
Automating Planning using Natural Language

Kalyan Moy Gupta1,2 and David W. Aha2

1ITT Industries; AES Division; Alexandria, VA 22303
2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5515); Washington, DC 20375
firstname.lastname@nrl.navy.mil

Abstract
We propose PLANL, an approach for PLAnning with
Natural Language, to accelerate the development of
automated planning systems, enable plan sharing across
multiple planners, and facilitate natural language interaction.
PLANL uses generative sublanguage ontologies (GSOs) to
robustly and accurately translate planning knowledge
descriptions into representations such as STRIPS or
hierarchical task networks. GSO’s accomplish this through a
novel ability for efficiently representing and resolving
polysemy. Unlike alternative approaches, PLANL does not
have a proprietary plan representation. Instead, it exploits
existing plan representations and selects a linguistically
motivated conceptual vocabulary for them.

1. Introduction
Developing automated planners requires intensive and
lengthy effort, the resulting systems cannot share planning
knowledge, and they do not support natural language (NL)
interaction. The first two limitations have been partially
addressed by sharable ontologies (Brenner & desJardins,
2002; Gil & Blythe, 2000). However, these ontologies are
not linguistically motivated. Thus, translation from NL plan
descriptions to a computable plan representation is
problematic. Others have used ontologies capable of
linguistic representation, but they cannot represent
polysemous words efficiently and require a proprietary plan
representation (e.g., SNePS [Shapiro, 2000]).
 Significant gains can be realized by using linguistically
motivated expressive ontologies. We propose a novel
approach for automating PLAnning with Natural Language,
called PLANL, which:
 Represents planning knowledge by reference to a

generative sublanguage ontology (GSO). GSOs are
linguistic ontologies inspired by generative lexicon theory
(GLT) (Pustejovsky, 1995), which support robust NL
processing (Gupta & Aha, 2003; 2005).

 Simplifies system-human interaction and accelerates
knowledge engineering by encoding NL descriptions of
plan knowledge, plans, and world states into their formal
representations.
The next section introduces PLANL, and describes GSO

and its use in interpreting planning knowledge descriptions.
We then conclude with directions for future research.

2. Planning with Natural Language
Automated planners represent planning knowledge, goals,
and world states in a formal knowledge representation
language that are subsets of propositional and first-order
predicate calculus (Weld, 1994). For a planner to work,
the world and goal state descriptions must share their
vocabulary and expressions with the domain theory.
 PLANL has two main components. First, the
interpreter converts NL descriptions of domain
knowledge, world states, and planning goals into formal
computational descriptions (e.g., a logic program) by
using a GSO. Second, the planner generates a plan to
accomplish a specified goal using the domain knowledge.

2.1 Generative Sublanguage Ontologies
While linguistic ontologies are intrinsically suited for NL
interpretation, they may lack the expressiveness needed to
represent planning knowledge (e.g., WordNet [Fellbaum,
1998]) and/or lack a theory for efficiently representing
polysemous terms (e.g., SNePs). Consequently, these
approaches can fail during interpretation.
 GSOs efficiently represent polysemous terms and
support sense ambiguity resolution. GSO concepts have a
predicate argument representation within an object
oriented framework and can express plans in established
plan representation formalisms (e.g., hierarchical task
networks (HTNs) [Nau et al., 2003]).
 GLT supports systematic polysemy, in which
potentially unanticipated but related meanings of a term
can be systematically generated from a well-defined
conceptual structure, and its applicable meaning can be
selected based on a term’s context. It provides a set of
formally defined generative operators to select senses.
GSO extends and implements GLT for constrained
domains (i.e., sublanguages) (Gupta & Aha, 2003; 2005).
 A GSO’s conceptual structure includes four elements:
(1) Arguments, a set of typed variables that a concept
accepts as parameters when it is instantiated. These are
used to represent events and relations; (2) Qualia, a set of
relationships that a concept has with other concepts,
including relations necessary for resolving polysemous
expressions and compound noun interpretations; (3) Event
structure, a set of temporal and causal relationships
among processes and states used for interpreting
polysemous and light verbs; and (4) Inheritance, a

specification of type-subtype relationships among concepts.
 Three generative operators enable sense generation and
selection during interpretation: (1) Type coercion, a
principled operation for argument type shifting that is used
to recover from type failures in novel circumstances; (2) Co-
composition, an operation involving two concepts where the
slot of one co-specifies the other to generate a sense that is
not overtly expressed; and (3) Selective binding, which
resolves polysemous underspecified adjectives by selecting
the behavior slot of the object they qualify.

Besides the conceptual structure, GSOs include a library
of terms with their syntactic and morphological features and
pointers to the conceptual structure(s) that represent their
meanings.

