
Full Restart Speeds Learning

Smiljana Petrovic1 and Susan Epstein1,2

1Department of Computer Science, The Graduate Center, The City University of New York, NY, USA
2Department of Computer Science, Hunter College of The City University of New York, NY, USA

 spetrovic@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
Because many real-world problems can be represented and
solved as constraint satisfaction problems, the development
of effective, efficient constraint solvers is important. A
solver's success depends greatly upon the heuristics chosen
to guide the process; some heuristics perform well on one
class of problems, but are less successful on another. ACE is
a constraint solver that learns to customize a mixture of heu-
ristics to solve a class of problems. The work described here
accelerates that learning by setting higher performance
standards. ACE now recognizes when its current learning
attempt is not promising, abandons the responsible training
problems, and restarts the entire learning process. This pa-
per describes how such full restart (of the learning process
rather than of an individual problem) demands careful
evaluation if it is to provide effective learning and robust
testing performance.

Introduction

In the domain investigated here, an unsupervised learner
searches for a solution to difficult combinatoric problems
within a specified resource limit. If it fails on a problem,
the learner tries to solve the next one. If it succeeds, the
learner gleans training instances from its own (likely im-
perfect) trace, and uses them to refine its search algorithm
before it continues to the next problem. Although a differ-
ent sequence of decisions might have led to the learner’s
solution (or another, equally acceptable one) more quickly,
the learner is restricted here to its own single search trace.
The long-term goal of this work is to learn an effective,
efficient combination of domain-specific heuristics that
works well on a specific set of problems. Our thesis here is
that full restart of the entire learning process can accelerate
such convergence. Our principal result is the success of full
restart on a given class of constraint satisfaction problems
(CSPs), even though the learner is unsupervised and the
quality of any individual solution must go unknown.
 The program described here learns to solve CSPs. Dur-
ing search it uses a traditional CSP combination of heuris-
tic decision making, propagation, and backtracking. Its
learning algorithm refines the weights assigned to a large
set of heuristics, based on feedback from the solver after
each problem. Search and learning are closely coupled;
weights are updated based on search results, and decisions
made during search are based on the current weights. The
program learned correctly without full restart, but under a
high resource limit. This paper shows how, under proper

control, even repeated full restarts can accelerate this learn-
ing without compromising performance.
 This work is novel for several reasons. Previously, re-
start has been used either to make a fresh start on global
search for solution to a single problem, or to make local
search more resilient to local minima. In both cases, restart
was meant to find a solution to a problem more quickly.
The goal of full restart, however, is to accelerate the con-
vergence of learning to a high-performance combination of
heuristics, even though the optimal combination and the
distance from it are unknown. Abandoning a learning proc-
ess only to begin it again can be costly; we propose here a
strategy that is both economical and effective.
 Traditional restart reuses its training problems; some
randomness varies the search experience on each new at-
tempt. In contrast, full restart abandons a training problem
entirely if no solution is found within a user-specified step
limit (maximum number of search decisions), and substi-
tutes another. Full restart also begins the entire learning
process again under the direction of a user-specified restart
strategy that compares the frequency and distribution of
abandoned problems to a full restart threshold.
 The success of full restart depends upon critical interac-
tions among the step limit, the restart strategy, and the full
restart threshold. The next section provides background on
constraint satisfaction and describes the learning program.
Subsequent sections motivate full restart, demonstrate its
success, evaluate the influence of various parameters on
learning performance, and discuss related work.

Constraint satisfaction problems

A constraint satisfaction problem (CSP) consists of a set of
variables with associated domains and a set of constraints,
expressed as relations over subsets of these variables. A
partial instantiation of a CSP is an assignment of values to
some proper subset of the variables. An instantiation is
consistent if and only if all constraints over the variables in
it are satisfied. Problems that may be expressed as CSPs
include scheduling, satisfiability (SAT), graph-coloring,
and Huffman-Clowes scene labeling.
 A solution to a CSP is a consistent instantiation of all its
variables. A binary CSP (all constraints are relations be-
tween two variables) can be represented as a constraint
graph, where vertices correspond to the variables (labeled
by their domains), and each edge indicates the existence of
a constraint between its respective variables (labeled with

