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Introduction 
Expressive power and deductive power are two critical 
characteristics of knowledge representation languages. 
They capture respectively, what information can be 
explicitly stated, and what information can be deduced. 
Object (class) based representations have gained almost 
universal acceptance because of their ability to capture 
inter-class associations and their implied ability to reason 
about these associations. While this is true for taxonomical 
relations (generalizations, specializations), this is far from 
being true for structural associations relating a whole to its 
parts. Most graphical and formal languages provide 
constructs for stating part-whole associations, but most 
languages have limited or no support for making inferences 
from them.  

This shortcoming is not a new revelation. Extensive 
research has been ongoing in philosophy, linguistics, logic, 
artificial intelligence, and software engineering with a 
focus to formalize the semantics of the part-whole 
association. This research resulted in a diverse pool of 
formalisms, some deemed too weak and thus not very 
useful, and some deemed too strong and thus not very 
usable; and most deemed both too weak and too strong 
because they do not capture all the properties of interest to 
some application domain, and capture properties that do 
not hold in the same application domain. This paradoxical 
state of affairs is in fact a reflection of the nature of the 
part-whole association. While there is an intuitive universal 
understanding of what the association means, the specific 
properties that one needs to reason about vary from one 
domain to the next, and from one application to the next.  

In this paper, we take an approach to defining part-whole 
associations that account both for the universality and the 
variability: 
• We account for the “universality” by defining all part-

whole associations in terms of a common set of 
primitive associations. 

• We account for the “variability” by the fact that each 
part-whole association may be a different combination 
of primitive associations. 

We define an algebra of associations that serves as a 
basis for the deductive power of languages capturing the 
part-whole association. 

 

Most researchers focusing on the representation of part-
whole relations base their work on Description Logics (DL) 
[ 1]. We use a Tarski-like algebra of binary relations which 
has a similar expressive power but presents the 
convenience of an algebra.   
   A relation on a set Σ is a subset of Σ ×Σ. Constant 
relations on set Σ include: the Universal relation L=Σ×Σ, 
the identity relation I={(s,s)|s ∈ Σ} and the empty relation 
Φ={}. Given A, a subset of Σ, we define I(A) as {(s,s)| 
s∈A}. In addition, given two sets A and B subsets of Σ, we 
define the relation D(A,B)=A×B={(s,s’)| s∈A and s’∈ B}. 
The intersection of two relations R and R’ is defined by:   
The composition of two relations R and R’ is denoted by 
R◦R’ and defined by: R◦R’ ={(s,s’)| ∃ s”: (s,s”) ∈ R and 
(s”,s’) ∈ R’}. The inverse of a relation R is denoted by R^ 
and defined by R^ ={(s,s’)| (s’.s) s∈R}. The nucleus of a 
relation R is denoted by ν(R) and defined by ν(R) = RoR^.   
The co-nucleus of a relation R is denoted by γ(R) and 
defined by γ(R) = R^oR.    

 
Representing Basic Object-Oriented Constructs 
Consider the following Object-Oriented schema 
represented graphically in Figure 1. 
 
 
 
 
 
 
 

        
Figure 1 

Let Σ be the set of all instances of interest. The schema 
introduces subsets PC, Make, Laptop, and Weight, with 
Laptop subset of PC.   
The schema also introduces two binary relations: Has-
Make ⊆ D(PC, Make), and Has-Weight ⊆ D(Laptop, 
Weight). 
 
Capturing Part-Whole Association 
We augment the schema introduced in Figure 1 by 
introducing two parts of PC: Motherboard and keyboard. 

PC Make 

Laptop Weight 



To capture the part-whole relationship, we introduce three 
(categories of) relations:  
1. Part-Whole relation ◊, defined on Σ by: 
◊={(s,s’)| s is part of the whole s’}. 

