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Abstract
In this paper, we suggest a prototype of an on-demand
thrifty global propagation scheme especially designed
for belief updating in large and complex Bayesian net-
works.

1. Introduction
The Bayesian network (BN) model is a probabilistic graph
model that has been successfully developed and applied in
various domains for uncertainty management (Pearl 1988).
It abstracts a problem domain using a set U of random vari-
ables and uses a directed acyclic graph (DAG) to encode
the conditional independency information among U . One of
the most important services that a BN can provide is belief
updating which simply means calculating the posterior prob-
ability p(x|E = e) for a variable x ∈ U given that variables
in E ⊂ U are taking specific value e. The renowned global
propagation (GP) method (Lauritzen & Spiegelhalter 1988;
Jensen, Lauritzen, & Olesen 1990) is a successful approach
for belief updating. Although the GP method performs quite
well on many BNs in practice with less than or around 1000
nodes, it is questionable if it will be still effective when ap-
plied to large and complex domains.

In this paper, we suggest an on-demand thrifty approach
for belief updating in large BNs which is based on the GP
method but with novel features specially designed for large
BNs. The computation needed for computing p(x|E = e)
is on-demand and thrifty in the sense that only the ab-
solutely necessary minimal computation is carried out to ob-
tain p(x|E = e).

2. Global Propagation and Belief Updating
A Bayesian network defined over a set U of variables, writ-
ten as (D, P), is a probabilistic graphical model where D
denotes a DAG and P denotes a set of of conditional proba-
bilistic distributions (CPDs) such that each node x inD (de-
noted x ∈ D) corresponds one-to-one to a variable in U and
each node is also associated one-to-one with a CPD p(x|πx)
inP , where πx denotes the parents of x inD. The product of
the CPDs in P defines a joint probability distribution (JPD)
over U as p(U) =

∏
x∈D p(x|πx) (Pearl 1988).
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The standard method for performing belief updating is the
so-called global propagation method. Since it is well under-
stood by the community, we refer the readers to (Lauritzen
& Spiegelhalter 1988) for a complete exposition. The GP
method is performed on a junction tree transformed from
the DAG of a BN. The notion of evidence is to indicate that
some variables in U are taking specific values from their re-
spective domains. We use E to denote this evidence and
v(E) to denote variables occurring in E. Two pieces of evi-
dence E and E

′
are contradicting if there exists a variable x

such that x ∈ v(E) and x ∈ v(E
′
) but x are taking different

values in E and E
′
. Otherwise, E and E

′
are compatible.

To summarize, applying the GP method to a junction tree
with no evidence observed results in marginal distributions
for cliques (of the junction tree) computed; applying the GP
method to a junction tree with evidence observed and incor-
porated results in updated marginal distributions computed
for cliques. The application of the GP method is full scale in
the sense that all the cliques in the junction tree are involved
in the process.

3. Belief Updating in Large BNs–New
Challenges

There are two concerns regarding belief updating using the
GP method for large BNs. First, it is known that belief up-
dating in BNs in general is NP-hard (Cooper 1990). Al-
though it is feasible and even efficient in many real life ap-
plications provided the BNs are small. It is foreseeable that
larger BNs will take much longer time to perform GP for be-
lief updating. Secondly, the GP method involves inward and
outward message passing performed on the whole junction
tree although not every clique is absolutely necessary to be
involved for belief updating (as will be explained shortly.)

4. An On-Demand Thrifty Propagation
Method

In this section, we present an on-demand thrifty propagation
method based on the GP method. We assume that the GP
method is applied in full scale only once on a junction tree
with no evidence observed and the marginals for cliques and
separators in the junction trees are known thereinafter.

Consider two adjacent cliques Ci and Cj in a junction
tree with the separator Sij = Ci ∩ Cj . Let p(Ci), p(Cj),



and p(Sij) be the marginals corresponding to Ci, Cj , and
Sij , respectively. Suppose an evidence E is observed such
that v(E) ⊆ Ci. We then have the following theorem.

Theorem 1 p(Cj , E) = p(Cj) · p(E|Sij) = p(Cj) ·∑
Ci−v(E)−Sij

p(Ci, E)

p(Sij)
.

