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Abstract 
An accurate and up-to-date diagnostic model is critical for 
economic aircraft engine operation. However, for many 
commercial airline fleets, monitoring and diagnosing engine 
faults is often left to human operators due to lack of effective 
modeling. Individuals must manually interpret engine 
performance parameters and this results in inconsistent 
evaluation and the potential for error.  A recent work has 
been performed to capture the knowledge of diagnostic 
engineers and apply fuzzy logic to engine fault classification. 
The developed fuzzy model is capable of capturing various 
engine fault signatures based on expert experience, and it 
provides accurate diagnosis by assessing the similarity 
between those fault signatures and observed trends in sensor 
data. The major drawback with this approach is the manual 
knowledge extraction and model maintenance process. 
Manual model tuning is not only labor intensive, but it also 
brings another source of inconsistency to the overall system 
performance. In this paper, we will present a hybrid approach 
to augment the existing expert knowledge-based diagnostic 
model with automatic learning capability using a genetic 
algorithm. The proposed approach not only allows for 
automatic model tuning, but also enables the diagnostic 
model to adapt throughout the engine service life as operating 
conditions change.    

 
Introduction 

Background 
To ensure economical operation of aircraft engines, remote 
monitoring of these engines is a standard practice in the 
aviation industry. Sensor data are collected during various 
flight regimes, and transmitted to a ground-based system 
for anomaly detection and fault diagnostics. Here 
diagnostics refers to the process of classifying an engine 
fault into a set of non-overlapping and actionable 
categories such that it provides guidance for fleet operation 
decisions and maintenance work scope. Accurate and 
timely diagnosis is the key to quickly resolving a failure 
condition and preventing costly secondary damage and the 
possibility of an in-flight shutdown.  

A previously developed approach (Yu, Cleary, and 
Cuddihy 2004) has been demonstrated that leverages 
engineering knowledge and fuzzy computing to achieve 
accurate engine failure root cause analysis. It extracts 

multi-parameter shifts from flight snapshot data, and maps 
these shifts against a fuzzy rule table that captures the 
engineering knowledge of failure signature patterns. The 
best-matched signature is chosen as the failure root cause.  
   Figure 1 shows the individual modules in this method 
and also provides an example of how each would function:  
1. Shift Detection - removes outliers, detects and 

measures parameter shifts, and correlates multi-
parameter shifts to decide on an event start date. The 
example shown in the upper right corner of Figure 1. 
Two data sets are selected (highlighted data points), 
before and after an event, respectively.  

2. Fuzzy Knowledge Model - fuzzy representation of 
engineering expertise of failure root causes and 
symptoms. Two examples of root-cause signatures are 
shown in the upper left part of the figure, with three 
parameters defined in each rule. For each parameter, 
four numbers in the rule table specify the trapezoidal 
membership function for the parameter shift. 

3. Fuzzy T Integration - assesses the likelihood of match 
between a particular engine sensor shift and an 
anomaly pattern for each parameter, and aggregates 
each likelihood estimate across multiple parameters to 
obtain a matching score for each fuzzy rule. This is 
illustrated in the lower left corner of Figure 1. Based 
on the confidence interval of a parameter shift, a 
matching parameter score is calculated for each fuzzy 
membership function, and then the parameter scores 
are aggregated to provide a score for each fuzzy rule.   

4. Result - scores of each fuzzy rule are sorted in 
descending order, and the root cause with the highest 
score, 0.726 of failure cause 18 in the example, 
provides the most likely diagnosis and consequent 
recommendations for engine maintenance forces. 

 
The Fuzzy Knowledge Model is created off-line by 

leveraging engineering knowledge and historical 
diagnostic experience. For on-line operation, engine flight 
data is downloaded and processed for trend analysis and 
shift detection, and the diagnostic result is obtained 
following the module procedure described above.  
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Figure 1 Aircraft Engine Diagnostic: Root Cause Analyzer 

 
One of the merits of this approach is that it separates 

the uncertainty introduced by sensor noise from the 
uncertainty of engineering knowledge, enabling clearer 
modeling of both. The variance introduced by sensor 
noise is handled with statistical processing and confidence 
testing, whereas the knowledge variance is captured using 
the fuzzy rule engine. 

