truth is “ It depends.” The received continuity axiom
assumes a different kind of answer, and requires that kind
of answer for its confident and unheeded application.

That is, regardless of any specific “value” that may or
may not be associated with a lottery, the lottery might be
willi ngly exchanged for any of several amounts. The bases
for that diversity of answers to the question of worth are
themselves principles of choice used in building the
theory, in concert with the nature of money and its uses.

Allais violations appear to be an occasion when
something upon which the truthful answer depends is
relevant. Among the possible considerations is the
following hypothetical series of exchanges.

Let L  be the three-way lottery in Allais, and L* be that
lottery with each of its outcomes reduced by the amount
good. The combination { L* , good} is not inferior to L.
Suppose one has consumption opportunities (or exisitng
family responsibiliti es, or other pressing resource claims),
so that one has immediate uses for some part c of good
besides gaming.

Depending upon the buying price of L* and the size of
c, it could be that good-c alone is preferred to
{ L* , good-c} ; if so, then you would give away the residual
lottery if you could. The state good-c and the satisfaction
of the competing claims for resources can be directly
achieved by choosing good, but cannot be directly
achieved by choosing L.

A strong continuity principle beset by paradox when
confronted with the implications of what money is and
how it can be used furnishes no grounds for rejecting as
irrational violations of the principle in  monetary problems.

Attention now turns to the extent of the damage and to
strategies for repair.

Consequences for Other Theor ies

The received axioms’ domain of origin is Von Neumann
and Morgenstern’s game theory. Pfanzagl pointed out that
von Neumann and Morgenstern’s concept of “strategic
equivalence,” adopted by them for n-person games,
implies the same requirement as his own consistency
axiom, that utilit y functions be either linear or exponential.

As we have seen, restricting the form of the utilit y
function to that extent is now widely held to be unsuitable
for general-purpose decision theory. On the other hand, it
is quite possible that the specific domain of strategic
choice may have attributes which justify the restriction.
Clearly, von Neumann and Morgenstern thought that such
attributes were present, although they presumably did not
know how the attributes imply the restriction.

If they are right about the attributes, then the axioms, in
the context that von Neumann and Morgenstern deployed
them, would be immune to Pfanzagl exchange puzzles of
the kind discussed in this paper. While puzzles do reveal a
diff iculty in generalizing the axioms to other domains, no



change in the theory of the specific domain is necessarily
supported by the existence of challenges in generalizing
one of its elements.

In discussing other theories which rely on expected
utilit y, let us begin by saying that confining the theory’s
scope in money choices to comparisons among risks and
between risks and the status quo is not even remotely being
advocated here. Nevertheless, it is interesting to consider
how littl e difference that would make to expected utilit y’s
role as a foundational element of some other theories.

For example, experiment design in statistics, to the
extent that it involves money, like the expenses of
experiments, rarely offers a literal stipend or fine as an
alternative to uncertain and costly experimentation. Insofar
as experiment design involves things other than money,
such as the inalienable worth of aiding the progress of
knowledge, then it is untouched by anything said here.

Prominent among the theoretical uses of the received
theory is its contribution to gambling-based semantics and
justifications for subjective probabilit y. But the issue there
is to show how probabiliti es in the open unit interval ( 0 1 )
can describe degrees of uncertainty. Since the basic
expected utilit y theorem is secure, both as to truth and as
to method of demonstration, the arguments based upon it
are also secure in ( 0 1 ). As for how the bounding integers
denoting certainty might be combined with fractions
denoting uncertainty, that point was well covered by Boole
in the Nineteenth Century.

Confinement of scope of continuity would not entirely
moot Allais’ critique. He discusses at length the problem
of “near certainties.” No reasonable theory could
recommend any dramatic distinction between the amount b
and the risk ( .999: b b+1 ), which must be similar in affect
and effect to b itself. The lottery even shares with money a
key feature which drives the Pfanzagl exchange puzzle,
effective fungibilit y. If those truly are the odds, then I
might well offer to pay the restauranteur ( .999: b b+1 ) for
my meal, and we would both call it square.

While this untidiness may be a concern for theorists
relying upon expected utilit y, it is not a new concern. It is
well known that judgments about very small probabiliti es
(i.e. a common species of near certainty) are fraught (von
Winterfeldt and Edwards 1986). Maybe, then, what Allais
is telli ng theorists about near certainty is something that
they would discover for themselves soon enough.

Consequences for Decision Craft

There is a case for retaining the continuity axiom
unaltered, warts and all . The advice the theory gives is
good advice, well worth thinking about. In the Pfanzagl
exchange puzzle, “Hold out for a better price” and “Under
the new circumstances, settle for less” are both defensible
based on the information that would be available to any
advisor at the times when advice is sought.

So, too, is the advice in Allais good. Savage recounts his
mental journey from champion of the received theory,
through his descent into violation, to his re-embrace of

orthodoxy. His epiphany came when he constructed one of
those series of exchanges the theory guarantees to exist.

He imagined literal lottery tickets, and saw the certainty
of good as owning three blocks of tickets whose
probabiliti es of winning add up to 100%. Both of Allais’
hypotheticals, he then realized, ask whether he would
forfeit a “1% chance of good” ticket in order to exchange a
“10% of good” ticket block for a “10% chance of great”
block.

This is an altogether sensible way to view the situation.
There are other ways, too. Allais’ original respondents,
likely among them European survivors of a then-recent
devastating war, might have seen that the certainty of
good, with the right to leave the encounter with it in hand,
buys food and fuel, while the illi quid chance of good in the
other choice has no current use except to be held or traded.

