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Abstract

Sequential statistical models such as dynamic Bayesian net-
works and hidden Markov models more specifically, model
stochastic processes over time. In this paper, we study for
these models the effect of consecutive similar observations
on the posterior probability distribution of the represented
process. We show that, given such observations, the poste-
rior distribution converges to a limit distribution. Building
upon the rate of the convergence, we further show that, given
some wished-for level of accuracy, part of the inference can
be forestalled, thereby reducing the computational require-
ments upon runtime.

Introduction
Sequential statistical models for reasoning about stochastic
processes include hidden Markov models (HMMs) and dy-
namic Bayesian networks (DBNs); when these models sat-
isfy the Markovian property, where the future state of the
process is assumed to be independent of the past state given
its present state, we call themMarkovian. Markovian mod-
els represent the dynamics of a discrete-time process by ex-
plicitly specifying a stochastic transition rule for the change
of the state of the process from timen to timen + 1. DBNs
(Dean and Kanazawa, 1989; Murphy 2002) model the in-
teractions among several dynamic variables and in essence
constitute an extension of HMMs which capture the dynam-
ics of a single variable (Rabiner 1989). Applications of
Markovian models include medical diagnosis, speech recog-
nition, computational biology and computer vision.

Exact inference in Markovian models is computationally
hard, especially since all variables tend to become corre-
lated over time. The computational requirements of algo-
rithms for exact inference in fact are high enough to ren-
der them infeasible in practice. In this paper, we will show
that the nature of the observations obtained may help reduce
the requirements of these algorithms. We will show more
specifically that, after a certain number of consecutive sim-
ilar observations, the posterior distribution of the stochastic
process has converged to a limit distribution within some
level of accuracy. Continuing to obtain similar observations
will not alter the distribution beyond this level, and no fur-
ther inference is required. The total number of time steps
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G =
[
0.13 0.87

]

P =

[
0.95 0.05
0.15 0.85

]
OSA =

[
0.708 0.292
0.55 0.45

]
OBT =

[
0.56 0.24 0.2
0.028 0.95 0.022

]

Figure 1: A dynamic model for the evolution of pneumo-
nia with two observable variables; the probability tables are
obtained from (Schurink 2003).

over which we need to perform inference can thus be dras-
tically reduced, leading to considerable savings in computa-
tional requirements upon runtime. The achieved reduction
depends upon the wished-for level of accuracy: the higher
the accuracy we want, the fewer the savings will be.

In this paper we restrict our detailed presentation to
HMMs, using a real-life application from the medical do-
main. We will indicate, however, how our method can be
extended to Markovian models with richer structure in the
set of observable variables and to models that capture inter-
ventions of the modelled process. The paper is organised
as follows. We set out by introducing the real-life appli-
cation that motivated our study. We then discuss inference
in Markovian models and propose an alternative inference
framework for HMMs that is tailored to our analysis. We
continue by studying the effect of consecutive similar ob-
servations in HMMs. In addition, we analyse the runtime
savings that are achieved by forestalling part of the inference
and illustrate these savings by a numerical example from our
application. We then briefly address the effect of consecu-
tive similar observations for Markovian models with richer
structure. The paper ends with our conclusions.

A motivating example
Throughout the paper we will use the dynamic model from
Figure 1 for our running example. The model constitutes a
fragment of a temporal Bayesian network that was devel-
oped for the management of Ventilator Associated Pneu-
monia (VAP) in patients at an Intensive Care Unit (Lu-
cas et al. 2000). Pneumonia, denoted asPN, constitutes
the binary unobservable variable that we would like to
study over time. The observable variables model a pa-
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Figure 2: The dataset for patient Id.1015, May 18, where•
is used for a BT observation and¦ for an SA observation.

BT=normal 24:00-12:00

BT=> 38.5 14:00-22:00

SA=no 2:00-4:00

SA=yes 6:00-22:00

BT=normal, SA=no 2:00-4:00

BT=normal, SA=yes 6:00-12:00

BT=> 38.5, SA=yes 14:00-22:00

Table 1: The sequences of consecutive similar observa-
tions per variable and for both variables combined, from the
dataset for patient Id.1015, May 18.

tient’s body temperature, denoted asBT, with the values
{> 38.5 ◦C, normal, <36.0 ◦C}, and sputum amount, de-
noted asSA, with the values{yes, no}. The observable vari-
ables are measured every two hours. As an example, Figure
2 illustrates the data obtained for a specific patient on a spe-
cific day.