104

consistent pairs of values). A class is a set of CSPs with
the same parameters. For example, one way to define a
class is with parameters <n, m, d, t>, where n is the number
of variables, m the maximum domain size, d the density
(fraction of edges out of n(n-1)/2 possible edges) and t the
tightness (fraction of possible value pairs that each con-
straint excludes) (Gomes, Fernandez, et al., 2004). Al-
though CSPs in the same class are ostensibly similar, there
is evidence that their difficultly may vary substantially for
a given solution method (Hulubei and O'Sullivan, 2005).
Our experiments here are limited to classes of solvable
binary CSPs, generated randomly using methods and code
shared by the CSP community.
 Determining whether a CSP has a solution is an NP-
complete problem; the worst-case cost is exponential in n
for any known algorithm. Most instances of these problems
can be solved with a cost much smaller than the worst-case
cost, however.
 The CSP search algorithm used here alternately selects
a variable and then selects a value for it from its domain,
incrementally extending a partial instantiation by a value
assignment consistent with all previously-assigned values.
When an inconsistency arises, search backtracks: the sub-
tree rooted at the inconsistent node is pruned and another
value from the domain of the same variable is tried. If
every value in that variable’s domain is inconsistent, the
current partial instantiation cannot be extended to a solu-
tion, so the previously assigned variable in the instantiation
is reassigned. Typically, extensive search occurs when
many attempts lead to “near” solutions, and backtracking
occurs deep in the search tree. Further pruning of the
search tree is accomplished by some form of propagation
to detect values that cannot be supported by the current
instantiation. Here we use MAC-3 to maintain arc consis-
tency during search (Mackworth, 1977). MAC-3 temporar-
ily removes currently unsupportable values to maintain
dynamic domains for the variables. The size of a search
tree depends upon the order in which values and variables
are selected. Different variable-ordering heuristics (rules
to select the next variable for instantiation) and value-
ordering heuristics (rules to select the next value to be
assigned to an already-selected variable) can support ex-
tensive early pruning and thereby speed search.

ACE, the Adaptive Constraint Engine

ACE (the Adaptive Constraint Engine) learns to customize
a weighted mixture of heuristics for a given CSP class
(Epstein, Freuder, et al., 2005). ACE is based on FORR, a
problem-solving and learning architecture for the devel-
opment of expertise from multiple heuristics (Epstein,
1994). ACE makes decisions by combining recommenda-
tions from procedures called Advisors, each of which im-
plements a heuristic for taking, or not taking, an action. By
solving instances of problems from a given class, ACE
learns an approach tailored to that class. Advisors are or-
ganized into three tiers. Tier-1 Advisors are always correct.
If a tier-1 Advisor comments positively, the action is exe-

cuted; if it comments negatively, the action is eliminated
from further consideration during that decision. The only
tier-1 Advisor in use here is Victory, which recommends
any value from the domain of the last unassigned variable.
Tier-1 Advisors are consulted in a user-specified order.
Tier-2 Advisors address subgoals; they are outside the
scope of this paper. The decision making described here
focuses on the heuristic Advisors in tier 3.
 Each tier-3 Advisor can comment upon any number of
actions; each comment has a strength which indicates the
degree of support or opposition of the Advisor to the ac-
tion. Each Advisor’s heuristic view is based upon a de-
scriptive property. An example of a value Advisor is Max
Product Domain Value, which recommends values that
maximize the product of the sizes of the dynamic domains
of its neighbors. An example of a variable selection Advi-
sor is Min Dom/Deg, which selects variables whose ratio of
dynamic domain size to static degree in the constraint
graph is a minimum. For each property, there are two Ad-
visors, one that favors smaller values for the property and
one that favors larger ones. For example, domain size is
referenced by Max Domain and Min Domain, which rec-
ommend variables with the largest and smallest domains,
respectively. Typically, one from each pair is known by
CSP researchers to be a good heuristic, but ACE imple-
ments both of them, and has occasionally demonstrated
that the other heuristic is successful for some problem
classes. There are also two benchmark Advisors, one for
value selection and one for variable selection, which do not
participate in decisions but model random tier-3 advice.
During testing, only an Advisor that has a weight larger
than the weight of its respective benchmark is permitted to
comment. When a decision is passed to tier 3, all its Advi-
sors are consulted simultaneously, and a selection is made
by voting: the action with the greatest sum of weighted
strengths from all comments is executed.
 During learning, after it solves a problem, ACE uses the
DWL (Digression-based Weight Learning) algorithm to
update its weight profile, the set of weights of its tier-3
Advisors. DWL learns from both positive training in-
stances (decisions made along an error-free path extracted
from a solution) and negative training instances (decisions
leading to a digression, a failed subtree). DWL discards the
decisions made within a digression. For each positive train-
ing instance, Advisors that supported it (included it among
the Advisor’s highest-strength preferences) are rewarded
with a weight increment. Advisors that supported a nega-
tive training instance are penalized in proportion to the
number of search nodes in the resultant digression. DWL
also penalizes variable-ordering Advisors that supported
selection of the last variable at the time of digression.
DWL gauges the learner’s developing skill across a se-
quence of learning problems. DWL weight increments de-
pend upon the size of the search tree, relative to the best
search so far (the minimal size of the search tree in all pre-
vious problems). Short solutions indicate a good variable
order, so correct variable-ordering Advisors in a short solu-
tion will be highly rewarded. For value-ordering Advisors,