Nevertheless, that Savage’s is not the only way to look
at the situation furnishes no argument for not at least
considering the theory’s perspective. The abilit y of the
received theory to provide its perspective relies on its
unmodified axioms.

A rational person might consider a choice from the
theory’s perspective and then decline its advice in some
situations where monetary certainties and near certainties
contend with heartier risks. On this view, what the
received continuity axiom says about risks and certainties
is rationally tenable, but compliance is not rationally
obligatory. That has some implications for practical
decision modeling.

One practical task is the assessment of a decision
maker’s utilit y curve and subjective probabiliti es, often
based on hypothetical betting. As von Winterfeldt and
Edwards (1986) report, practitioners have long been wary
of posing for curve assessment purposes hypothetical bets
which feature choices between risks and amounts for sure.
The basis for that wariness may be concern about a
psychological “certainty effect,” whose empirical
foundation is surely in part attributable to Allais. Be that as
it may, the precautions already in place seem adequate to
prevent miscalibration from anything discussed here.

Later on in a decision modeling episode comes
sensitivity analysis, which checks that utilit y and
probabilit y values found to be crucial to the final
recommendation have been accurately measured. “Near
certainties,” for example, might and already do receive
some of the attention they need at this point.

The continuity anomaly is not a matter of accurate
measurement. It is the situation itself that warrants scrutiny
for variably risk-averse decision makers. Thus, existing
consensus practice should be enlarged to include re-
examination of all choice junctures which offer the
possibilit y of release, or near-release, from monetary
uncertainty, whether or not the numbers involved present a
“close call ” in expected utilit y value.

Also unlike existing sensitivity analysis, this checking
must be done at the problem description level, not on the
model. Modelers routinely “ rearrange” lotteries leading to
choices into choices between lotteries, and vice versa. The
issue of concern is whether or not the actual decision



situation, as opposed to its “equivalent” model, offers the
possibilit y of release.

The release that the sensitivity analyst is looking for is
the appearance of resources which are able to leave the
frame of the problem. One example would be a terminal
grant, like the one in Allais’ problem (if you choose good
for sure, then both you and the money leave the problem).

For another instance, in a slightly more complicated
version of the earlier Pfanzagl exchange puzzle, suppose
the decision maker were offered the opportunity to replace
(p: a, b) with either the Pfanzagl exchange or else the
amount (b + s)/2. That amount is less than s, and the theory
would bluntly counsel rejecting it, even as the Pfanzagl
exchange is recognized to be harmless.

A shrewd counselor would ask the decision maker “how
sure are you that you will hold onto that side payment of
b?” The decision maker may in fact be better off taking the
(b + s)/2, despite its being less than s.

Then again, the decision maker might intend to hold
onto the side payment through the resolution of the
residual lottery (of positive value to the decision maker if
his or her wealth is greater than w, as it now is, and will be
so long as the side payment is held). If dealers lurk and
bistros beckon, then there is no way to know which is
really the better exchange, except to ask.

Conclusions

The received decision theory has diff iculty when variably
risk averse decision makers compare monetary certainties
with monetary risks.  Appeal to the theory thus fails to
exclude Allais violations, among other things, from
rational respectabilit y. Nettlesome though that may be, the
consequences of the anomaly are  nevertheless mild.

There is scant threat to the use of the expected utilit y
arguments as components of other theories, nor is any
strenuous reform of decision analytical routine indicated.
The received theory as it stands reliably provides advice
worthy of consideration, albeit not of uncritical
compliance, by a reasoning agent confronting risk.

Still , however mild, there really is a problem with the
usual decision theory when it confronts variable risk
aversion and liquidity. That warrants some caution before
implementing the theory’s prescriptions, or decrying the
irrationality of other incompatible advice.
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Appendix

Expected Utili ty Theorem. There exists a function U()
whose domain is the set of outcomes in the interval [ x, y ],
such that for lotteries A = ( p:  a, b ) and C = ( q: c, d ) with
outcomes in the interval ( x, y ): A ≥ C ⇔ pU( a ) +
( 1 - p )U( b ) ≥ qU( c ) + ( 1 - q )U( d ).

Sketch Proof. Despite the lack of a specification of how
riskless amounts are compared with risky lotteries, the
proof of the theorem is very similar to the proofs of the
corresponding theorem from the received axioms.
The basic steps are: (1) for z in ( x, y ) define U( z ) as the
probabilit y for which ( .5: z, x ) ~ [ U( z ): y, x ]. The
existence and uniqueness of that probabilit y for a given z
follows from continuity of risk.
For the ⇒ direction:
(2) Observe that A ≥ C just when ( .5 A, x ) ≥ ( .5 C, x ),
from independence and the ordering of outcomes. Note
that in applying the independence axiom here, lotteries
have been compared only with lotteries, and riskless grants
compared only with riskless grants.
(3) From compound probabilit y, ( .5 A, x ) ~
[ p:  ( .5 a, x ), ( .5 b, x ) ], and  ( .5: C, x ) ~
[ q: ( .5: c, x ), ( .5: d, x ) ]
(4) By independence, substitute [ U( a ):  y, x ] for
( .5 a, x ), and substitute similarly for the lotteries in b, c,
and d on the right sides of the tilde expressions in step 3.
(5) Rearrange the resulting { p: [ ( U( a ): y, x ],
[ U( b ):  y, x ] } by compound probabilit y to
[ pU( a ) + ( 1-p ) U( b ):   y, x ], and proceed similarly for
the other expression in c and d.
(6) Since the lotteries from (5) both involve the same
prizes, conclude from probabilit y dominance that
pU( a ) + ( 1-p) U( b ) ≥ qU( c ) + ( 1-q )U( d ).
The argument for the converse applies steps parallel to (2)
through (5) in reverse order. //


