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Abstract

The aim of this paper is to extend the modal logic of knowl-
edge due to Moss and Parikh by state transformers arising, eg,
from actions of agents. The peculiarity of Moss and Parikh’s
approach lies in the fact that topological reasoning is sup-
ported. Emphasizing this we are mainly concerned with the
idea of continuity here, which can be captured with the aid of
the extended framework. We define and discuss an appropri-
ate language, and we study the accompanying logical system.
It turns out that certain expressive means from a particular
extension of the commonly employed modal formalism, viz
hybrid logic, are very useful for our purposes. With that, we
obtain the finite axiomatizability, soundness and complete-
ness, and decidability, of the new logic.
Keywords: Reasoning about knowledge, topological reason-
ing, modal logic, continuous functions, hybrid logic

Introduction
We take up Moss and Parikh’s approach to reasoning about
knowledge of some agent; cf Moss & Parikh 1992 and, more
detailedly, Dabrowski, Moss, & Parikh 1996. The bi-modal
system for knowledge and effort released in these papers fa-
cilitates a fairly abstract description of the process of gaining
knowledge. As a bonus, a certain topological component
of knowledge is revealed. In fact, since knowledge is rep-
resented by the space of all knowledge states of the agent,
knowledge acquisition appears as a shrinking procedure or
approximation regarding this space of sets. Thus, certain
notions from topology like closeness or neighbourhood en-
ter the realm of knowledge in a natural way.

Moss and Parikh called their system topologic. We recall
some features of the language of topologic a little more de-
tailedly. As it has just been indicated, formulas may contain
two one-place operators: a modality K describing knowl-
edge and another one, �, describing effort. The domains
for evaluating formulas are set spaces (X ,O,V ) consisting
of a non-empty set X of states, a set O of subsets of X rep-
resenting the knowledge states of the agent, and a valuation
V determining the states where the atomic propositions are
true. The operator K then quantifies across any knowledge
state U ∈ O , whereas � quantifies ‘downward’ across O.
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That is, more knowledge, i.e., closer proximity to states of
‘complete’ knowledge, can be achieved by descending with
respect to the set inclusion relation inside O , and just this is
modeled by �.

Several classes of set spaces have been investigated from
this topological view of knowledge, among these the ordi-
nary topological ones; cf Georgatos 1994 and Dabrowski,
Moss, & Parikh 1996. However, more expressive power is
needed to capture more special notions from topology like
separation or connectedness.

To this end, a sorted, i.e., both state- and set-sensitive
hybrid version of topologic was introduced in Heinemann
2003, and further developed in Heinemann 2004 and Heine-
mann 2005a. The language considered in these papers pro-
vides the starting point to the following, where the con-
cept of continuity is studied in the context of set spaces.
Thus we pick up an old question from Moss & Parikh 1992
here, which was raised in connection with the knowledge-
theoretic analysis of recursive function theory; see Moss &
Parikh 1992, Sec. 6.

Over and above that, continuity is important for com-
putability on non-discrete structures. In fact, in case of
real-valued functions, for instance, we have that continu-
ity is a necessary condition for computability. Thus proving
the non-effectiveness of an operation op involving the reals
can be done by showing the non-continuity of op. (This is
the most common method for that, actually; see Weihrauch
2000 for the details.)

The relevance of continuity to reasoning about knowledge
can basically be gathered from the definition already, assur-
ing a state transformation f of its compatibility with the
knowledge states of the agent. This applies, in particular,
to the case where f represents some action of the agent; cf
Fagin et al. 1995, Sec. 5.1.

In order to deal with continuity properly we must first of
all be able to speak about functions in the logical language.
This could be done either implicitly by using a respective
modality, or explicitly by representing functions through
terms, i.e., treating these like functions in first-order logic.
Following the second approach would lead to ‘algebraizing
hybrid logic’; cf Tzanis 2005. However, the first alternative
turns out to be the right one for our purposes. This comes as
a certain surprise in view of the semantics of topologic.