105

short solutions are interpreted as an indication that that
problem was relatively easy (i.e., any value selection
would likely lead to a solution), and therefore result in only
small weight increments for correct Advisors. A long
search, in contrast, suggests that a problem was relatively
difficult, so value-ordering Advisors that supported posi-
tive training instances there receive substantial weight in-
crements.

The motivation for full restart

The motivation for full restart is to speed learning without
compromising performance. Of necessity, ACE learns to
solve CSPs with incomplete information. An omniscient
teacher would require full knowledge of the exponentially-
large search space for each problem to determine an opti-
mal variable ordering and value ordering. Instead, ACE
learns from its own solutions, and learns only after an in-
stance is solved. This approach is problematic for several
reasons. Recall that the number of decisions in a search
tree measures ACE’s overall performance, and is the basis
for rewards and penalties. A particular Advisor, however,
may be incorrect on some decisions that resulted in a large
digression, and still be correct on many other decisions in
the same problem. Moreover, a problem is solved only
once, and learning is based on that solution. There is no
guarantee that some other solution could not be found
much faster, if even a single decision were different.
 ACE is an effective learner. Min Dom/Deg (mDD, de-
fined above), an “off-the-shelf,” often-used heuristic, aver-
aged 228.65 steps to find a first solution to a test set of 60
problems in <30, 8, 0.31, 0.34>. In contrast, ACE averaged
149.39 steps. This reduction is statistically significant at
the 95% confidence level. ACE’s performance is an aver-
age across 10 runs. In each run, ACE first learned weights
for 36 heuristics on a new set of 30 problems and then

tested those weights on the original set of 60 problems.
The next challenge was to accelerate its learning.
 During search, a step selects either the next variable or a
value for that variable, and the step limit is the maximum
number of steps allowed to solve the problem. Although in
most runs ACE was significantly better than mDD, limit-
ing resources by lowering the step limit during learning
produced occasional runs where ACE did not learn how to
solve these problems well. This difficulty is illustrated in
Table 1, which shows ACE’s performance on 10 runs in
two different classes. Inadequate runs appear in bold.
 For difficult CSPs, the number of steps to solution with
a given search algorithm may vary greatly from problem to
problem in the same class, and can be modeled by a heavy-
tailed distribution whose tail decreases according to a
power-law (Gomes, Selman, et al., 2000). This variation is
not necessarily due to the difficulty of an individual prob-
lem — on another, somehow randomized attempt, or with a
different algorithm or with a different heuristic, the same
problem may be solved quickly.
 The extremely high average number of steps of the in-
adequate runs in Table 1 are not the effect of an algorithm
occasionally approaching a difficult problem. On the in-
adequate runs, ACE consistently failed to solve problems
that were successfully solved in other runs. (The same test-
ing set was used in each run.) This indicates that DWL did
not converge to an appropriate weight profile during learn-
ing. Figure 1 shows the weights of some selected Advisors
after each of the first 5 runs for <30, 8, 0.31, 0.34>. ACE
learns to discriminate between Advisors that minimize and
maximize the same property; in all but runs 3 and 5, it as-
signed higher weights to the version corresponding to well-
known, good heuristics. In contrast, the most highly-
weighted heuristics from the inadequate runs never partici-
pated in testing during the other, successful runs (because
of their worse-than-benchmark weights), and the highly-
weighted heuristics from the other runs did not survive to
participate in the testing in runs 3 and 5.

