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Introduction
In this paper we introduce chain multi-agent causal mod-
els which are an extension of causal Bayesian networks to a
multi-agent setting. Instead of 1 single agent modeling the
entire domain, there are several agents organised in a chain,
each modeling non-disjoint subsets of the domain. Every
agent has a causal model over the variables in his domain,
determined by an acyclic causal diagram and a joint proba-
bility distribution over its observed variables. See Figure 1
for an example.
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Figure 1: A 3-agent chain model.

We study the identification of causal effects, which is the
calculation of the effectPx(s) of manipulating a variableX
on other variablesS from observational data and an acyclic
causal diagram, containing both arrows and bi-directed arcs.
An arrow indicates a direct causal relationship between
the corresponding variables from cause to effect, meaning
that in the underlying domain there is a stochastic process
P(effect|cause)specifying how the effect is determined by
its cause. Furthermore this stochastic process must be au-
tonomous, i.e., changes or interventions inP(effect|cause)
may not directly influence the assignment of other stochastic
processes in the domain. A bi-directed arc represents spuri-
ous dependencies due to unmeasured confounders, this is an
unobserved common cause of the corresponding variables.

Deciding if a causal effect is identifiable amounts to as-
sessing whether the assumptions of a diagram are sufficient
to calculate the effect of the desired intervention from ob-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

servational data. When all variables of a domain can be ob-
served, all causal effects are identifiable. In the presence of
unmeasured confounders, identifiability becomes an issue.
See (Pearl 2000) and (Tian & Pearl 2002) for treatment of
this problem in single agent causal models.

In this work we extend an existing single agent identifi-
cation algorithm to chain multi-agent causal models. Given
some assumptions, we provide a technique to calculate the
effect of manipulating a variable in agentA on some vari-
ables in another agentB, while only communicating infor-
mation concerning variables that are shared between neigh-
boring agents on the chain betweenA andB and variables
that are being studied in that specific query.

The main advantages of the multi-agent solution is that
the identification of causal effects can be assessed without
disclosing sensitive information of a local model to other
agents. It allows to perform causal inference in situations
where parts of the model are kept confidential by their dis-
tributors.

Imagine for example a chain bi-agent causal model, where
2 credit card companies want to assess the effect of chang-
ing the debet limit on the amount of fraudulous transactions
being performed. One company could have a model over
credit card users which relates the debet limit of a user to
its general credit card usage, such as: average amount of
monthly transactions, average amount of each transaction,
etc. The other company could have a model over the credit
card terminal owners (shops), relating the type, geographi-
cal location, time of year, etc. of the shop to the amount of
fraudulous transactions performed in each shop.

With the techniques introduced in this paper the 2 compa-
nies could use the information stored in both their models to
calculate the wanted effect, while only communicating over
shared variables.

Chain Multi-Agent Causal Models
A chain multi-agent causal model (CMACM) consists
of n agents, each of which is represented byMi =
〈

Vi, Gi, P (Vi), (K
−
i ,K+

i )
〉

.

• Vi is the subset of variables agent-i can access.

• Gi is the causal diagram over variablesVi.

• P (Vi) is the joint probability distribution overVi.



• (K−
i ,K+

i ) stores the intersections with neighboring
agents on the chainVi−1,i = {Vi ∩ Vi−1} andVi,i+1 =
{Vi∩Vi+1} respectively. We assume that the agents agree
on the structure and the distribution of their intersections.

In the CMACM of Figure 1:

V1 = {X,Z1, Z2, Z3, Z4}, V1,2 = {Z4}

V2 = {Z4, Z5, Z6, Z7, Z8}, V2,3 = {Z7, Z8}

V3 = {Z7, Z8, Z9, Y }

In (Maes, Meganck, & Manderick 2004; 2005) we ex-
tended a single agent algorithm to the bi-agent case, i.e., a
setting where there are 2 agents each modeling a part of the
domain. There is 1 agent with the model that contains the
manipulated variableX and the other with the model con-
taining the variable(s)S to be studied. Some of the assump-
tions for the algorithm to calculatePx(s) are:

1. there is no bi-directed edge connected to any child of X.