The content of this paper is as follows. In the next sec-
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tion we define precisely our hybrid language for (continu-
ous) functions on set spaces, and we give a couple of exam-
ples concerning expressive power. Afterwards, we axioma-
tize the arising hybrid logic of set spaces with functions, and
we prove a corresponding soundness and completeness the-
orem. We then deal with the problem of deciding the new
logic. Finally, we give a brief summary and point to future
research.

All that we need from hybrid logic is contained in the
textbook Blackburn, de Rijke, & Venema 2001, Sec. 7.3,
which is also taken as a reference to the facts from modal
logic we use in this paper.

Besides the results from Heinemann 2005b quoted in the
proofs below, the present paper is, taken by and large, self-
contained.

We conclude this introduction with some general remarks
on related approaches to the connection between modal
logic and topology. (Concerning the connection between
knowledge and action, two of the existing approaches are
referred to in the final section of this paper.) The topological
interpretation of modal logic dates from the work of McK-
insey, cf McKinsey 1941, and has been revitalized a couple
of years ago; cf, eg, Aiello, van Benthem, & Bezhanishvili
2003. Meanwhile, the field split up into diverse branches of
research. The forthcoming textbook Aiello, Pratt-Hartmann,
& van Benthem (Eds.) 2006 gives an overview of the state
of the art. The present paper goes best with the chapter on
topology and epistemic logic there.

Defining the language
We add to the language of topologic two sets of nominals,
the global modality (cf Blackburn, de Rijke, & Venema,
Sec. 7.1), and a set of function symbols. The denotation of
a nominal is intended to be either a unique state or a distin-
guished set of states, and function symbols may be applied
to arbitrary formulas.

Let PROP = {p,q, . . .}, Nstat = {i, j, . . .} and Nsets =
{A,B, . . .} be three mutually disjoint denumerable sets of
symbols called proposition variables, names of states and
names of sets, respectively. Moreover, let F = { f ,g, . . .} be
a set of one-place function symbols. Then, the set WFF of
well-formed formulas over PROP∪Nstat ∪Nsets ∪F is de-
fined by the rule

α ::= p | i | ¬α | α ∧β | Kα |�α | Aα | [ f ]α.

The missing boolean connectives are treated as abbrevia-
tions, as needed. The duals of the modal operators K, �,
A and [ f ] are denoted L, 3, E and 〈 f 〉, respectively.

We now turn to semantics. For a start, we define the rel-
evant domains. We let P(X) designate the powerset of a
given set X .

Definition 1 (Set frames and spaces) 1. A set frame
with functions is a triple

S :=
(
X ,O,{Ff | f ∈F}

)
,

where X is a non-empty set, O ⊆P(X) a set of sub-
sets of X such that {X , /0}⊆O , and, for every f ∈F ,

Ff : X −→ X

a (total) function.1

2. Let S :=
(
X ,O,{Ff | f ∈F}

)
be a set frame with

functions. The set

NS := {(x,U) | x ∈U and U ∈ O}

is called the set of neighbourhood situations of S .
3. Let S =

(
X ,O,{Ff | f ∈F}

)
be a set frame with

functions. An S –valuation is a mapping

V : PROP∪Nstat ∪Nsets −→P(X)

such that
(a) V (i) is either /0 or a singleton subset of X for every

i ∈ Nstat, and
(b) V (A) ∈O for every A ∈ Nsets.

4. Let S =
(
X ,O,{Ff | f ∈F}

)
be a set frame with

functions and V an S –valuation. Then,

M :=
(
X ,O,{Ff | f ∈F},V

)
is called a set space with functions (or, in short, an
SSF). We then say that M is based on S .

Note that the definition takes into account that nominals
may have an empty denotation. This is appropriate for the
purposes of this paper, but not usual for standard hybrid
logic.

Now, let an SSF M be given. We define the relation of
satisfaction, |=M , between neighbourhood situations of the
underlying frame and formulas in WFF. In the following,
neighbourhood situations are written without brackets.