Table 1: Post-learning performance of ACE, measured by
average steps to solution, with and without restart. With-
out restart, reduced learning resources (the learning step
limit) produce occasional unsatisfactory runs. With an
appropriate restart strategy, however, learning resources
can be reduced by an order of magnitude without com-
promising performance.

Class <30, 8, 0.31, 0.34> <30, 8, 0.18, 0.5>

Restart
strategy

None None
4 out of 7

failed
None None

4 out of 7
failed

Learning
step limit

20000 2000 500 10000 1000 500

Run 1 145.13 145.12 144.47 71.80 3324.42 73.00

Run 2 149.17 150.10 147.85 71.07 71.38 72.37

Run 3 163.28 6541.17 163.98 69.72 69.72 71.95

Run 4 146.85 151.63 152.73 70.85 70.43 73.23

Run 5 153.25 6373.50 156.27 71.53 71.92 71.97

Run 6 144.30 144.02 154.63 71.43 72.43 75.82

Run 7 154.90 157.73 158.10 72.37 71.42 71.50

Run 8 150.27 154.55 153.25 69.75 73.87 72.43

Run 9 135.93 157.68 162.58 71.25 3370.53 72.78

Run 10 150.77 154.25 158.00 69.90 71.62 73.20

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

Run Number

W
ei

g
h

ts

MAX-DEGREE MIN-DEGREE

MAX-FORWARD-DEGREE MIN-FORWARD-DEGREE

MIN-DOMAIN/DEGREE MAX-DOMAIN/DEGREE

Figure 1: Weights learned for selected well-respected
Advisors (solid shapes) and their opposites (hollow) in
three adequate (runs 1, 2 and 4) and inadequate (runs 3
and 5) on problems in <30, 8, 0.31, 0.34>.

106

Efficient full restart

The incentive for decreasing the step limit is a extensive
learning effort, measured here as total steps during learn-
ing. We show here that, on difficult problems, full restart
with a lower step limit can eliminate occasional inadequate
runs, and thereby maintain the high testing performance
previously observed under a high step limit without full
restart.
 Recall that inadequate runs only arose when a higher
standard (lower step limit) was set for the learner. Rather
than extend training to more learning problems, with the
hope that Advisor weights would eventually recover, we
used full restart: abandon the learning process (and any
weight profile) after some small number of unsolved in-
stances, and start learning afresh on new problems.
 Our model assumes that the responsibility for lengthy
search is shared both by the inherent characteristics of the
problem and by an inadequate weight profile. Inability to
solve problems within the step limit reflects inadequacy in
the weight profile. Indeed, an inadequate weight profile
will fail to solve many problems, regardless of how high
we set the step limit. With a good weight profile, however,
most problems will be solved, even within a reasonably
low step limit. Without full restart, the step limit is usually
set high, so that the learner solves most of the problems
and can learn from them.

Experimental design
For ACE, a run is a learning phase (a sequence of prob-
lems that it attempts to solve and uses to learn Advisor
weights), followed by a testing phase (a sequence of fresh
problems that it solves with learning turned off). All prob-
lems are from a single <n, m, d, t> class. Because problem
classes are inherently of uneven difficulty, ACE’s per-
formance is evaluated over a set of 10 runs with different
learning problems but the same testing problems. In the
work reported here, ACE referenced 36 tier-3 Advisors
during learning; during testing ACE included only those
tier-3 Advisors whose weights exceeded their correspond-
ing benchmarks. Experiments were performed on four
classes of random, solvable, binary CSPs:
<30, 8, 0.31, 0.34>, <30, 8, 0.315, 0.34> and the somewhat
easier <30, 8, 0.16, 0.5> and <30, 8, 0.18, 0.5>.
 Both problems and phases have termination conditions.
The termination condition for testing was 10000 steps; for
learning problems, the step limit was an experimental pa-
rameter that ranged from 200 to 1500. The termination
condition for each testing phase in every run in all these
experiments was the solution of the same 30 problems. We
tried two termination strategies for the learning phase. In
the fixed-length criterion, ACE was required to learn on
specified number of problems before it began testing. Un-
der full restart occurred, this count was reset to 0, so that
ACE learned on at least the specified number of problems.
The expertise criterion terminated the learning phase after
ACE solved a specified number of consecutive problems.
 Under full restart, after each problem ACE evaluated its