 
Motivation of Work 
In this paper, we will present a machine learning method 
using genetic algorithms to optimize the fuzzy rule model 
mentioned above for aircraft engine diagnostics. Both the 
diagnostic procedures described in the above section and 
the learning method to be disclosed can be viewed as an 
integrated process to ensure accurate and up-to-date 
interpretation of engine health conditions.  The reason 
that the fuzzy rule model is chosen as the optimizing 
target reflects some of the deficiencies of the existing 
approach. The diagnostic model explicitly captures the 
engineering knowledge about the known failure modes 
and associated failure signatures in a fuzzy rule table, 
which makes the rule well understood and easily 
adjustable. However, the major drawback of this approach 
is the semi-manual knowledge capturing and tuning 
process, in which diagnostic engineers provide rule 
definitions, which are then tested and manually adjusted 
to achieve better accuracy on test cases. This process is 
both tedious and labor intensive. For a small sized model, 
comprising 30 monitored parameters, 50 failure 
signatures, and using a trapezoid fuzzy membership 
function, which has four independent configuration 
variables, the total number of tunable continuous 
variables would be the product of all these factors, or 

6000. This is well beyond a person’s capability to tune the 
model, and it would be more so for larger and more 
complex models. More importantly, manual tuning is 
error prone, introduces unacceptable variance and is 
difficult to optimize.  
   Another major issue is model adaptation over a long 
period of time. An aircraft engine normally deteriorates at 
a certain rate that is reflected in parameter pattern 
changes, with a subsequent effect on the diagnostic 
model’s sensitivity and accuracy. Given a fleet of similar 
engines to monitor it would make sense to adjust the 
diagnostic model configuration periodically to make sure 
its performance is within control limits. It is a desired 
feature that the fuzzy model would automatically and 
quickly adapt to the changing fleet characteristics to 
prevent diagnostic model obsolescence. 
 Given these concerns, it became necessary to leverage 
machine-learning techniques to automatically tune and 
adapt the fuzzy model configuration to optimize the 
overall system performance.  
   In the following sections, we will first discuss various 
learning approaches considered and the selection tradeoffs 
among them for the aircraft engine diagnostic application. 
Then our process and methodology details will be 
presented, followed by result discussion. Finally, 
conclusion and related future research direction will be 
discussed.      
 

Learning Architectures 
As artificial intelligence (AI) technology evolves to 
greater maturity in recent years, more interest has been 
focused on research and applications that leverage AI 
techniques to solve industrial problems (Cordon, et al., 
1995; Karr and Freeman, 2001). Machine learning in 
particular, has been widely applied to system 
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optimization, process control, and general classification 
problems. The idea is to rely on data driven computing 
methods, such as an artificial neural network (ANN), 
clustering algorithm or genetic algorithm (GA) to derive 
the best mapping from the data space to the feature space 
and then to the problem solution space.  
   To select a suitable architecture for the aircraft engine 
diagnostic model at hand, the first question is whether it 
shall be an entirely data driven model or more of a hybrid 
model with physics-based rules that are tuned by data. 
Approaches falling into the former category, to name a 
few, include ANN, multi-variable regression, and  
clustering methods. Exclusive data driven models are 
more straightforward to implement with minimum 
restrictions imposed by the existing model configurations. 
On the other hand, the capability of these models is 
limited by available data, and the end result is a black-box 
model that lacks visible knowledge representation.  

For our purposes, we proposed using a hybrid method 
that combines the structure of the original diagnostic 
fuzzy model with data driven genetic algorithm parameter 
tuning.  In this way, we were able to maintain a visible 
engineering-knowledge model, while leveraging AI 
techniques to improve model accuracy and isolation 
capability.  This approach is superior when data is 
missing or of insufficient quantity to derive an solution 
with acceptable confidence. 

 Genetic Algorithm (GA) is a non-calculus based search 
algorithm, which utilizes natural selection and 
evolutionary theorems to select the best performer among 
multi-generation potential solutions (Goldberg, 1989). 
GA as a learning technique has been successfully used in 
fuzzy model tuning (Bonissone et al., 1995; Cordon et al., 
2001; Ruan, 1997) for various industrial applications. It 
allows fast convergence to near optimum state in a vast 
search space with a small set of simple operators, namely 
mutation, crossover, and reproduction. Other ANN-based 
fuzzy rule tuners may also be promising, such as ANFIS 
(Jang, 1993) and NEFCLASS (Nauck and Kruse, 1997), 
even though they are out of the scope of the current study. 

Figure 2  Fuzzy Model Tuning Process Using GA 

Methodology 
The approach we choose is based on the existing fuzzy 
diagnostic framework presented in an earlier work (Yu, 
Cleary and Cuddihy, 2004), and it applies GA to optimize 
the fuzzy diagnostic model to achieve better performance 
and adaptation capability. The model tuning and 
evaluation process is shown in Figure 2. The shaded areas 
in the chart indicate components directly used in the GA 
tuning process, whereas the non-shaded components are 
either within the existing diagnostic process or are input 
or output of the GA optimizer. The function of each 
component is described in the following:   
 
Root Cause Analyzer 
The Root Cause Analyzer (RCA) is the root cause 
diagnostic process to be optimized. As described in the 
introductory section, it includes a data analysis module 
for data feature extraction, a fuzzy knowledge module 
which captures engineering knowledge of failure 
signatures, and a fuzzy inference module that evaluates 
likelihood of a failure based on the similarity of data 
feature and fuzzy rules. To leverage the GA model tuning 
process, the fuzzy inference module is exported from 
RCA and loaded into the GA object for genome fitness 
evaluation. 
 