From Figure 2 we note that, within the data, two se-
quences of consecutive similar observations can be dis-
cerned per variable; for both variables combined, three such
sequences are found. Table 1 summarises these findings. We
now are interested in determining whether we need to use all
the available data to establish the probability distribution of
the variablePN within reasonable accuracy. For example,
using the tables from Figure 1, we compute the probability
of pneumonia at time 22:00 to bep(PN = yes) = 0.9951.
This probability does not differ much from the probability
at time 20:00 which isp(PN = yes) = 0.9950, nor from
that at time 18:00 which isp(PN = yes) = 0.9935. Since
after a specific number of similar consecutive observations
the probability distribution of the dynamic process does not
change much, it is worthwhile to investigate whether we can
forestall part of the inference.

Markovian models
We review some basic concepts from the theory of Marko-
vian models, and present an inference framework for HMMs
that is tailored to our analysis.

Basic notions
A hidden Markov model can be looked upon as an extension
of a finite Markov chain, by including observable variables
that depend on the hidden variable. We useXn to denote the

hidden variable, with statesSX = {1, 2, . . . , m},m ≥ 1,
at timen. We denote the prior probability distribution of
the hidden variable at time1 by G, with probabilitiesgi =
p(X1 = i). The transition behaviour of a Markov chain
is generally represented by a matrixP of transition proba-
bilities. We consider only homogeneous Markov chains in
which the transition probabilities do not depend on time, and
definepij = p(Xn+1 = j | Xn = i) for everyn ≥ 1. We
assume that the diagonal of the transition matrix has non-
zero elements only, that is, we assume that it is possible for
each state to persist. We denote the observable variables by
Yn, with valuesSY = {1, 2, . . . , r}, r ≥ 1. The obser-
vations are generated from the state of the hidden variable
according to a time-invariant probability distribution matrix
O, where the(i, j)-th entry gives, for eachn ≥ 1, the prob-
ability of observingYn = j given that the hidden variable
Xn is in statei, that is,oij = p(Yn = j | Xn = i).

A dynamic Bayesian network can be looked upon as an
extension of an HMM, that captures a process that involves
a collection of hidden and observable variables. The set of
variablesVn of the DBN is split into three mutually exclu-
sive and collectively exhaustive setsIn,Xn,Yn, where the
setsIn andYn constitute the input and output variables at
time n, andXn includes the hidden variables. The joint
probability distribution over the variables per time step is
captured in a factorised way by a graphical model.

Inference in Markovian models
When applying Markovian models, usually the probability
distributions of the hidden variables are computed using an
inference algorithm. Three different types of inference are
distinguished, namely monitoring, smoothing and forecast-
ing. Monitoring is the task of computing the probability dis-
tributions forXn at timen given observations up to and in-
cluding timen. Smoothing(or diagnosis) is the task of com-
puting the probability distributions forXn at timen given
observations from the future up to timeN , whereN > n.
Finally, forecastingis the task of predicting the probability
distributions ofXn at timen given observations about the
past up to and including timeN , whereN < n. Rabiner
(Rabiner 1989) introduced an efficient recursive scheme,
called the Forward-Backward algorithm, for performing ex-
act inference in HMMs, while Murphy (Murphy 2002) pre-
sented and reviewed several algorithms for exact and ap-
proximate inference in DBNs.

We propose an alternative framework for inference in
HMMs that is suited to our analysis of the effect of con-
secutive similar observations. We denote byDN the dataset
of observations up to and including timeN ; we assume that
there are no missing values inDN . We further denote by
OM(j) = diag(O1j , . . . , Omj), j = 1, . . . , r, the diagonal
matrix constructed from thejth column of the observation
matrixO; we call this matrix theobservation columnmatrix
for j. Thepresent row vectorfor time n now is defined as
PVn(i) = p(Xn = i | Dn), i = 1, . . . ,m, and is computed
recursively as follows:

• at time 1, if there is an observationj, we take
PV1 = G ·OM(j);
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Figure 3: Arc reversal in a HMM.