learning progress with respect to a restart strategy. If, ac-
cording to that strategy, learning was not progressing well,
ACE performed a full restart: it discarded its learned
weights and tackled a fresh set of learning problems. Dur-
ing learning, 20 full restarts were allowed; after 10 restarts,
the step limit was increased by 50 on each full restart. This
increment is intended to recover from an unreasonably
demanding step limit. (A problem with n variables requires
at least 2n steps.)
 Our restart strategy was “full restart after k failed prob-
lems out of the last m problems.” It allowed us to avoid
full restart due to multiple but sporadic failures attributed
to uneven problem difficulty rather than an inadequate
weight profile. For the <30, 8, 0.31, 0.34> class, we tested
values of m and k from 2 to 7; the best tested full restart
strategy was “failure on 4 out of the last 7 problems.” For
an easy to satisfy strategy (e.g., failure on 2 out of 7) and a
low step limit, frequent full restarts prevented ACE from
learning on all but the easiest problems, and did not elimi-
nate inadequate runs. A hard to satisfy strategy (e.g., fail-
ure on 7 out of 7), particularly with a high step limit, effec-
tively prevented full restart and therefore still produced
inadequate runs. The easier <30, 8, 0.16, 0.5> did better
with a smaller number of failures to trigger restart (“2 out
of 7” and “3 out of 7”).

Full restart and the step limit
Full restart makes the step limit more important. Because
ACE fails on a problem if it does not find a solution within
the step limit, the step limit is the criterion for unsuccessful
search. Because the full restart threshold directly depends
upon the number of failures, the step limit becomes the
performance standard for learning. Moreover, the step limit
serves as a filter on problem difficulty: since ACE does not
learn from unsolved problems, a lower step limit actually
eliminates more difficult problems. An inadequate run,
regardless of the step limit, has repeated failures from
which the program cannot learn, and they consume consid-
erable resources. Full restart should help the learner re-
spond, early on, to learning that is not going well.
 Figure 2 illustrates the relationship between search effort
and the step limit. The circles there show the learning ef-
fort under a fixed-length criterion of 30. An extremely low
step limit alone is insufficient to prevent inadequate runs.
Frequent problem failures not only increase the number of
full restarts (and hence the learning effort), but also leave
the learner without training instances. Indeed, when pre-
sented with a 200-step limit, ACE required considerable
resources and eventually began to increment the step limit
(after 10 unsuccessful full restarts); only then could it
learn.
 With a relatively high step limit (e.g., 1000), many diffi-
cult problems are solved, and full restart triggers only on
the rare occasions when a learning attempt is not promis-
ing. Nonetheless, every failure is expensive. With a low
(but reasonable) step limit (e.g., 300), the learner fails on
all the difficult problems, and even on some of medium
difficulty, repeatedly triggering full restart until the weight

107

profile is good enough to solve (almost) all the problems.
A low step limit results in many failures, but relatively
inexpensive ones.
 This might suggest that reducing the step limit to some
intermediate value would reduce learning effort (avoid
overly expensive failures), but that further reduction of the
step limit would incur overly frequent failures and increase
learning effort. Nevertheless, as Figure 2 illustrates, learn-
ing with an intermediate step limit is more costly because it
simply delays full restart and thereby forces learning from
all but the most difficult problems. The learned weight
profile is good enough so that failures are less frequent,
and full restart is postponed. When full restart eventually
triggers, the work on more problems (requiring relatively
extensive effort) is abandoned.
 Figure 3 chronicles performance in three sample runs
with full restart. With a relatively high (1000) step limit,
there were a few failures at the beginning of a run; ACE
recovered without resorting to full restart, and was exposed
to exactly 30 problems. With an intermediate (500) step
limit, there were some full restarts at the beginning, and,
once an acceptably good weight profile was learned, there
were only sporadic failures; exposure was to 42 problems
in all. With a relatively low (250) step limit, there were
many failures at the beginning of each attempt at learning,
and many full restarts before a good weight profile was
established. Subsequent failures occurred, but were not
frequent enough to trigger full restart; learning required 58
problems in all.

