
Analysis of an Off-Line Intrusion Detection System:
A Case Study in Multi-Objective Genetic Algorithms

Pedro A. Diaz-Gomez∗
Ingenieria de Sistemas, Universidad El Bosque

Bogota, Colombia
pdiazg@ou.edu

Dean F. Hougen
Robotics, Evolution, Adaptation and
Learning Laboratory (REAL Lab)

School of Computer Science
University of Oklahoma, OK, USA

hougen@ou.edu

Abstract

A primary approach to computer security is the Intru-
sion Detection System (IDS). Off-line intrusion detec-
tion can be accomplished by searching audit trail logs
of user activities for matches to patterns of events re-
quired for known attacks. Because such search is NP-
complete, heuristic methods will need to be employed
as databases of events and attacks grow. Genetic Algo-
rithms (GAs) can provide appropriate heuristic search
methods. However, balancing the need to detect all pos-
sible attacks in an audit trail with the need to avoid
warnings of attacks that do not exist is a challenge,
given the scalar fitness values required by GAs. A case
study of a previously proposed GA-based IDS shows
this difficulty with respect to its fitness function and pro-
poses a new method to overcome it. Such analysis can
be of benefit to the study of other multi-objective GAs.

Introduction
The need for automated audit trail analysis was outlined a
quarter century ago (Anderson 1980) and is still present.
This paper presents a case-study of an off-line intrusion de-
tection system that uses GAs to search for matches in the
audit trail (Mé 1998). Unfortunately, the parameters for its
fitness function cannot be tuned to effectively detect all pos-
sible attacks in an audit trail while still avoiding false posi-
tives. Our work addresses this shortcoming.

GASSATA
A Genetic Algorithm as an Alternative Tool for Security Au-
dit Trail Analysis (GASSATA) was introduced as an off-line
intrusion detection system (Mé 1998) with fitness function

F (I) = α +
∑Na

i=1 Wi · Ii − β ∗ T 2 (1)

where I is the hypothesis vector, α maintains F (I) > 0
in order to retain diversity in the population (using propor-
tional probability selection), Na is the number of known at-
tacks, W is the weighted vector that reflects the risk of each

∗Conducting research at the Robotics, Evolution, Adaptation,
and Learning Laboratory (REAL Lab), School of Computer Sci-
ence, University of Oklahoma.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

attack, β provides a slope for the penalty function, and T is
the number of times for which (AE ·I)i > OVi, where AE is
the attack-event matrix that shows which events are required
for each attack, and OV is the observed vector of events.

Mé (1998) reports good results with GASSATA but our
experience has been that the system often generates false
positives and negatives (Diaz-Gomez & Hougen 2005).

Analysis of GASSATA’S Fitness Function
A genetic algorithm needs a scalar fitness function to work,
and it appears natural that the one originally proposed (Mé
1998)—a combination of objectives into a single function
using arithmetic operations—is appropriate. There are,
however, problems with this approach. The first is that accu-
rate scalar information must be provided on the range of ob-
jectives, to avoid one of them dominating the other. The sec-
ond is the difficulty in determining the appropriate weights
when there is not enough information about them. In this
case, any optimal point obtained will be a function of the
coefficients used to combine the objectives (Coello 1998).

The term
∑Na

i=1 Wi · Ii guides the solution to have the
maximum number of intrusions. However, this is good only
until the correct set of intrusions are found. If more intru-
sions than that are hypothesized, the problem of false pos-
itives occurs. Similarly, the term β ∗ T 2 decreases the fit-
ness value but various intrusions can require the same event.
When this happens, the counting of overestimates is wrong.
See Figure 1.

In 1 we have a first case: A type 5 intrusion was hy-
pothesized, so one is added. This intrusion requires events
6, 7, and 17. For event 6, the hypothesis gives a number
of events greater than the number of events that really hap-
pened, so one is subtracted. For events 7 and 17 there is
no penalty—we observe 30 ≤ 76 and 62 ≤ 94. So, one
was added because the attack was hypothesized and one was
subtracted because for the 6th entry there were more events
hypothesized than really happened.