• at timen = 2, . . . , N , if there is an observationj, we take
PVn = PVn−1 · P ·OM(j).

In each step, we normalise the vectorPVn by dividing by∑m
i=1 PVn(i).
For forecasting the probability distribution of the hidden

variableXn for some timen > N , we define thefuture row
vectorFVn,N (i) = p(Xn = i | DN ), i = 1, . . . ,m. The
future row vector is computed asFVn,N = PVN · Pn−N .

For computing a smoothed probability distribution for
some timen < N , we define thebackward row vector
BVn,N (i) = p(Xn = i | DN ), i = 1, . . . , m. The back-
ward row vector is computed by performing evidence ab-
sorption and arc reversal (Shachter 1988) in the model; Fig-
ure 3 illustrates the basic idea. The states of the variableXn

affect the probability distribution of the variableXn+1 via
the transition matrixP . By using Bayes’ theorem

p(Xn | Xn+1) =
p(Xn+1 | Xn) · p(Xn)

p(Xn+1)
(1)

and arc reversal, we find that the states of the variableXn+1

affect the probability distribution of the variableXn via the
matrix APn+1,n, whereAPn+1,n

ij = p(Xn = j | Xn+1 =
i). The matrixAPn+1,n is established forn = 1, . . . , N−1
from

• p(Xn) = PVn;
• p(Xn+1) = p(Xn) · P ;
• APn+1,n is computed using equation (1).

The backward row vectorBVn,N then is computed recur-
sively from
• BVN,N = PVN ;
• for n = N − 1, . . . , 1, BVn,N = BVn+1,N ·APn+1,n.
Again, we normalise the vectorBVn,N in each step by di-
viding by

∑m
i=1 BVn,N (i).

Similar observations
We analyse the effect of observing consecutive similar val-
ues for an observable variable on the probability distribution
of the hidden variable. More specifically, we are interested
in the convergence behaviour of the posterior distribution of
Xn in terms of the numberkj of consecutive observationsj.
We will argue that, given a specifickj , observing more sim-
ilar values will not alter the probability distribution of the
hidden variable beyond a given level of accuracy.

We consider a hidden Markov model with a single observ-
able variable and an associated datasetDN . Suppose that the

same valuej is observed from timen up to and including
timeN for somen < N ; the number of consecutive similar
observations thus iskj = N − (n− 1). Using our inference
framework, the present row vectorPVN is computed to be

PVN = αkj
· PVn−1 · (P ·OM(j))kj

= αkj · PVn−1 · (Rj)kj (2)

whereαkj is a normalization constant that depends onkj

andRj is the square matrixRj = P ·OM(j). We use equa-
tion (2) to study the convergence of the present row vector to
a limit distribution. More specifically, we would like to esti-
mate the numberkj of consecutive observations such that

|PVkj+1 − PVkj
|∞ ≤ θ

where θ > 0 is a predefined level of accuracy and
|w|∞ ≡ maxi |wi| denotes theL∞ norm of a vectorw =
(w1, . . . , wm). We then have that observing more thankj

consecutive similar values will add no extra information to
the probability distribution of the hidden variable and no fur-
ther inference needs to be performed.

To establish the convergence behaviour of the present row
vector and of the matrixRj more specifically, we will build
upon the notion ofspectral radius, where thespectral radius
ρ(A) of a square matrixA is defined asρ(A) ≡ max{|λ| :
λ is an eigenvalue ofA}. The following theorem (Horn
and Johnson, 1990, Theorem 5.6.12) now reviews a neces-
sary and sufficient condition for the convergence of reflexive
multiplication of a square matrix in terms of its spectral ra-
dius.

Theorem 1 Let A be a square matrix. Then,limk→∞Ak =
0 if and only ifρ(A) < 1.

To study the spectral radius of the matrixRj , we recall that
it is the product of a stochastic matrixP and the nonnegative
diagonal observation column matrixOM(j). The following
proposition now shows thatρ(Rj) ≤ 1.