Achieving expertise
Under the fixed-length criterion and the step limits investi-
gated here, full restarts occurred only early in a run. Once a
good weight profile is established, there may be an occa-
sional failure, but there are no full restarts. Consistent suc-
cess in solving problems during learning indicates a good
weight profile. Under the expertise termination criterion
(solution of a specified number of consecutive problems),
the number of learning problems is significantly reduced.
For example, solving problems from <30, 8, 0.31, 0.34>
with a 1000-step limit takes only an average of 13.10 prob-
lems when 10 consecutive solutions are required, instead

of 32.40 under the fixed-length criterion when learning
was on at least 30 problems. The reduction in learning ef-
fort is somewhat less dramatic (4323.58 steps for the entire
phase instead of 8237.01 steps) because the expertise crite-
rion excluded readily solved problems. With a lower step
limit, failure is more frequent so that the expertise criterion
is more demanding; only learning a good weight profile
can provide consistent success under a low step limit. This
increases the number of learning problems, but failure is
inexpensive. With the step limit of 400, most problems
provide training instances (i.e., are solved within the step
limit), and, when full restart occurs, it is well warranted.
With all step limits, testing performance was not compro-
mised; it ranges from 143.06 to 153.63 steps. Figure 2
shows that with the expertise criterion, learning effort is
consistently reduced compared to fixed-length criterion.

Discussion and future work

Restart on an individual problem is often effective. Ran-
domized restart has successfully been applied to Internet
traffic, scheduling (Sadeh-Koniecpol, Nakakuki, et al.,
1997), theorem proving, circuit synthesis, planning, and
hardware verification (Kautz, Horvitz, et al., 2002). On
difficult CSPs, Rapid Randomized Restart effectively
eliminates the heavy tail in the run time distribution of
backtrack search on an individual problem (Gomes, et al.,
2000). Just as traditional restart relies on fortuitous as-
signments, full restart relies on a fortuitous training set.
 There are many ways to determine the appropriate re-
start cutoff value for an individual problem. If the runtime
distribution of a problem is known, it is possible to com-
pute an optimal fixed cutoff value; if the distribution is
unknown, there is a universal strategy provably within a
log factor of optimal (Luby, Sinclair, et al., 1993). Another
successful strategy increases the cutoff value geometrically
(Walsh, 1999). When even partial knowledge of the effort
distribution is known, and data on the search process is
available, an appropriate restart cutoff can be dynamically

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600 800 1000 1200 1400 1600

Step limit

S
te

p
s

in
 l

ea
rn

in
g

 p
er

 r
u

n

Solve at least 30 problems

Solve 10 consecutive problems

Figure 2: Average learning effort across 10 runs for two
learning phase termination criteria, with full restart and
different step limits on <30, 8, 0.31, 0.34>.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60
Problem number

S
te

p
s

to
 s

o
lu

ti
o
n

Step limit 250

Step limit 500

Step limit 1000

Figure 3: Steps and full restarts during learning on at
least 30 problems in <30, 8, 0.31, 0.34> under different
step limits. Solid shapes flag restarts. There were no
restarts with a 1000-step limit.

108

determined (Kautz, et al., 2002). Still another approach
dynamically identifies problem features that underlie run-
time distribution. It uses them to partition problem in-
stances into classes with smaller runtime variability, with a
different cutoff for each subset (Ruan, Horvitz, et al.,
2003).
 Further improvements with traditional restart have been
achieved with different implementations of randomness.
Other research has changed the return point in the search
tree (Zhang, 2002), or changed the temperature in simu-
lated annealing (Sadeh-Koniecpol, et al., 1997). Probing
(restart with a cutoff value of one backtrack) has been used
to test the ability of a heuristic to remain on a solution path
in very small problems (Beck, Prosser, et al., 2003).
 Potentially, repeated full restarts could demand many
problems from a single class. ACE has libraries with as
many as 10000 problems in each class, but producing
enough problems may be impractical in some cases. In-
stead, we intend to reuse unsolved problems by introducing
randomness or perturbing them after full restart. Previous
experience with problems and their difficulty should also
allow us to implement boosting with little additional effort
during learning (Schapire, 1990).
 We plan further automation of the full restart mecha-
nism. Ultimately for a specific class of problems, ACE
should learn the appropriate step limit and any expertise
parameters on its own. Analysis will also be extended to
other kinds of CSPs and to mixtures of solvable and un-
solvable problems.