Definition 2 (Satisfaction and validity) Let

M :=
(
X ,O,{Ff | f ∈F},V

)
be an SSF based on S =

(
X ,O,{Ff | f ∈F}

)
, and let

x,U ∈NS be a neighbourhood situation of S . Then

x,U |=M p : ⇐⇒ x ∈V (p)
x,U |=M i : ⇐⇒ x ∈V (i)
x,U |=M A : ⇐⇒ V (A) = U
x,U |=M ¬α : ⇐⇒ x,U 6|=M α

x,U |=M α ∧β : ⇐⇒ x,U |=M α and x,U |=M β

x,U |=M Kα : ⇐⇒ for all y ∈U : y,U |=M α

x,U |=M �α : ⇐⇒
{

for all U ′ ∈O : if x ∈U ′

⊆U, then x,U ′ |=M α

x,U |=M Aα : ⇐⇒
{

for all y,U ′ ∈NS :
y,U ′ |=M α

x,U |=M [ f ]α : ⇐⇒

{ for all y,U ′ ∈NS : if
Ff (x) = y, then
y,U ′ |=M α,

where p ∈ PROP, i ∈ Nstat, A ∈ Nsets, f ∈ F , and α,β ∈
WFF. In case x,U |=M α is true we say that α holds in M
at the neighbourhood situation x,U. Furthermore, a formula
α is called valid in M iff it holds in M at every neighbour-
hood situation of S . (Manner of writing: M |= α.)

1We also consider set frames without functions, i.e., pairs
(X ,O), later on.
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Note that the formulas of the form i∧A, where i ∈ Nstat
and A ∈Nsets, can be taken as names of neighbourhood situ-
ations. The hybrid satisfaction operator associated with such
a name then reads E(i∧A∧ . . .). Thus these formulas act like
‘proper’ nominals in SSFs.

In the remaining part of this section, two examples are
given which show the appropriateness of the just defined lan-
guage.
Example 3 The set frame considered in the following pro-
vides the ‘generic’ examples for the languages extending the
one underlying topologic. Take the set C of all infinite 0–1–
sequences. (The letter ‘C ’ should remind one of the Cantor
Space.) This set is endowed with a natural topology, T ,
which is often called the initial-segment topology since a
basis, B, of T is determined by the set of all finite initial
segments of elements of C (in a way suggesting itself). Let
S := (C ,B∪{ /0}). Obviously, S is a set frame. Note that
C can be depicted as the full infinite binary tree; moreover,
every node of this tree can be annotated with the set U ∈B
which is determined by the initial segment leading to this
node. Thus a tree of subsets of C results. The frame S
is basically the domain by means of which the procedures
computing binary streams can be modeled.

Now, suppose that some procedure P enumerating certain
real numbers ρ1,ρ2,ρ3, . . . is given. (It is assumed here that
the computation of every single real number ρ is realized via
a suitable representation, which may, eg, come from the intu-
ition that the output of P encodes a fast-converging Cauchy
sequence having limit ρ; cf Weihrauch 2000.) Suppose ad-
ditionally that we would like to test whether a sufficiently
good approximation to, say, the real number π is enumer-
ated. Since we eventually know if this is not the case with
the actually computed number (due to our model of compu-
tation), we then can restart the enumeration procedure with
a possibly better trial.

The new language makes it possible to specify a corre-
sponding ‘protocol’. For that, let restart be a function sym-
bol and π a nominal having the intended meaning. The de-
sired ‘process code’ then reads

K¬π → 〈restart〉>.

The premise of this implication should be taken as an await-
statement. Note that this process is really ‘enabled’ in case
the actual computation (having output, say, σ ) is not the
right one. In fact, the formula

3K¬π

then holds at every neighbourhood situation of the form σ ,U
of S .

The next example shows that the new language is really
expressive enough to capture continuity. For the sake of sim-
plicity, we confine ourselves to a single function.
Definition 4 (Continuous functions) Let F consist of a
single function symbol f . Let S =

(
X ,O,Ff

)
be a corre-

sponding frame. Then, Ff is called continuous (with respect
to O) iff for all x ∈ X and U,Ũ ∈ O such that x ∈ U and
Ff (x) ∈ Ũ there exists U ′ ∈ O satisfying x ∈ U ′ ⊆ U and
Ff (U ′)⊆ Ũ .

Note that this definition meets continuity in the topologi-
cal sense in case O is a system of neighbourhoods of every
point with respect to a given topology, actually.