Proposition 1 Let A be a stochastic matrix and letB be a
diagonal matrix. Then,ρ(A ·B) ≤ ρ(B).
Proof: From (Horn and Johnson, 1990, Theorem 5.6.9) we
have that for any square matrixA, it holds thatρ(A) ≤ ‖A‖,
where‖¦‖ is any matrix norm. From this property we have
thatρ(A · B) ≤ ‖A · B‖. Now, any matrix norm satisfies
the submultiplicative axiom which states that‖A · B‖ ≤
‖A‖ · ‖B‖. Hence,ρ(A ·B) ≤ ‖A‖ · ‖B‖. If we choose the
maximum row sum matrixnorm‖¦‖∞ defined onA as

‖A‖∞ ≡ max
i

n∑

j=1

|aij |,

we have that‖A‖∞ = ρ(A) = 1 and‖B‖∞ = ρ(B). The
property stated in the proposition now follows directly.¤

From Proposition 1 we conclude for the spectral ra-
dius of the matrixRj that ρ(Rj) ≤ ρ(OM(j)). We
further find thatρ(Rj) = 1 only if OM(j) is the identity
matrix, which basically means that the observationj is
deterministically related with the hidden state. For any



non-trivial observation column matrix, therefore, we have
that ρ(Rj) < 1. From Theorem 1 we can now conclude

that limkj→∞R
kj

j = 0. Note that from this property we
have that the present row vectorPVN converges to some
limit distribution. The property, however, does not give
any insight in this limit distribution nor in the rate of the
convergence. For this purpose we can build upon the
following theorem, known as Perron’s theorem (Horn and
Johnson, 1990, Theorem 8.2.11), which provides a limit
matrix for [ρ(Rj)−1 ·Rj ]kj .

Theorem 2 (Perron’s theorem) LetA be a square matrix
with positive elements. Then,limk→∞[ρ(A)−1 · A]k = LA

whereLA ≡ x · yT , with A · x = ρ(A) · x, AT · y =
ρ(A) · y, x > 0, y > 0, andxT · y = 1.

By rewriting equation (2) into

PVN = αkj
· PVn−1 · ρ(Rj)kj (Rj/ρ(Rj))kj

we now apply Perron’s theorem to establish the limit distri-
bution for the vectorPVN .

Theorem 3 Let ckj
≡αkj

·ρ(Rj)kj , whereαkj
, kj and Rj

are as in equation (2). Then,limkj→∞ ckj = c for some
constantc > 0, and limkj→∞ PVN = c · PVn−1 · LRj

,
whereLRj is as defined in Theorem 2.

Proof: By definition we have that

ckj = αk · ρ(Rj)kj =
ρ(Rj)kj

∑
i(PVn−1 ·Rkj

j )(i)

From Theorem 2, we now find thatlimkj→∞ ckj = c, where
c equals

c =

[∑

i

(PVn−1 · LRj )

]−1

> 0

For any matrix norm we further have that
∥∥∥∥αkj ·PVn−1 ·Rkj

j − c·PVn−1 ·LRj

∥∥∥∥

=
∥∥∥∥αkj ·PVn−1 ·ρ(Rj)kj ·

[
Rj

ρ(Rj)

]kj

− c·PVn−1 ·LRj

∥∥∥∥

=
∥∥∥∥ckj

·PVn−1 ·
[

Rj

ρ(Rj)

]kj

− c·PVn−1 ·LRj

∥∥∥∥

≤ |ckj
− c|·

∥∥∥∥PVn−1 ·
R

kj

j

ρ(Rj)kj

∥∥∥∥ +

+
∥∥∥∥c·PVn−1

∥∥·
∥∥∥∥

R
kj

j

ρ(Rj)kj
− LRj

∥∥∥∥

The last inequality results from the submultiplicative ax-
iom and the triangle inequality for matrix norms. Sinceckj

converges toc and [ρ(Rj)−1 · Rj ]kj converges toLRj for
kj → ∞, the right-hand side of the inequality now con-
verges to 0. We conclude that

lim
kj→∞

αkj ·PVn−1 ·Rkj

j = c·PVn−1 ·LRj ¤

From Theorem 3 we have that the present row vectorPVN

converges to a particular limit distribution. Horn and John-
son (1990, Lemma 8.2.7) further provide an upper bound on
the rate of the convergence to this limit distribution:

∥∥∥[ρ(Rj)−1 ·Rj ]kj − LRj

∥∥∥
∞

< d · rkj (3)

for some positive constantd ≤ 1 which depends onRj and
for anyr with

|λ2|
ρ(Rj)

< r < 1

whereλ2 is the second largest modulus eigenvalue ofRj .
From the upper bound we can establish, for any level of
accuracyθ, the value ofkj for which the right-hand side
of equation (3) becomes smaller thanθ. For our example,
with θ=0.002, we find for the observations (BT >38.5,
SA=yes) that this number equalsk = 3. We thus find that
the probability distribution for pneumonia does not change
by more thanθ after time 18:00.