Relation ◊ is  anti-reflexive,  asymmetric,  and transitive.   
2. Same-Property relation ξ(P). Given a set P of interest 
(e.g. Make), we denote by ζ(P) –that we pronounce has-
P— the deterministic relation from Σ to P that associates 
elements from the universe Σ with their P property values 
(e.g. has-Make).   ξ(P) –that we pronounce same-P— (e.g. 
sameMake) is the nucleus of the relation ζ(P), i.e. ξ(P) =  
ζ(P)o ζ(P)^ . ξ(P) contains the pairs of instances that have 
the same P value. It  is reflexive, symmetric, and transitive.  
3. Spatial Containment relation  (S).  Given a set S of 
interest (e.g. volume=<length, width, depth>), and the 
associated deterministic relation ζ(S) from Σ to S (e.g. has-
Volume), given an ordering relation ≤ on S   (e.g. ≤ 
defined on the Volume domain), we denote by (S) –
pronounced within S—   the relation defined by (S)= 
ζ(B) o ≤ o ζ(B)^.  (S) is reflexive, anti-symmetric, and 
transitive. It contains the pairs of instances (s,s’) where the 
S property of s is contained in the S property of s’ as 
defined by the ordering relation ≤. We will use this relation 
to capture the fact that parts are sometimes enclosed 
(spatially or otherwise) within their whole. 

The relation ◊, and the sets of relations same-P (ξ (P)), 
related-P (ρ(P,f)), and within-S, (S, ≤), are the three 
building blocks that we will use to characterize part-whole 
relations. A part-whole relation between class (set) A and 
class (set) B will be denoted pW(A,B) and characterized by 
at least the following axiom: 

pW(A,B) ⊆ D(A,B) ∩ ◊. 
If, in addition, A and B have same-P values for 

properties P1 and P2 and A is within B with respect to 
property S, we have the following axiom: 
pW(A,B) ⊆  

      D(A,B) ∩ ◊ ∩ ξ(P1) ∩ ξ(P2) ∩ (S). 
The right-hand side of the above inequality represents 

the set of necessary conditions that need to be met by the 
association between A and B. We name the right-hand-side 
the Necessary Relation for the A-part-of-B relation. The 
necessary relation of pW(A,B) will be denoted by  
N(pW(A,B)). In the example above, we have: 

N(pW(A,B))=  D(A,B) ∩ ◊ ∩ ξ(P1) ∩ ξ(P2) ∩ (S). 
We extend the definition of necessary relation to any 
relation R. Relation Q is said to be a necessary relation for 
R if and only if R ⊆ Q. 

Note that because ⊆ is monotonous with respect to 
intersection and composition, we have the following 
propositions: 
Proposition: 
Given two relations R and R’, given two relations N(R), 
and N(R’), the following statements are true: 

• N(R) ∩ N(R’) is a necessary relation  for R ∩ R’. 
• N(R) o N(R’) is a necessary relation  for R o R’. 

  
Reasoning about Part-Whole relations 

The main impetus of this work has been to capture part-
whole relations in a way that accounts for variability 
(different relations are constructed from different 
combinations of the building blocs) and commonality 
(common set of building blocks), and allow us to reason 
about them.     

Reasoning about part-whole relations consists of: 
• Computing the composition of part-whole relations, i.e. 

given that pW(A,B) and pW(B,C), what can we say 
about the relation between A and C? 

• Computing and compositions of part-whole relations 
with classification relations, i.e. given that pW(A,B) 
and B ⊆C, what is the relationship between A and C?   

Our reasoning approach is based on two keys premises: 
    We characterize relations rather than define them. In 

other words, we reason about necessary relations rather 
than about the relations directly.   
We define an semi-algebra based on the set of primitive 

relations and the operations of composition and 
intersection. Each necessary relation is an intersection of 
relations from the set B={D, ◊, ξ, ρ, }. Given two 
relations R1 and R2, with their necessary relations N 1 and 
N2. The composition N1 ◦ N2 is a necessary relation to R1 
◦ R2. But also, every superset of N1 ◦ N2 is a necessary 
relation for R1 ◦ R2. The composition N1 ◦ N2 is the 
intersection of compositions of pairs of relations from the 
set B.  Therefore, it suffices to compute the 5 by 5 
compositions of primitive relations.  The 5 by 5 table is 
available in the extended version of this paper [ 2] where 
composition of part-whole with other associations is also 
examined. The framework can be expanded to add other 
primitives as needed. The reasoning supported by this 
framework is supported by the relational algebra, whereby 
the necessary relation of an expression can be computed 
directly and automatically through table look up.   
 We are currently extending this framework by 
investigating the representation of horizontal relationships 
(relationships between different parts of the same whole), 
and a wider variety of vertical relationships, notably 
vertical relationships that involve the whole and more than 
one of its parts. 
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