2. V2 ⊥⊥ V1|V1,2, i.e.,V2 is conditionally independent ofV1

given the intersection.

3. Pa(Ch(X)) ⊂ (V1 ∪ V1,2).

Chain Multi-agent Identification
First we introduce the notationPV

x (d), meaning thatPx(d)
is calculated in the model with variablesV . When the super-
script is dropped, this implies that the entire set of variables
is being used. We start with the following lemma:

Lemma 0.1 (Domain Reduction)
Consider a causal model with variablesV , consisting of

disjoint subsetsA,B, andD, andV = (A ∪ B ∪ D). Let
X ∈ A andPx(d) be identifiable using a single agent iden-
tification algorithm, withCh(X)∪Pa(Ch(X)) ⊂ (A∪D).

Then, the following holds:

PV
x (d) = PV \B

x (d) = PA,D
x (d) (1)

This lemma implies that if no bi-directed edge is con-
nected to any child ofX, Px(d) can be calculated equiva-
lently in the entire domainV and inV \B, whereB is a set
of variables which contains no children ofX and parents of
children ofX.

Next, we introduce a lemma that combines Lemma 0.1
and bi-agent identification from (Maes, Meganck, & Mand-
erick 2004).

Lemma 0.2 (Recursive Chain Identification)
Consider a setting whereD is a D-separation set between

X, X-rest and Y, Y-rest. If the assumptions of bi-agent iden-
tification also hold withV1 = (X,X-rest), V1,2 = D and
V2 = (Y, Y -rest), then

Px(y) =
∑

D

(

PX,X-rest,D
x (d).

∑

Y -rest

P (y, y-rest|d)

)

(2)

This lemma implies that ifD is a separation set, the calcu-
lation of Px(y) can be separated in 2 parts: first calculating
the effect ofX on D in the model(X,X-rest, D), then
multiplying this with the sum overY -restof P (y, y-rest|d).

Theorem 0.3 (Multi-Agent Chain Identification)
Consider a setting as in Figure 1, whereV2,3 is a D-

separation set betweenV3 and the remaining variables.
Then:

Px(s) =
∑

V2,3



PV1,V1,2,V2,V2,3

x (v2,3).
∑

V3\S

P (v3|v2,3)





(3)

P
V1,V1,2,V2,V2,3

x (v2,3) will be calculated by applying bi-
agent identification, where the calculations over(V1, V1,2)
and (V1,2, V2, V2,3) are performed separately. After the
part over (V1, V1,2) is marginalized to a distribution over
(X,V1,2), it is communicated to agent2, where the rest of
the calculation is performed.

This theorem implies that multi-agent identification can
be performed over a chain of 3 agents, starting with a calcu-
lation between the first two agents, resulting in a distribution
over X, the variable that is being intervened on, andV2,3,
the intersection between agent2 and agent3. Separately, in
agent3 a local calculation is performed which results in a
distribution overV2,3, i.e. the intersection with agent2, and
S, the set of variables that we are studying. This result can
easily be extended to chains with> 3 agents, by iteratively
applying the theorem. The proofs of these lemmas and the-
orem are out of scope for this paper.

Conclusion
In this paper we introduced the paradigm of chain multi-
agent causal models (CMACMs), which are an extension
of causal Bayesian networks to a multi-agent setting, where
the agents are organised in a chain, so that an agent has a
maximum of 2 neighbors. x Given some assumptions, we
provided an exact technique to calculate the effect of manip-
ulating a variable in agentA on some variables in another
agentB, while only communicating information concerning
variables that are being shared between neighboring agents
on the path between agentsA andB and variables that are
being studied in that specific query (i.e.X andY in Px(y)).
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