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Abstract 
We propose PLANL, an approach for PLAnning with 
Natural Language, to accelerate the development of 
automated planning systems, enable plan sharing across 
multiple planners, and facilitate natural language interaction. 
PLANL uses generative sublanguage ontologies (GSOs) to 
robustly and accurately translate planning knowledge 
descriptions into representations such as STRIPS or 
hierarchical task networks. GSO’s accomplish this through a 
novel ability for efficiently representing and resolving 
polysemy. Unlike alternative approaches, PLANL does not 
have a proprietary plan representation. Instead, it exploits 
existing plan representations and selects a linguistically 
motivated conceptual vocabulary for them. 

1. Introduction 
Developing automated planners requires intensive and 
lengthy effort, the resulting systems cannot share planning 
knowledge, and they do not support natural language (NL) 
interaction. The first two limitations have been partially 
addressed by sharable ontologies (Brenner & desJardins, 
2002; Gil & Blythe, 2000). However, these ontologies are 
not linguistically motivated. Thus, translation from NL plan 
descriptions to a computable plan representation is 
problematic. Others have used ontologies capable of 
linguistic representation, but they cannot represent 
polysemous words efficiently and require a proprietary plan 
representation (e.g., SNePS [Shapiro, 2000]).  
 Significant gains can be realized by using linguistically 
motivated expressive ontologies. We propose a novel 
approach for automating PLAnning with Natural Language, 
called PLANL, which: 
 Represents planning knowledge by reference to a 

generative sublanguage ontology (GSO). GSOs are 
linguistic ontologies inspired by generative lexicon theory 
(GLT) (Pustejovsky, 1995), which support robust NL 
processing (Gupta & Aha, 2003; 2005). 

 Simplifies system-human interaction and accelerates 
knowledge engineering by encoding NL descriptions of 
plan knowledge, plans, and world states into their formal 
representations.  
The next section introduces PLANL, and describes GSO 

and its use in interpreting planning knowledge descriptions. 
We then conclude with directions for future research. 

2. Planning with Natural Language 
Automated planners represent planning knowledge, goals, 
and world states in a formal knowledge representation 
language that are subsets of propositional and first-order 
predicate calculus (Weld, 1994). For a planner to work, 
the world and goal state descriptions must share their 
vocabulary and expressions with the domain theory.   
    PLANL has two main components. First, the 
interpreter converts NL descriptions of domain 
knowledge, world states, and planning goals into formal 
computational descriptions (e.g., a logic program) by 
using a GSO. Second, the planner generates a plan to 
accomplish a specified goal using the domain knowledge.  

2.1 Generative Sublanguage Ontologies 
While linguistic ontologies are intrinsically suited for NL 
interpretation, they may lack the expressiveness needed to 
represent planning knowledge (e.g., WordNet [Fellbaum, 
1998]) and/or lack a theory for efficiently representing 
polysemous terms (e.g., SNePs). Consequently, these 
approaches can fail during interpretation.   
    GSOs efficiently represent polysemous terms and 
support sense ambiguity resolution. GSO concepts have a 
predicate argument representation within an object 
oriented framework and can express plans in established 
plan representation formalisms (e.g., hierarchical task 
networks (HTNs) [Nau et al., 2003]).  
    GLT supports systematic polysemy, in which 
potentially unanticipated but related meanings of a term 
can be systematically generated from a well-defined 
conceptual structure, and its applicable meaning can be 
selected based on a term’s context. It provides a set of 
formally defined generative operators to select senses.  
GSO extends and implements GLT for constrained 
domains (i.e., sublanguages) (Gupta & Aha, 2003; 2005).  
    A GSO’s conceptual structure includes four elements: 
(1) Arguments, a set of typed variables that a concept 
accepts as parameters when it is instantiated. These are 
used to represent events and relations; (2) Qualia, a set of 
relationships that a concept has with other concepts, 
including relations necessary for resolving polysemous 
expressions and compound noun interpretations; (3) Event 
structure, a set of temporal and causal relationships 
among processes and states used for interpreting 
polysemous and light verbs; and (4) Inheritance, a 



specification of type-subtype relationships among concepts.  
     Three generative operators enable sense generation and 
selection during interpretation: (1) Type coercion, a 
principled operation for argument type shifting that is used 
to recover from type failures in novel circumstances; (2) Co-
composition, an operation involving two concepts where the 
slot of one co-specifies the other to generate a sense that is 
not overtly expressed; and (3) Selective binding, which 
resolves polysemous underspecified adjectives by selecting 
the behavior slot of the object they qualify.   

Besides the conceptual structure, GSOs include a library 
of terms with their syntactic and morphological features and 
pointers to the conceptual structure(s) that represent their 
meanings.  

2.2 Interpreting Domain Descriptions with GSOs 
PLANL’s interpreter encodes domain descriptions into a 
logic representation by generating a syntactic parse(s), 
retrieving and instantiating GSO concepts corresponding to 
terms used in the descriptions, and resolving references by 
mapping the arguments with GSO instances. 

  Figure 1 shows the GSO representation of the NL blocks 
world domain knowledge description “Move C from A onto 
Table”. It shows that  BLOCK#C, which was LOCATED#1 
on BLOCK#A, was moved by MOVE_ACT#1 and is now 
LOCATED#2 on TABLE#1. The GSO event structures 
capture the post condition description of an action, which is 
a standard way of describing actions in most plan 
representations. Also, the choice of predicates and their 
language was determined by the GSO rather than a non-
linguistic concept vocabulary (e.g., see [Weld, 1994]). 

2.3 Applying PLANL  
PLANL will be used in two phases, namely knowledge 
acquisition and plan generation. Knowledge acquisition 
first updates the GSO to include domain specific terms and 
concepts (e.g., “block” and “table” in a blocks world). It 
then updates planning domain knowledge using NL 
descriptions. For example, “Move C from A onto Table if 
there is nothing on C” is an NL domain description in a 
blocks world. Likewise, PLANL can also resolve unknown 
named entities (e.g., “block A”) via user descriptions of 
such entities (e.g., “A is a block”). PLANL will allow 
domain experts to use NL descriptions rather than a formal 
plan representation language. 
   To generate plans, users will specify initial and goal states 
with NL descriptions. For example, “A is on Table, C is on 
A, and B is on Table” is a state description in a blocks 
world. PLANL then generates the plan for these states using 
one of the existing planners such as STRIPS, HTN (Nau et 
al., 2003), or Task-Method Knowledge (TMK) (Murdock et 

al., 2003) engine. Clearly, describing the initial and goal 
states in NL is comparatively easy, flexible, and 
convenient for anyone lacking familiarity with plan 
representation languages and provides a user friendly 
alternative. 

3. Conclusion and Future Work 
We introduced PLANL, a novel approach for planning 
with natural language enabled by GSOs. PLANL makes 
knowledge sharing and reuse feasible, and may accelerate 
knowledge engineering and simplify user-system 
interaction at no extra cost. We are currently 
implementing PLANL, and will evaluate it on planning 
tasks that use representations such as HTNs and task-
method-knowledge models.  
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Figure 1. A GSO representation of a blocks world move task 