Proposition 5 Let S =
(
X ,O,Ff

)
be as above. Then, Ff is

continuous iff

M |= 〈 f 〉A →3K〈 f 〉A

holds for all A ∈ Nsets and SSFs M based on S .

The proof of Proposition 5 can be done in a standard man-
ner and is, therefore, omitted.

The logic
In this section, we first introduce an axiomatization of the
hybrid logic of set spaces with functions. We then deal with
the question of completeness. Finally, we take continuity
into account, too.

To begin with, we list the usual axioms of topologic from
Dabrowski, Moss, & Parikh 1996:

1. All instances of tautologies.
2. K(α → β )→ (Kα → Kβ )
3. Kα → α ∧KKα

4. Lα → KLα

5. (p →2p)∧ (3p → p)
6. 2(α → β )→ (2α →2β )
7. 2α → α ∧22α

8. K2α →2Kα,

where p ∈ PROP and α,β ∈ WFF. The final schema of this
group, usually called the Cross Axiom, cf Dabrowski, Moss,
& Parikh 1996, is characteristic of every logic of knowledge
and effort.

The next group of axioms concerns names:

9. (i →2i)∧ (3i → i)
10. i∧α → K(i → α)
11. A → KA
12. A(A∧α → Lβ )∨A(A∧β → Lα) ,

where i ∈ Nstat, A ∈ Nsets and α,β ∈ WFF. The formulas
of this group provide for the right nominal structure of the
canonical model.

The following three axioms are responsible for the fact
that really a structure of set space can be ensured with the
aid of that model.

13. i∧A∧E( j∧B)→ E(3(i∧A)∧L3( j∧B))
14. i∧A →�(3(i∧A)→ i∧A)
15. K(3B →3A)∧L3B →�(A → L3B) ,

where i, j ∈ Nstat and A,B ∈ Nsets.
The global modality is now axiomatized as usual; cf

Blackburn, de Rijke, & Venema 2001, Sec. 7.1.

16. A(α → β )→ (Aα → Aβ )
17. Aα → α ∧AAα

18. α → AEα

19. Aα → K�α ∧ [ f ]α,
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where α,β ∈ WFF and f ∈F .
Finally, for every operator [ f ] the functionality of Ff has

to be captured. This is done in the following way:

20. [ f ](α → β )→ ([ f ]α → [ f ]β )
21. [ f ]α → 〈 f 〉α
22. 〈 f 〉i → [ f ]i
23. 3〈 f 〉i →�〈 f 〉i
24. 〈 f 〉i∧E(i∧A)→ 〈 f 〉(i∧A),

where f ∈F , i ∈ Nstat, A ∈ Nsets and α,β ∈ WFF.
Note that, given a set frame with functions

S =
(
X ,O,{Ff | f ∈F}

)
,

every Ff transforms states rather than the semantic atoms
of our language, i.e., neighbourhood situations. Thus, only
Axiom 21, i.e., seriality, remains from the usual modal ax-
iomatization of functionality (besides Axiom 20), while de-
terminism has to be expressed in a different way.

Apart from the standard proof rules of modal logic (modus
ponens and necessitation), the system derived from this ax-
iomatization contains also some unorthodox ones which are
typical of hybrid logic.

Definition 6 (The logic) Let HSF be the smallest set of for-
mulas containing all the above axiom schemata and closed
under application of the following rules: 2

(MODUS PONENS)
α → β ,α

β

(∆–NECESSITATION)
α

∆α

(NAMEstat)
j → β

β
(NAMEsets)

B → β

β

(E∇–ENRICHMENT)
E(i∧A∧∇( j∧B∧α))→ β

E(i∧A∧∇α)→ β
,

where α,β ∈WFF, i, j ∈Nstat, A,B∈Nsets, ∆∈ {K,�,A}∪
{[ f ] | f ∈F}, ∇ ∈ {L,3,E}∪{〈 f 〉 | f ∈F}, and j,B are
new each time (i.e., do not occur in any other syntactic
building block of the respective rule).