Savings in runtime
In the previous section, we have argued that the observation
of consecutive similar values for the observable variable in
an HMM can be exploited to forestall part of the inference.
We now briefly address the computational savings that can
thus be achieved upon runtime. We begin by observing that,
if the hidden variable hasm possible states, monitoring re-
quiresO(m2) operations per time step. Smoothing requires
O(m2 · N) operations for a dataset with observations up to
time N ; smoothing further needsO(m · N) space to store
the matricesAP that will be used to compute the backward
row vector. Now suppose that the dataset under study in-
cludesq sequences ofsi, i = 1, . . . , q, consecutive similar
observations, respectively. Furthermore suppose that out of
theseq sequences, there areπ different configurations with
their ownkj , j = 1, . . . , π, and they occurλj , times in the
dataset under study, so that

∑π
j=1 λj = q. Then for one se-

quencei of thejth configuration, we do not need to perform
inference for(si− kj) time steps. Therefore in total we will
perform inference forO

(
[N − (

∑q
i=1 si −

∑π
j=1 λj · kj)]

)
time steps.

To study the computational savings in a practical setting,
we generated three datasets for the dynamic model of Figure
1. Each dataset concerns a period of three weeks and there-
fore includes3 · 7 · 12 = 252 observations. Each dataset
further has been generated to contain sequences of similar
observations of lengths6, 8, and10. Dataset 1 has12 such
sequences of length6, 10 sequences of length8 and8 se-
quences of length10; for the second dataset, these numbers
are8, 12 and10, and for the third dataset they are10, 8 and
12. With each dataset, we performed exact inference using
our alternative framework; we further performed approxi-
mate inference as described above using the levels of accu-
racyθ1 = 0.01, θ2 = 0.001 andθ3 = 0.0001. The experi-
ments were run on a 2.4 GHz Intel(R) Pentium, using Mat-
lab 6.1. Figure 4 shows the number of time steps for which
inference is performed per dataset for each of the three lev-
els of accuracy. We notice that inference is reduced for all



Figure 4: The number of time steps performed by exact in-
ference and by approximate inference for different levels of
accuracy.

dataset 1 dataset 2 dataset 3

θ1 55.19% 62.60% 62.97%

θ2 41.15% 48.92% 47.44%

θ3 31.43% 41.06% 37.36%

Table 2: The percentage of savings in space requirements
compared to exact inference.

the datasets by approximately60% for θ1, 45% for θ2 and
30% for θ3. Table 2 shows the savings in space requirements
upon runtime per dataset for the different levels of accuracy.
The results indicate considerable savings and confirm our
intuition that longer sequences of observations and a lower
wished-for accuracy lead to larger savings in time and space
requirements.

Markovian models with richer structure
The essence of our analysis for hidden Markov models ex-
tends to Markovian models in general. These models can
have a richer structure either in the observable variables or
in the hidden variables, or in both.

Structure in the observable variables

The simplest extension of our analysis pertains to Marko-
vian models withs observable variables that are condition-
ally independent given the hidden variable. Each such ob-
servable variable has associated observation column matri-
cesOMk(ik) for its possible valuesik. Upon inference we
have now for each time step, a set of values correspond-
ing with the separate observable variables. We then use the
product matrixOM =

∏s
k=1 OMk(ik) in the various com-

putations. Our motivating example illustrates such a model.
If the observation variables exhibit some mutual depen-

dencies as in Figures 5a and 5b, we construct an observation
matrix that describes the joint distribution over these vari-
ables. This matrix can be looked upon as the observation
matrix of a single compound variable with the possible con-
figurations of the included variables for its values. Note that

a) b)

c) d)

Figure 5: Markovian models with different structures in the
observable or hidden variables; the grey nodes represent the
observable variables and the dotted nodes in a) and b) repre-
sent compound variables.

the new observation matrix can become very large for mul-
tiple observable variables that can take many values.