Case Database 
The optimization goal is to maximize accuracy for the 
diagnostic model. To assess the model accuracy, a case 
database is set up containing a set of historical cases. 
Each case record captures the data features of dimension 
n, and an associated event for the case at hand. Both 
positive and negative events are captured in the case base 
and they are used for model tuning and validation. 
Positive events refer to engine cases with known engine 
anomalies of specified types, whereas, negative events 
refer to engine cases that are “eventless” or engines that 
have not experienced any known anomalies. Positive 
events are used to derive failure signatures, whereas the 
negative ones are used to represent behaviors of normal 
engines thus helping to adjust fault detection sensitivities.  
  Data features of each case are extracted by the RCA 
based on a given engine serial number and an analysis 
date range (Yu, Cleary and Cuddihy, 2004). They provide 
a snapshot of the engine working condition under the 
assigned event, providing relevant information or 
signatures for fault detection and isolation. The 
characteristics of these data features may be quite diverse. 
For example, they may include continuous sensor data 
trend shifts, sensor slow drifting rates, indicators of 
maintenance actions or engine cycles. All features, 
including categorical information, are coded as real 
numbers. 
  As is the case in many data driven approaches, data 
quality is critical in capturing the essence of the 
knowledge. Extra effort is required to make sure only 
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high quality cases are selected in order to reduce variation 
caused by inconsistent or misinterpreted data features and 
events. Another issue is the quantity of information. 
When there is insufficient information to represent the 
characteristic of a certain event, poor performance is 
expected. In such a situation, the advantage of a 
knowledge-guided hybrid model becomes most obvious 
since physical system knowledge could be used to close 
the gaps of missing or insufficient data.        

 
Genome Object 
This is the central component in the GA tuning process. 
The Genome object contains an internal representation of 
the fuzzy model and the case database, respectively. The 
Model object loads the fuzzy model exported by RCA, 
adjusting the fuzzy rule parameters based on the coded 
genome string. It then evaluates the fitness of the Genome 
object based on model evaluation performed on the cases 
loaded into the CaseBase object. 

Figure 3   Rule Parameter Conversions 

   Here the fuzzy rule parameters to be adjusted are 
limited to the membership function, which is a trapezoid 
function for each parameter in each rule. Therefore, four 
real numbers are needed for each parameter, as shown in 
Figure 3. In this figure, the horizontal axis indicates the 
parameter value, and the vertical axis indicates the 
membership degree value that is in the range of [0,1]. The 
original definition of the membership function specifies 
two outer corner parameter values, A and D, where the 
membership degree is zero, and two inner corner values, 
B and C, where the membership degree is one. But there 
are dependencies among the four values, i.e. 

DCBA <=<=<=   (1) 

which makes these values unsuitable for GA coding. This 
is because the primitive GA operators, namely mutation, 
cross over, and reproduction, assume independency 
among each gene component. Thus, four independent 
variables are derived to address this issue, 

 

 

 

  (2) 
 
 
 
 
 
where x1 is the mean of the two inner corners, x2 is half 
span of the two inner corners, and x3  and  x4 are the left 
and right flange horizontal length, respectively. These 
four variables are used in the genome string coding for 
each parameter membership functions. 
  As mentioned earlier, even for a relatively small model, 
the search space is extremely large due to the amount of 
tunable parameters as well as the continuous nature of the 
possible solution. To speed up convergence and reduce 
cycle time, a divide and conquer technique is used where 
a local optimization is performed for each failure mode 
one at a time, and the final optimized model is a 
concatenation of the best performers. Therefore, the 
coding string assigned is an array of real numbers 
representing the membership functions for a single failure 
mode. There may be multiple signatures or rules for a 
single failure mode, thus the length of the coding string, 
L, may vary, which is 

     �
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where Pi is the number of parameters in rule i, and r is the 
total number of rules for a failure mode, or event type. 
 