Theorem 1 indicates that in order to obtain the updated
marginal p(Cj , E), we need to compute p(E|Sij). How-
ever, p(E|Sij) = p(E, Sij)

p(Sij)
, in which the denominator p(Sij)

is the marginal on Sij and the numerator p(E, Sij) is read-
ily available from p(Ci) (note that v(E) ⊆ Ci) because both
p(Ci) and p(Sij) has been calculated by the GP method with
no evidence observed. We call the computation in the above
theorem as that the clique Ci (with the updated marginal
p(Ci, E)) is passing the evidence E to clique Cj (to obtain
the updated marginal p(Cj , E)). It is not hard to see that
Theorem 1 implies that clique Ci with its updated probabil-
ity given evidence E, i.e., p(Ci, E), can always pass the
evidence E to its adjacent clique Cj to obtained the updated
probability p(Cj , E).

Consider a more general case with two adjacent cliques
Ci, Cj , and the separator Sij . Let p(Ci, Ei) and p(Cj , Ej)
be the marginals on Ci and Cj respectively where Ei and
Ej are compatible evidences. Suppose another evidence E

′

compatible with both Ei and Ej is observed and v(E
′
) ⊆

Ci. We then have the following theorem.

Theorem 2 The clique Ci with its updated marginal
p(Ci, Ei, E

′
) passing the evidence E

′
to clique Cj results

in the updated marginal p(Cj , Ej , E
′
).

In many real applications, the queries imposed on a BN
exhibit certain patterns as we explain below.

Scenario 1 (multiple variables): Given evidence E,
compute the posterior probability for x1, x2, . . ., xn given
E, namely, p(x1|E), . . ., p(xn|E).

Scenario 2 (multiple evidence): Compute the posterior
probability for a variable x given incremental compatible
evidences E1, E2, . . ., En, namely, compute p(x1|E1),
p(x1|E1, E2), . . ., p(x1|E1, . . . , En).

In the following, we propose a prototype of an on-demand
thrifty method for computing posterior probability in the
above two scenarios (patterns). We begin our discussion
with the simplest case of computing p(x|E) where v(E) is
contained by a clique, say C, based on Theorem 1.

PROCEDURE Compute(x, E)
Input: variable x and evidence E such that v(E)
is contained by a clique C.
Output: p(x|E).
{

1: Identify a clique C
′

such that x ∈ C
′
.

2: Find out a path (C0, C1, . . . , Cm) in the junction tree
such that C0 = C, Cm = C

′
, and (Ck, Ck+1) is an

edge in the junction tree, k = 0, . . . , m− 1.
3: For k = 0 to m− 1,

clique Ck passes the evidence E to Ck+1.
4: Compute p(x|E) from p(C

′
, E).

5: Mark each clique Ci, i = 0, . . . , m, with
evidence E, denoted CE

i .
6:Return p(x|E).

}
Note that the message passing occurring in the above pro-

cedure involves only the cliques along the path between C

and C
′
, regardless of whether the junction tree has other

cliques. Only the cliques in the path are necessary for
the procedure to compute the resulting updated marginal
p(C

′
, E), from which p(x|E) can be obtained in Step 4. All

the other cliques in the junction tree are irrelevant to the task
of the query p(x|E) and they are not involved in computing
p(x|E).

A solution to the belief updating scenario 1, namely, the
multiple variables case, can be formulated based on the
above procedure. Consider a fixed evidence E and the task
of computing p(x1|E), . . ., and p(xn|E) for a sequence of
variables x1, . . . , xn. This can obviously be accomplished
by calling the procedure Compute(x, E) with the fixed
E together with different x1, . . . , xn variables in the se-
quence as arguments. However, there is room for improving
the efficiency of applying the procedure to a sequence of
variables. The scenario of multiple evidence can be solved
in a similar fashion based on Theorems 1, 2, and the pro-
cedure Compute. We can (1) first pick the clique which
contains the variable of interest as the root of the junction
tree, and (2) whenever new (compatible) evidence Ei is ob-
served, we pass Ei from the clique containing the evidence
Ei to the chosen root which contains the variable off inter-
est. The updated marginal on the root thus is always conjoint
with all the evidence observed so far.

5. Remarks and Conclusion
The salient feature of the method is that (1) the computation
occurred during the propagation is based on the query im-
posed by the users and it answers the query only, and (2) the
computation for obtaining the posterior probability for the
variables of interest is minimal in the sense that the prop-
agation only involves those cliques that have to participate
to produce the results. Such a thrifty method avoids a full
scale GP , takes less time to answer queries, and waste less
computational resources.
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