The NAME and ENRICHMENT rules have to be used for
proving an appropriate Lindenbaum Lemma; cf Blackburn,
de Rijke, & Venema 2001, Lemma 7.25. This makes up the
first step towards the following theorem.

Theorem 7 (Soundness and completeness) Let α ∈ WFF
be a formula. Then, α is valid in all SSFs iff it is HSF–
derivable.

While the proof of the soundness part of Theorem 7 is
straightforward it is much harder to establish completeness.
To this end, the canonical model of the system HSF has to
be ‘hybridised’; concerning this see Heinemann 2003 for
the A–free fragment, and Heinemann 2005b for the full lan-
guage (without functions). The desired model falsifying a
given non-derivable formula, can finally be obtained as a

2The letter ‘H’ should remind one of hybrid logic, the letter ‘S’
of set spaces, and the letter ‘F’ of the presence of functions.

certain space of partial functions, X , over that hybridised
canonical model. In fact, the domain dom(h) of every func-
tion h∈X is a maximal subset of the set Q of all equivalence
classes of the accessibility relation induced by the modality
K, with regard to the following two conditions:

1. h([Σ]) ∈ [Σ] for all [Σ] ∈ dom(h), and

2. h([Σ]) = h [Θ]
[Σ] (h([Θ])) for all [Σ], [Θ] ∈ dom(h) such

that [Σ] 4 [Θ];
here, the precedence relation 4 is defined by

[Σ] 4 [Θ] : ⇐⇒ ∃Σ
′ ∈ [Σ],Θ′ ∈ [Θ] : Σ

′ �−→Θ
′,

where Σ,Θ are points of the carrier set D of the hybridised
canonical model and �−→ denotes the accessibility relation
belonging to the effort modality �. We write hΣ := h([Σ]) in
case h([Σ]) exists. Furthermore, we let
• U[Σ] := {h ∈ X | hΣ exists}, for all Σ ∈ D,

• O := {U[Σ] | Σ ∈ D}∪{X , /0}, and
• V : PROP∪Nstat ∪Nsets −→P(X) be defined by

h ∈V (c) : ⇐⇒
{

c ∈ hΣ for some Σ ∈ D
such that hΣ exists,

for all c ∈ PROP∪Nstat ∪Nsets.
With that, we then have the following Truth Lemma:

Lemma 8 S := (X ,O) is a set frame (without functions)
and V an S –valuation. Moreover, letting M := (X ,O,V )
we have that for all formulas α, functions h ∈ X , and points
Σ ∈ D such that h ∈U[Σ],

h,U[Σ] |=M α ⇐⇒ α ∈ hΣ.

Lemma 8 yields completeness in case no functions are
contained in the language; cf Heinemann 2005b, Sec. 3. But
taking functions too into account, it is really possible to ex-
tend the just indicated framework correspondingly. To this
end, we first note that a function h∈ X is already determined
by its value for a single argument. And, vice versa, every
Σ ∈ D in fact induces a function ∈ X passing through this
point. Therefore, that function is denoted hΣ; see Heine-
mann 2005b, Lemma 3.9. Now, let f ∈F be given, and let
h be an arbitrary element of X . Then there is some Θ ∈ D
such that hΘ is defined. Because of Axiom 21 the accessi-

bility relation
[ f ]−→ coming along with [ f ] is serial. Hence

there exists some Σ ∈ D satisfying hΘ

[ f ]−→Σ. We now define
Ff : X −→ X through

Ff (h) := hΣ.

In this way, every f ∈F is realized as a certain functional.

Lemma 9 Ff is well-defined.

Proof. We have to show that the definition of Ff is inde-
pendent of Σ and Θ. Keeping the notations from above we

first assume that both hΘ

[ f ]−→Σ and hΘ

[ f ]−→Σ′ are valid. We
know that there is some i ∈ Nstat contained in Σ. It follows
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that 〈 f 〉i ∈ hΘ. Hence [ f ]i ∈ hΘ holds because of Axiom
22. Consequently, i ∈ Σ′. The properties of the hybridised
canonical model now imply hΣ = hΣ′ ; cf Heinemann 2005b,
Sec. 3.