2.2 Interpreting Domain Descriptions with GSOs
PLANL’s interpreter encodes domain descriptions into a
logic representation by generating a syntactic parse(s),
retrieving and instantiating GSO concepts corresponding to
terms used in the descriptions, and resolving references by
mapping the arguments with GSO instances.

 Figure 1 shows the GSO representation of the NL blocks
world domain knowledge description “Move C from A onto
Table”. It shows that BLOCK#C, which was LOCATED#1
on BLOCK#A, was moved by MOVE_ACT#1 and is now
LOCATED#2 on TABLE#1. The GSO event structures
capture the post condition description of an action, which is
a standard way of describing actions in most plan
representations. Also, the choice of predicates and their
language was determined by the GSO rather than a non-
linguistic concept vocabulary (e.g., see [Weld, 1994]).

2.3 Applying PLANL
PLANL will be used in two phases, namely knowledge
acquisition and plan generation. Knowledge acquisition
first updates the GSO to include domain specific terms and
concepts (e.g., “block” and “table” in a blocks world). It
then updates planning domain knowledge using NL
descriptions. For example, “Move C from A onto Table if
there is nothing on C” is an NL domain description in a
blocks world. Likewise, PLANL can also resolve unknown
named entities (e.g., “block A”) via user descriptions of
such entities (e.g., “A is a block”). PLANL will allow
domain experts to use NL descriptions rather than a formal
plan representation language.
 To generate plans, users will specify initial and goal states
with NL descriptions. For example, “A is on Table, C is on
A, and B is on Table” is a state description in a blocks
world. PLANL then generates the plan for these states using
one of the existing planners such as STRIPS, HTN (Nau et
al., 2003), or Task-Method Knowledge (TMK) (Murdock et

al., 2003) engine. Clearly, describing the initial and goal
states in NL is comparatively easy, flexible, and
convenient for anyone lacking familiarity with plan
representation languages and provides a user friendly
alternative.

3. Conclusion and Future Work
We introduced PLANL, a novel approach for planning
with natural language enabled by GSOs. PLANL makes
knowledge sharing and reuse feasible, and may accelerate
knowledge engineering and simplify user-system
interaction at no extra cost. We are currently
implementing PLANL, and will evaluate it on planning
tasks that use representations such as HTNs and task-
method-knowledge models.

Acknowledgement
We thank NRL for funding this research.

References
Brenner, M., & desJardins, M. (Eds.) (2002). Planning with and

for Multiagent Systems: Papers from the AAAI Workshop
(Technical Report WS-02-12). Menlo Park, CA: AAAI Press.

Fellbaum, C. (1998). WordNet, An electronic lexical database.
Cambridge, MA: MIT Press.

Gil, Y. & Blythe, J. (2000). PLANET: A sharable and reusable
ontology for representing plans. In Y. Gil & K. Myers (Eds.)
Representational Issues for Real-World Planning Systems:
Proceedings of the AAAI Workshop (Technical Report WS-
00-07). Menlo Park, CA: AAAI Press.

Gupta, K.M., & Aha, D.W. (2003). Nominal concept
representation in sublanguage ontologies. Proceedings of the
Second International Workshop on Generative Approaches
to the Lexicon (pp. 53-62). Geneva, Switzerland: University
of Geneva.

Gupta, K.M., & Aha, D.W. (2005). Interpreting events using
generative sublanguage ontologies. Unpublished manuscript.

Murdock, J.W., Aha, D.W., & Breslow, L.A. (2003). Case-based
argumentation via process models. Proceedings of the
Fifteenth International Conference of the Florida Artificial
Intelligence Research Society (pp. 134-138). St. Augustine,
FL: AAAI Press.

Nau, D., Au, T.-C., Ilghami, O, Kuter, U, Murdock, J.W., Wu,
D., & Yaman, F. (2003). SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20, 379-404.

Pustejovsky, J. (1995). The generative lexicon. Cambridge, MA:
MIT Press.

Shapiro, S.C. (2000). An introduction to SNePS 3. In B. Ganter
& G.W. Mineau (Eds.), Conceptual Structures: Logical,
Linguistic, and Computational Issues. Berlin: Springer.

Weld, D.S. (1994). An introduction to least commitment
planning. AI Magazine, 15(4), 27-61.

LOCATED#1
(BLOCK#C,
BLOCK#A,
?,0)

LOCATED#2
(BLOCK#C,
TABLE#1,
ON,0)

MOVE_ACT#1
(BLOCK#C)

LOCATED#1
(BLOCK#C,
BLOCK#A,
?,0)

LOCATED#2
(BLOCK#C,
TABLE#1,
ON,0)

MOVE_ACT#1
(BLOCK#C)

Figure 1. A GSO representation of a blocks world move task