In 2 we have a second case: Intrusion type 21 was hy-
pothesized which requires events of types 6 again, 17 again,
and 23. For event types 17 and 23 there is no penalty be-
cause (AE ∗ I)17 ≤ OV17 and (AE ∗ I)23 ≤ OV23, and for
event 6, there is no penalty either, because the penalty was
already taken into account for intrusion type 5. In this case,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0 0 0
0 0 0

1 0 0
 0 0 0

0 0 0
 1 2 20

1 0 0
0 0 6
0 0 0
0 4 4
0 0 0
 0 62 94

1 0 0
1 0 0

 30 1335
 0 0

1 3 0 1

1 5 0 1

1 8 0 1

 3 459
 0 0

1 100 0 1

1 30 76

 0 0 0
1 5 5

0 1 0 1

0

1 10 0 11

 0 5 422

Event OV I AE*I T

Figure 1: The fitness evaluated as per GASSATA.

where there should be a penalty, there is no penalty at all.
Table 1 gives the AE matrix, an individual I hypothesized

in the last generation, and the counts of overestimates for
that individual.

New Fitness Function Proposal
The solution proposed has two parts: (1) remove the term∑Na

i=1 Ii, and (2) count overestimates as follows: if two in-
trusions require the same event each resulting in an overesti-
mate of the number of events hypothesized, then count them
twice, and so forth. Call this T ′.

With this in mind, the new fitness function suggested is

F (I) = Ne − T ′ (2)

Now, the better the hypothesized vector I , the smaller T ′

is, and of course, F (I) → Ne, the maximum. To avoid
false negatives, we add a mechanism that takes the union of
all newly hypothesized attacks that are consistent with the
existing aggregate solution set.

The results found with the new fitness function and mech-
anism are shown in Table 2. As can be seen, with the new
method there are no false positives and the number of false
negatives decreases dramatically compared to the results we
saw previously (Diaz-Gomez & Hougen 2005). This time
70 runs were performed—10 repetitions each for 7 different
cases—and only one time a false negative was present.

Conclusions & Future Work
This paper shows some difficulties in providing accurate val-
ues to parameters in the fitness function suggested in GAS-
SATA (Mé 1998) and proposes a solution independent of
variable parameters making the fitness function to solve this

A T T A C K #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 I AE*I OV T T'

0 3 0 0 0

1 1 0 0 0

2 1 0 1 0 1 1

3 3 1 0 0

4 3 0 0 0

5 3 8 1 8 0 1 1

6 5 1 5 1 10 0 1 2

7 30 1 30 76

8 5 1 5 0 1 1

 9 3 0 0 0

10 2 1 2 20

 11 3 1 3 0 1 1

T 12 10 1 1 0 0

N 13 1 0 0 6

E 14 1 0 0 0

V 15 4 0 4 4

E 16 1 0 0 0

17 3 35 5 8 3 2 3 10 3 300 2 5 4 0 62 94

18 100 1 100 0 1 1

19 5 0 5 42

20 10 1 0 0

21 1 1 0 0

22 0 0 0

23 5 1 5 5

24 1 0 0

25 1 3 3 459

26 30 30 1335

27 50 0 0

Table 1: Example AE, I , OV , T , and T ′.

Average Count Average %

User False + False - Detected False + False - Detected

2051_7 0 0 3 0 0 100

2051_11 0 0 4 0 0 100

2506_15 0 0 4 0 0 100

Zero Vector 10 0 0 0 0 100

0 0.1 0.9 0 10 90

0 0 2 0 0 100

0 0 3 0 0 100

One Intrus.

Two Intrus.

Three Intrus.

Table 2: Results with fitness function F (I) = Ne − T ′.

particular problem quite general and independent of the au-
dit trail data. This approach can be generalized to similar
multi-objective fitness functions for genetic algorithms. We
will compare this approach to other approaches such as re-
placing proportional probability selection with another se-
lection method, such as tournament selection.

References
Anderson, J. P. 1980. Computer security threat monitoring and
surveillance. Technical Report 79F296400, James P. Anderson,
Co., Fort Washington, PA.
Coello, C. A. C. 1998. A comprehensive survey of evolutionary-
based multiobjective optimization techniques. Knowledge and In-
formation Systems 1(3):269–308.
Diaz-Gomez, P., and Hougen, D. 2005. Improved off-line in-
trusion detection using a genetic algorithm. In Proceedings of
the Seventh International Conference on Enterprise Information
Systems. To appear.
Mé, L. 1998. GASSATA, a genetic algorithm as an alternative
tool for security audit trail analysis. In First International Work-
shop on the Recent Advances in Intrusion Detection.