Secondly, let hΘ′ be defined as well. Moreover, take again
some i ∈Nstat contained in Σ. This time we utilize that there
exists some Ξ ∈ D such that Ξ

�−→Θ and Ξ
�−→Θ′. Con-

sequently, 3〈 f 〉i ∈ Ξ. With the aid of Axiom 23 we infer
�〈 f 〉i ∈ Ξ from that. Hence 〈 f 〉i ∈ hΘ′ . This means that

some
[ f ]−→–successor Σ̃ of hΘ′ contains i. Therefore, hΣ = hΣ̃

follows. This shows that the the definition of Ff is also in-
dependent of Θ, as desired. �

Consequently, M :=
(
X ,O,{Ff | f ∈F},V

)
is an SSF.

Thus, in order to complete the proof of Theorem 7 it remains
to establish the Truth Lemma for the case involving func-
tions. This makes up the crucial step of the completeness
proof for the new logic.
Lemma 10 Lemma 8 remains valid in case functions are
integrated into the system.
Proof. Let α = 〈 f 〉β . We first prove the easier right-to-left
direction. Assume that α ∈ hΣ is valid. Then there exists

some Θ ∈D such that hΣ

[ f ]−→Θ and β ∈Θ. Using the above
notations we let g := hΘ and get Θ = gΘ with that. It then fol-
lows that g ∈U[Θ]. From the induction hypothesis we obtain
g,U[Θ] |=M β . But g = Ff (h), by definition. Thus, due to the
last clause of Definition 2 we have that h,U[Σ] |=M 〈 f 〉β .

Conversely, let h,U[Σ] |=M 〈 f 〉β . By Definition 2, there
are g ∈ X and Θ ∈ D such that g ∈ U[Θ], Ff (h) = g and
g,U[Θ] |=M β . By applying the induction hypothesis we
obtain β ∈ gΘ from that. Now, we must still show that

hΣ

[ f ]−→gΘ is valid. Here is the place where Axiom 24 comes
into play. But first of all note that we conclude from the con-
dition Ff (h) = g and the definition of Ff that there is some

Ξ ∈ D satisfying hΣ

[ f ]−→gΞ. This enables us to bring up a
nominal argument similar to the one in the proof of the pre-
vious lemma. To this end, take i ∈ Nstat and A ∈ Nsets con-
tained in gΘ. (Both nominals really exist.) It then follows
that E(i∧A) ∈ hΣ. Since i is contained in gΞ as well, we get
that 〈 f 〉i too is contained hΣ. Now, Axiom 24 can be ap-

plied, yielding 〈 f 〉(i∧A) ∈ hΣ. Thus there exists some
[ f ]−→–

successor Θ′ of hΣ containing i∧A. However, this formula
acts like a ‘proper’ nominal, i.e., has a unique denotation (cf
Heinemann 2005b, Lemma 3.5, and see the remark follow-
ing Definition 2). As a consequence we get that Θ′ = gΘ.

Hence hΣ

[ f ]−→gΘ actually holds. This proves the left-to-right
direction. �

The following corollary is a consequence of Theorem 7
and Proposition 5; cf Blackburn, de Rijke, & Venema 2001,
7.29, for the case of standard hybrid logic..
Corollary 11 Let HSFC be the system obtained from HSF
by adding, for every f ∈F , the schema from Proposition 5.
Then, HSFC is sound and complete with respect to the class
of all SSFs with continuous functions.

Corollary 11 tells us that certain elementary facts about
continuous functions are HSFC–derivable, eg, the well-
known property that the composition f ◦g of two continuous
functions f ,g is continuous, too. (This property is expressed
by the formula schema 〈 f 〉〈g〉A →3K〈 f 〉〈g〉A.)

Decidability
We now argue that both HSF and HSFC are decidable sets
of formulas.

Theorem 12 (Decidability I) The set of all HSF–derivable
formulas is decidable.

Proof. The result can be obtained by means of the method
of filtration (with the intention to establish a certain finite
model property of the logic). To this end, the approach taken
for the logic without functions, cf Heinemann 2004 or, more
detailedly, Heinemann 2005b, has to be refined accordingly.