The dynamics of the hidden variable of a Markovian
model may depend on the evolution of another variable.
Such models have been called input-output models in the
speech recognition literature (Bengio, Frasconi 1996). Simi-
lar models have been used for decision planning in medicine
(Peek 1999), where the input is an action variable modelling
alternative treatments. Figure 5c depicts a Markovian model
with an input variable for our example domain of applica-
tion. A Markovian model with input variablesTn has asso-
ciated aconditional transition matrix(CTM) PX|Tn

, which
is a set of transition matrices for the evolution of the hidden
variable, one for each combination of values for the input
variables. Whenever the input and observable variables are
jointly observed to have the same combination of values, we
can use the CTM to perform an analysis similar to the one
presented in the previous sections.

Structure in the observable and hidden space
Another extension pertains to Markovian models in which
separate subnetworks can be distinguished that are condi-
tionally independent given the hidden variable. Figure 5d
shows an example of such a model. Fors conditionally in-
dependent subnetworks, we use in the various computations
the matrixOM =

∏s
i=1 OMBi , whereOMBi = p(Bi |

Xn) captures the influence of the observations in theith sub-
network on the posterior distribution of the hidden variable.

So far, the sequences of similar consecutive observations
involve all the observable variables. Dependent upon the
topological properties of the model, however, our analysis
also applies to sequence of similar observations that involve
only some of the observable variables. The concept ofd-
separation(Pearl 1988), for example provides for reading
independencies off the graphical structure of a Markovian
model. A subsetHn of the hidden variables may be d-
separated by a set of observable variablesYn from another
set of observable variablesZn; Figure 6 illustrates the ba-
sic idea. The setZn upon observation then cannot affect the



Figure 6: The hidden variableHn is independent of the set
of observable variablesZn = {Sn, Rn} as long asYn =
{Kn} is observed. Our analysis holds for any sequence of
similar consecutive observations forWn,Kn, regardless of
the observations forZn.

Figure 7: A DBN for the dynamic evolution of Colonization
and Pneumonia with two observable variables and a vari-
ational approximation constructed by deleting the arc be-
tween the two dynamic processes.

probability distributions of the hidden variables inHn. Our
analysis now applies directly to similar consecutive obser-
vations for the observable variables that are not d-separated
from Hn.

Structure in the hidden space
In many application domains, there are interacting pro-
cesses, where each process generates its own observations.
Markovian models capturing such processes are particularly
complex. Several algorithms for approximate inference with
such models have been proposed in the literature, among
which are thevariational methods(Jordan et al. 1999). The
underlying idea of these methods is to perform exact infer-
ence in a substructure of the original model and then use
a distance measure to minimise the difference between the
results from the original model and those from the substruc-
ture. For example, Saul and Jordan (Saul, Jordan 1996) pro-
posed for HMMs to decouple the interacting processes and
perform exact inference for each resulting HMM. Figure 7
depicts an example dynamic Bayesian network for our do-
main of application and the substructure that may be used
in a variational approximation. We can now speed up infer-
ence as described in the foregoing in each process separately,
whenever consecutive similar observations are obtained.

Conclusions
Inference in Markovian models such as dynamic Bayesian
networks and hidden Markov models is hard in general. Al-
gorithms for exact inference in fact are practically infeasi-
ble due to their high computational complexity. We have

shown however, that the nature of the observations obtained
can sometimes be exploited to reduce the computational re-
quirements upon runtime. We have shown more specifically
that after a number of consecutive similar observations the
posterior distribution of the hidden variable will have con-
verged to a limit distribution within some level of accuracy.
Observing further similar values will not alter the distribu-
tion beyond this level and no further inference is required.

We presented a real-life example from the medical do-
main that motivated our analysis. Experimental evaluation
of our ideas on the example showed promising results with
respect to the computational savings that can be achieved
upon runtime. In the future, we plan to study the impact of
our ideas on the runtime requirements of inference in larger
realistic Markovian models.
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