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Abstract

In this paper we propose an efficient method for forecasting
highly redundant time-series based on historical information.
First, redundant inputs and desired outputs are compressed
and used to train a single network. Second, network out-
put vectors are uncompressed. Our approach is successfully
tested on the hourly temperature forecasting problem.

Introduction

Time-series forecasting is a very important problem in many
disciplines. Correct trend prediction, can be used profitably
in stock market analysis (Saad, Prokhorov, & (II) 1998).
Power load forecasting is critically important for electric
utility companies (Hippert, Pedreira, & Souza 2001). River
flow forecasting can have significant economic impact in
agricultural water management and in protection from wa-
ter shortages and possible flood damage (Atiya et al. 1999).

Most neural net time-series forecasters use the highly
redundant time domain sequence as the network in-
puts (Khotanzad et al. 1997), (Ling et al. 2003) resulting
either in large dimensionality of the input space or in a large
number of networks.

In this paper, we describe a neural net time series fore-
caster that uses data compression to reduce redundancy. We
present a method for compressing the temperature data and
derive bounds on the training error in the compressed do-
main.

Data Organization

For electric utilities, temperature forecasts are critical. Mod-
eling the temperature variations of a region with a small tem-
perature data set is an important issue. If each pattern starts
at the same time (i.e., time corresponding to the first temper-
ature input), then, the maximum number of patterns (Nv24

)
would be 365 per year. We can increase the number of pat-
terns by having them start at different times, that is having a
lower step size (SS).

The temperature inputs are represented by vectors {xp ∈
R

N , p = 1, 2, · · · , Nv}, which contain previous 24 hourly
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temperatures. The forecast high and low temperatures of
the next 24 hours are represented by a vector Ψp. The time
related inputs can be represented by a vector Θp. The de-

sired outputs are represented by the vector {tp ∈ R
M , p =

1, 2, · · · , Nv}, which contains the next day’s hourly temper-
atures. Here Nv is the number of patterns. The format of

the training file is {xap, tp}
Nv

p=1
, where the augmented input

vector is
xap = [xT

p ,ΨT
p ,ΘT

p ]T (1)

Redundancy Reduction

We can eliminate temperature sequence redundancy by ap-
plying Karhunen Loéve Transform (KLT).

The KLTs of xp and tp are denoted by Xp and Tp. We
use the first Nk coefficients of the transformed vectors Xp’s
and Mk coefficients of the transformed vectors Tp’s for
training.

Using the triangular inequality, we derive a bound on the
training error in the compressed domain,

‖Tp−Yp‖ = ‖trp−yrp‖ ≤ ‖trp−tp‖+‖tp−yrp‖ (2)

where Tp and Yp are the desired and forecast temperatures
in compressed domain, trp and yrp are the reconstructed
time domain temperatures from Tp and Yp respectively, tp

is the desired temperature vector in the data domain. It is ob-
served that the reconstruction error (‖trp − tp‖) is usually
very small. Equality in 2 occurs when there is no compres-
sion.

Multilayer Perceptron

Training and Sizing

A schematic of the forecasting system is shown in the Fig-
ure 1. We use the Output Weight Optimization - Hidden
Weight Optimization (OWO - HWO) algorithm described in
Yu & Manry (2002) for training.

We use the structural risk minimization principle to
choose the number of hidden units (Nh). It is clearly ob-
served from Figure 2 that the test error for three hidden units
is the minimum for data set North of Table 1. Hence the
number of hidden units for that set of training data is chosen
to be three and the corresponding network is saved.

System Testing

In Table 1, the values of mean absolute error (MAE) and
standard deviation of error (SDE) of our proposed system is
compared with the time domain system.
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Figure 1: Forecasting System Diagram
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Figure 2: Training and test errors versus Nh

Figure 3 shows plots of MAE and SDE for training and
testing (SS = 4). In Figure 4, we show examples of actual
temperatures and forecasts. These forecasts used high and
low temperatures of the day following the forecast day as
inputs for training. Network sizes for our system and time-
domain forecasting system are summarized in Table 2. From
the plots, the proposed system works quite well.

Table 1: MAE and SDE of two systems for SS = 4.
Our system Time domain system

Region MAE SDE MAE SDE

Coast 0.78 1.11 1.53 2.16

East 1.17 1.54 2.53 3.27

Far West 1.04 1.48 7.75 9.50

North 0.85 1.19 5.91 7.42

North Central 0.74 1.07 5.68 7.05

South 0.66 0.94 4.83 6.19

South Central 0.84 1.25 5.87 7.49

West 1.59 1.20 2.51 8.25

Average Error 0.86 1.22 5.09 6.42
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Figure 3: (a) MAE, and (b) SDE (SS = 4).
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Figure 4: Plot of desired and predicted temperatures for our
forecaster for some sample days (SS = 4). (a) Jul 12,1998,
(b) Aug 24, 1998, (c) Sep 27, 1998, (d) Oct 19, 1998
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Table 2: Network size for data set South.

Our system Time domain system

SS = 24 SS < 24 SS = 24 SS < 24

N 12 14 28 30

M 6 6 24 24

Nh 5 5 5 5