In order to validate Axioms 20 – 24 in the filtrated model
we must first of all extend the filter set. This extension con-
cerns nominals and function symbols occurring in the for-
mula α for which we want to find a finite model. In concrete
terms, the following sets of formulas must be added to the
set Σ0 we started out with for the function-free language (cf
Heinemann 2005b, Sec. 4):

Σ1 := {[ f ]¬i, [ f ]i | f ∈F and i ∈ Nstat occur in α}

Σ2 :=
{

�[ f ]¬i, �〈 f 〉i
(

f ∈F and i ∈ Nstat
occur in α

)}
,

and Σ3 := Σ4∪Σ5, where

Σ4 :=
{

A¬(i∧A)
(

i ∈ Nstat and A ∈ Nsets
occur in α

)}
and

Σ5 :=
{

[ f ]¬(i∧A)
(

f ∈F , i ∈ Nstat and
A ∈ Nsets occur in α

)}
.

We then perform the same operations on the resulting set
of formulas as in the previous case. Thus the new filter set
too is finite and subformula closed.

Secondly, we take the minimal filtration of all the accessi-
bility relations of the canonical model (where α is realized at
some point). We modify the structure obtained in this way
with regard to the nominals and the operators [ f ], respec-
tively, which do not occur in α . Hence this modification
does not affect the semantics of α . (The interpretation of
a function symbol not occurring in α may be an arbitrary
serial relation respecting the instances of Axioms 22 – 24
which are relevant to α , and the denotation of every such
nominal is the empty set.)

The just indicated model surgery procedure provides for
the desired validity of Axioms 22 – 24. (Since Axiom 20
is generally valid and Axiom 21 expresses seriality, which
passes down to every filtration, we may restrict attention to
these axioms, actually.) In fact, exploiting both the mini-
mality of the filtration and the definition of the sets Σ1, Σ2
and Σ3, respectively, we can directly calculate in case all the
names and functions involved in the respective formula re-
ally occur in α; otherwise the proof is even simper.
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The validity of the finite model property of the logic HSF
with respect to a certain recursively enumerable set of mod-
els can now be inferred from the above in a standard way.
(An initial segment of the natural numbers can be chosen as
the carrier set of every model from that set, actually.) This
gives us the desired decidability; cf Blackburn, de Rijke, &
Venema 2001, 6.13. �

The method described in the proof of Theorem 12 can
also be applied to our hybrid logic of continuous functions,
yielding the decidability of HSFC in a similar manner.

Theorem 13 (Decidability II) The set of all formulas that
are HSFC–derivable, is decidable.

Concerning the proof of this theorem it should be re-
marked that the filter set has to be extended once more, ac-
cording to the axiom schema for continuity from Proposition
5.

Summary and future research
In this paper, we proposed a hybridised modal logic, des-
ignated HSF(C), for reasoning about knowledge and (con-
tinuous) functions. The main issues of the paper concern
the finite axiomatizability, soundness and completeness, and
decidability, of the set of all HSF(C)–theorems. We prin-
cipally utilized the power of hybrid logic for proving these
results, in particular, the immunity of certain naming tech-
niques from type extensions of the named objects.

Due to the presence of functions in the underlying lan-
guage it is very likely that the HSF–satisfiability problem
is hard for EXPTIME; cf Blackburn & Spaan 1993, Theo-
rem 4.5. However, determining the exact complexity is still
an open problem which has to be solved by future research.
(Note that we cannot reduce the satisfiability problem for
dynamic logic (as it was accordingly done in Blackburn &
Spaan 1993) to HSF(C)–satisfiability since we deal with to-
tal functions here.)

As it stands, our system is rather general and has to be
refined for special purposes thus. This concerns, in par-
ticular, the representation of actions through functions (see
the introductory section). Thus a more concrete synthesis of
knowledge and action is demanded for our approach. (Note
that combining formalisms for knowledge and action is still
an actual field of research; see van Ditmarsch, van der Hoek,
& Kooi 2003 and Baader et al. 2005, respectively, for re-
cent examples from two more established approaches to this
topic.) And the role of continuity in connection with actions
then has to be studied more detailedly.
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