Conclusion

Learning systems with limited feedback and limited re-
sources are prone to occasional unsatisfactory perform-
ance. We showed here that one such system responds well
to full restart. ACE receives very limited feedback from its
attempts to solve constraint problems. Because of the in-
trinsic nature of constraint solving, there is no supervisory
commentary on individual decisions, and the delayed re-
wards cannot truly reflect success during training.
 As reported here, full restart can speed learning and im-
prove robustness without sacrificing performance. Without
full restart, curtailing resources may result in inadequate
learning. With full restart, however, learning can be robust,
even when resources are reduced by an order of magnitude.
Full restart has proved most effective when it responds to
the frequency of recent problem failure and when learning
terminates after some number of consecutive problems has
been solved.

Acknowledgments

This work was supported in part by NSF IIS-0328743 and
PSC-CUNY. We thank the ACE research group, Richard
Wallace, and the anonymous referees for their thoughtful
suggestions and comments.

References

Beck, C., P. Prosser and R. J. Wallace (2003). Toward Un-
derstanding Variable Ordering Heuristics for Constraint
Satisfaction Problems. Fourteenth Irish Artificial Intelli-
gence and Cognitive Science Conference - AICS 2003,
pp. 11-16.

Epstein, S. L. (1994). For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science 18: 479-511.

Epstein, S. L., E. C. Freuder and R. Wallace (2005). Learn-
ing to Support Constraint Programmers. Computational
Intelligence 21(4): 337-371.

Gomes, C., C. Fernandez, B. Selman and C. Bessiere
(2004). Statistical Regimes Across Constrainedness Re-
gions. Principles and Practice of Constraint Program-
ming (CP-04), pp. 32-46, Springer, Toronto, Canada.

Gomes, C. P., B. Selman, N. Crato and H. Kautz (2000).
Heavy-Tailed Phenomena in Satisfiability and Constraint
Satisfaction Problems. Journal of Automated Reasoning:
67–100.

Hulubei, T. and B. O'Sullivan (2005). Search Heuristics
and Heavy-Tailed Behavior. Principles and Practice of
Constraint Programming (CP-05), pp. 328-342, Berlin:
Springer-Verlag.

Kautz, H., E. Horvitz, Y. Ruan, C. Gomes and B. Selman
(2002). Dynamic restart policies. Eighteenth National
Conference on Artificial Intelligence, pp. 674 - 681,
AAAI Press, Edmonton, Alberta, Canada.

Luby, M., A. Sinclair and D. Zuckerman (1993). Optimal
Speedup of Las Vegas Algorithms. Israel Symposium on
Theoretical Aspects of Computer Science ISTCS, pp.
128-133.

Mackworth, A. K. (1977). Consistency in Networks of
Relations. Artificial Intelligence 8: 99-118.

Ruan, Y., E. Horvitz and H. Kautz (2003). Hardness-
Aware Restart Policies. IJCAI-03 Workshop on Stochas-
tic Search Algorithms, Acapulco, Mexico.

Sadeh-Koniecpol, N., Y. Nakakuki and S. R. Thangiah
(1997). Learning to Recognize (Un)Promising Simulated
Annealing Runs: Efficient Search Procedures for Job
Shop Scheduling and Vehicle Routing. Annals of Opera-
tions Research 75: 189-208.

Schapire, R. E. (1990). The strength of weak learnability.
Machine Learning 5(2): 197--227.

Walsh, T. (1999). Search in a small world. IJCAI-99, pp.
1172--1177, Morgan Kaufmann Publishers, San Fran-
cisco, CA, Stockholm, Sweden.

Zhang, H. (2002). A random jump strategy for combinato-
rial search. Sixth International Symposium on Artificial
Intelligence and Mathematics, pp. 9, Fort Lauderdale,
FL.

109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1240
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1240
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1240
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

