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Abstract 
In recent years, there has been an increased need for active 
systems - systems that are required to act automatically 
based on events, or changes in the environment. In many 
cases, the events to which the system should respond to, 
have to be inferred from other events based on complex 
temporal predicates. However, none of the existing 
composite event systems created to enable such inference 
can deal with cases in which an event cannot be inferred 
with absolute certainty based on the reported events. 
Therefore, in this paper, we describe how a deterministic 
event composition system can be extended to manage such 
uncertainty, and specify the principles of a formal 
framework for such inference. The contribution of this 
framework is twofold: It extends the semantics of event 
composition in a natural manner for probabilistic settings, 
and it enables the application of these extensions to the 
quantification of the occurrence probability of events. 

Introduction 
In recent years, there has been a growing need for the use 
of active systems, i.e. systems that are required to act 
automatically based on events. However, in many cases, 
the events of interest to which the system must respond are 
not generated by monitoring tools, but must be inferred 
from other events. 

Although many event composition systems and 
prototypes have been defined to facilitate such inference, 
none of these mechanisms can take into account 
uncertainty in the inference process. Such uncertainty is 
inherent in many cases: For instance, it would be desirable 
for a banking system to detect all money laundering based 
solely on events indicating deposits and withdrawals. 
However, based on such events, the best that can be 
achieved is the calculation of some measure of likelihood 
regarding the occurrence of an actual money laundering 
event. 

In this paper, we describe basic principles for extending 
deterministic event composition in a formal manner, to 
take uncertainty of this kind into account. To do this, we 
use probability theory as the uncertainty handling 
mechanism. To the best of our knowledge, this is the first 
work that enables the handling of uncertain rules in event 
composition languages, in a general and formal manner. 

Related Works   
Various systems enabling event composition exist in the 
literature (e.g. Snoop [Chakravarty 1994] and the Situation 
Manager Rule Language [Adi 2002]). A major 
shortcoming of all existing specification languages is that 
they are unable to handle uncertainty, in a general and 
formal manner, in the event inference process. Moreover, 
most of the existing systems do not support uncertainty 
management in any form.  

Deterministic Event Composition Languages 
Several composite event languages enable the specification 
of a set of rules, where each rule r is a tuple of the form 
<selr, groupr, patternr, eventTyper, mappingExpressionsr> 
where: 
• selr specifies event instance selection. This is a filter 

defined over individual event instances, limiting the 
events that may be considered for composition by the 
rule. Given a specific set of event instances, we will call 
the event instances selected by selr the operands of rule 
r. 

• groupr specifies event instance grouping. This will allow 
grouping together semantically related events, such as all 
events of type either stockPurchase or stockSell referring 
to the same stock. 

• patternr specifies an event instance pattern. This defines 
a temporal predicate over the evidence events. 

• eventTyper is the type of inferred event. 
• mappingExpressionsr defines how the attributes of the 

instance of the inferred event are calculated from the 
attributes of the operands. 
The semantic meaning of such a rule is that event re  of 

type eventType is inferred iff a set of event instances 
specified by selr have occurred, such that all of these 
events belong to the semantic group specified by groupr 
and satisfy the predicate defined by patternr, irrespective 
of what other events have occurred. This means that only 
events of the types specified by rsel  can cause the 
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inference of event re , irrespective of whatever other events 
have occurred.  

Adding Uncertainty to Event Composition 
In this section, we outline the general principles of a 
framework that enables handling uncertainty in event 
composition languages of the type described above. First, 
we extend such languages by adding to each rule definition 
a quantity (0,1]rprob ∈ , which quantifies the probability of 
the event occurrence. Note that such a probability can also 
be assigned to deterministic rules, where 1rprob = . 

After extending the language as described above, the 
information the system has about the occurrence of each 
event will be represented by a Random Variable (RV). In 
the sequel, we shall somewhat abuse notation by referring 
both to the RV and the corresponding event by the same 
notation, where the meaning will be clear from the context. 

Based on this representation, we now define the 
following notation: EH  is the set of random variables 
representing the evidence held by the system regarding the 
events that have occurred up to the time rule r is 
considered for inference. ,SEL rEH  is the subset of random 
variables corresponding to events in EH  that may be 
considered for selection in rule r. Note that ,SEL rE EH∈  iff 
E  can be selected by rsel . In addition, we shall define a 
new random variable ( )rSEL EH , and a 
function ( ) { , }rpattern x true false→ , where x is a set of 
events.  ( )rSEL EH  is a random variable whose values are 
all possible subsets of events which can be chosen, given 
that all that is known about the set of events which 
occurred before considering rule r is EH. ( )rpattern x  is a 
function whose domain is all the possible values of the 
random variable ( )rSEL EH , and ( )rpattern sel true=  iff 
the set of events sel  satisfies the predicate defined by 

rpattern .  
Given the above notations and definitions, the semantics 

we define for the uncertain language can be formally 
represented by the following formulae: 

(1) , ,Pr( | , ) Pr( | )r SEL r r SEL rE EH EH E EH=  
for all possible values of random variable rE  and the sets 
of random variables ,SEL rEH  and EH. This specifies that 
given the values of the random variables belonging 
to ,SEL rEH , the values of the remaining random variables 
of EH have no bearing on the occurrence of event rE . 

(2) ,

Pr( | ( ) , )
Pr( | ( ) , )
Pr( | ( ) )

r r

r r SEL r

r r

E SEL EH sel EH
E SEL EH sel EH
E SEL EH sel

= =
= =
=

  

for all values of random variable rE , all specific values 
sel  of random variable ( )rSEL EH , and all values of the 
sets of random variables ,SEL rEH  and EH. This specifies 
that given the events that should be selected by rsel , the 
rest of the information contained in EH has no bearing on 
the occurrence of rE . In addition, we have that: 

(3) Pr( |
     ( ) )  if ( )

r

r r r r

E true
SEL EH sel prob pattern sel true

=
= = =  

that is, the quantity rprob  defined in the rule is the 
probability that event rE  occurred given that the events 
sel selected by ( )rSEL EH fulfill the predicate defined by  

rpattern . Similarly: 

(4) Pr( |
     ( ) ) 0 if ( )

r

r r

E true
SEL EH sel pattern sel false

=
= = =  

To calculate the probability distribution of the event 
occurrence, as events reach the system, a Bayesian 
network (see [Pearl 1988]) is dynamically constructed 
based on the probabilistic independencies represented by 
the above formulae (an example of such a network appears 
in Figure 1). Although the exact algorithm by which this 
network is constructed and updated is beyond the scope of 
this article, we stress that this Bayesian network is only 
used as a means to calculate the probability distribution 
over possible event occurrence at each point in time. It is 
not used as the sole means for representing the information 
the system has about the possible event occurrences.  

Figure 1: Bayesian network example 

Summary and Future Work 
In this paper, we described the principles by which 
existing composite event systems can be extended to take 
into account uncertain rules. This is the first research we 
are aware of that addresses uncertain rules in the context of 
event composition systems in a comprehensive and formal 
manner. However, much work still has to be carried out. 
Avenues for future research include the evaluation of other 
types of uncertainty and the optimization of the inference 
algorithm. 
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