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Abstract 
A key part of diagram understanding is the problem of 
glyph recognition. Glyph recognition is hard, because a 
glyph may be drawn in many different ways and with vary-
ing levels of precision. A diagrammatic reasoner must be 
able to recognize such glyphs. This paper presents a new 
glyph recognition mechanism that combines a probabilistic 
representation with an existing symbolic diagrammatic rea-
soner. This reasoner, GeoRep, recognizes glyphs using a 
visual domain theory supported by a logic-based truth-
maintenance system (LTMS). Here we extend GeoRep’s 
LTMS to include nodes that encapsulate naïve Bayes clas-
sifiers. The result is a reasoner that can leverage the bene-
fits of both symbolic truth maintenance and probabilistic 
networks.  

Introduction 

Diagrams are important to a wide variety of tasks that 
include problem solving, communication, and collabora-
tion (Glasgow, Narayanan, and Chandresekaran, 1995). 
These tasks are frequently aided by a diagram’s ability to 
capture and convey many spatial relations at a glance.  
 In most diagrammatic reasoners, the first step is to com-
bine the initial visual primitives into visual symbols or 
glyphs. Glyphs, especially when drawn quickly, however, 
are often imprecisely drawn. For example, Figure 1 shows 
four glyphs that are all easily interpreted as a NAND-gate, 
even though three are drawn imprecisely.  

 Importantly, the imprecision in each glyph cannot be 
corrected by assuming tolerance values. GeoRep can rec-
ognize constituent relations in glyphs when they are 
within tolerance values, but if even one crucial relation 
exceeds the tolerance values (as in Figure 1C and 1D), it 
fails to recognize the glyph. 
 To more robustly recognize glyphs, we need a new 
method for recognition. This paper discusses the integra-
tion of a new probabilistic mechanism into a diagram-
matic reasoner. The mechanism encapsulates naïve Bayes 
classifiers in nodes in a logic-based truth maintenance 
system (LTMS). The Bayes classifiers capture the impreci-
sion and uncertainty inherent in drawn diagrams. The 
encapsulation of Bayes classifiers in the existing LTMS 
allows the flexibility of probabilistic reasoning with the 
efficiency of a symbolic reasoner.  

Implementation 
GeoRep is a diagrammatic reasoner that takes as input 
vector graphics files and outputs a predicate calculus rep-
resentation of the diagram (Ferguson and Forbus, 2000; 
Ferguson et al., 2003). GeoRep creates this representation 
using a two-stage architecture. The first stage creates a 
dependency network of low-level visual relations. The 
second stage uses the dependency network and a rule-
based visual domain theory to produce a description of the 
diagram.  
 We have created a new glyph recognition mechanism by 
encapsulating naïve Bayes classifiers into LTMS nodes 
created by GeoRep’s rules. The classifiers are created dur-
ing the rule firing process and stored directly in LTMS 
nodes. Communication is enabled between the classifier 
and the LTMS in order to maintain the proper truth value 
for a glyph interpretation. 

Integration into the Rule System    

We now look at how rules in the visual domain theory 
create nodes within the LTMS. For each glyph recognition 
rule, its set of preconditions captures the visual element 
types and the minimal set of spatial relations needed to 
attempt further glyph recognition.  
 When these preconditions are met and the rule fires, it 
adds the glyph interpretation to the TMS dependency net-

 

Figure 1: A is a precisely drawn NAND-gate glyph. B, C, 
and D are examples of imprecisely drawn glyphs. 



work (as in the previous version of GeoRep), but also adds 
a probabilistic node as a node that conjunctively supports 
the current rule’s interpretation (Figure 2). The node is 
created with the implicational structure dictated by the 
rule, allowing the node to be retracted if any of the trigger 
conditions become false (e.g., if a visual element is deleted 
from the diagram). 
 The probabilistic node then maintains the probability of 
the current interpretation. To do this, it must estimate the 
supporting probabilities of prior nodes, which represent 
supporting visual relations. If the visual relation is already 
in GeoRep’s knowledge base, the prior node is considered 
evidence. If missing, however, a visual test for that rela-
tion is called automatically, and if the test is passed, the 
relation is added to both GeoRep’s knowledge base and as 
classifier evidence. Once the evidence has been collected, 
the probability of the current interpretation is computed. 

Communication between Representation Levels 

Probabilistic nodes must communicate dynamically with 
the LTMS, and do so in two ways (Figure 2).  
 First, they can change the truth value for the glyph in-
terpretation in the LTMS. The classifier in the probabilis-
tic node generates a probability for the interpretation 
based on the existing evidence. When this probability 
reaches a threshold value, the labeling of the LTMS node 
is changed to True. Similarly, if the probability is below 
the threshold, the LTMS node will be labeled False.  
 The second method of communication is via the evi-
dence collection process. To gather evidence, the naïve 
Bayes classifier accesses GeoRep’s representations to de-
termine whether a particular relation is present. If a rela-
tion is not present, a visual test is run directly on the dia-
gram and the results of this visual test may be stored di-
rectly into the existing diagram representation. 
 This represents a more sophisticated implementation of 
top-down influences than in earlier versions of GeoRep. 
Previously, rule triggers could make callbacks to visual 

routines, but the results were only used in the instantiated 
rule and discarded afterwards. The visual test results were 
never added into the diagram representation. This new 
implementation allows the anticipated glyph structure 
represented by the probabilistic networks to guide further 
visual processing. 

Results and Future Work 

Using this probabilistic mechanism with the LTMS, we 
were able to improve the glyph recognition capabilities of 
the GeoRep reasoner. The original reasoner is unable to 
correctly interpret three of the four NAND-gates in Figure 
1 (B, C, and D), because the imprecision in the drawn 
glyphs provided inadequate visual relations to fire visual 
domain theory rules. However, the new mechanism is ca-
pable of recognizing all of the NAND-gate glyphs in the 
figure.  
 In addition to more robust glyph recognition, the new 
mechanism allows further processing of a diagram to oc-
cur. Within the visual domain theory, rules are often cre-
ated that are based not on visual elements, but on glyphs 
and visual relations between glyphs. When imprecise 
glyphs are not recognized, the rules based on glyphs do 
not fire and diagram processing is blocked. The new 
mechanism overcomes the imprecision, recognizing 
glyphs even when poorly-drawn and allows the diagram 
processing to continue using rules that previously would 
not have been fired. 
  Although the mechanism increases the diagram under-
standing capabilities of GeoRep, there is still work to be 
done. We are working on a better language for describing 
the Bayes classifiers within rules. We are also investigat-
ing integrating the probabilistic calculations directly into 
the rule triggers, in order to avoid the overhead of creating 
separate nodes to contain the Bayes classifiers.   
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Figure 2: The interactions and communications between 
the truth maintenance system and the Bayesian networks. 