Model Optimizer 
The model optimizer configures, initiates, and controls 
the GA tuning process. First, a set of constraints is set up 
for the feasible range of each tunable fuzzy variable. For 
example, referring to Figure 3, the minimum values for x2, 
x3, and x4 are zeros for each parameter. For the upper 
range of these variables and ranges for x1, some heuristic 
constraints are used, such as, allowing a maximum of 50 
percent variation from the original engineering rule 
guidelines. 
    Secondly, this module specifies GA parameters that 
control the population and reproduction process. An elitist 
strategy is applied that maintains the best performer at 
each generation. The number of generation is initially 
chosen as 100, which is adjustable when quick 
convergence is required. To prevent early convergence at 
local maxima and maintain candidate diversity, a 
relatively large population size, 300, is used for each 
generation. The reproduction control parameters, i.e., 
replacement rate, crossover rate, and mutation rate, are set 
at 0.3, 0.8, and 0.05, respectively. 
    The output of the optimization process is a fuzzy model 
with adjusted rule parameters. Since the internal model 
inference engine contained in the Genome object is only 
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an approximation of the original RCA model, to validate 
the produced model, the model optimizer will load the 
tuned model back to RCA for an external evaluation. 

 
Result 

An initial set of tests has been performed on a GE 
CMF56-3 engine model. Seventy field-verified historical 
cases were selected from the case database for model 
optimization and evaluation. These cases represent nine 
different event types, which include one or more engine 
gas path, indication system, lubrication system, and 
vibration system failure modes. Only six event types, 
which have at least three representative cases, are used in 
the GA tuning. The RCA data analysis module extracted 
twenty or so features for these cases that are used by the 
fuzzy model for event isolation. 
   The tuning result is directly influenced by the 
optimization goals. There are two goals relevant to our 
work. One is to maximize the likelihood score of the 
target event, and the other goal is to minimize the score of 
the non-target, or “wrong” event, therefore maximizing 
the isolation margin. For comparison purposes, three 
different fitness functions are tested which are listed in 
Table 1. The first one relates to model accuracy 
assessment, where all diagnosis events are scored, then 
sorted by descending order, and the top ranked event is 
chosen as the failure diagnosis. The second one is 
designed to aggressively maximize the probability score 
of the targeted event, whereas the third one is to 
maximize the difference between the targeted and the 
highest wrong score.   
   For ease of comparison, 100 generations are run for 
each of the six failure modes, and the accumulative fitness 
scores are shown in Figure 4 for each of the three fitness 
function types. In each of the sub-figures, the dark symbol 
line is the best fitness obtained in a generation, the light 
solid line shows the average fitness among all the 
individuals within a generation, and the red triangle 
shows fitness of the initial, or non-optimized model.  

 
Table 1 Fitness Function Type Definition 

   Due to unit difference among the different fitness types, 
absolute comparison of the fitness scores across the 
different objective functions is not meaningful. However, 
trend similarities among the three are very interesting. In 
Figure 4, all three tests achieve significant fitness 
improvement from the initial non-optimized model. The 
most improved failure mode is in the sixth one, whereas 

in some other failure modes negligible gain is made. It is 
also noted that the first two fitness types have somewhat 
quicker convergence than the third one.  Discontinuity of 
trend is observed in most of the failure modes transition 
periods. That is, in the first generation of a new set of 
rules and constraints, the average fitness of the population 
drops, whereas the accumulative best fitness jumps 
higher. When the reproduction and evolution proceeds, 
the average fitness start to pick up and eventually 
converge to the best one.  

 
Figure 4 Comparisons of fitness Scores 
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Table 2 Comparison of results of non-optimized model with models tuned with different fitness functions. 

 

All three optimized models are loaded back into RCA for 
testing. Several assessment metrics are set up as shown in 
the first column of Table 2. From the top row to bottom 
down, the metrics are the average accuracy rate, average 
likelihood score of the targeted failure mode, average 
score of the highest wrong diagnosis, and the difference 
between the last two. Table 2 shows the comparison of 
the testing result among the non-optimized and the three 
fitness designations. It is shown that F2 gives the highest 
accuracy rate, 88.6%, and the average probability score of 
the targeted failure mode is 0.868 given a 0 to 1 range. 
However, the isolation capability of F2 model is only 
0.139, which is worse than the original model which is 
0.149. F3 has slightly lower accuracy rate than F2, 
whereas the isolation capability is 0.244, which is 
significantly higher than both F2 and the original model. 
Given both accuracy and event isolation as the preferred 
model characteristics, the F3 might be the best 
optimization criteria of the three developed. 
  

Conclusions and Future Work 
In this paper, we have presented an integrated process that 
leverages GA learning in fuzzy diagnostic model tuning. 
The tuned model demonstrated performance gains in 
terms of both accuracy and event isolation capability. 
This automatic learning capability reduces the labor-
intensive model maintenance work and enables model 
optimization and adaptation.  
   The diagnostic model structure is unaltered during the 
tuning process partly to reduce problem complexity, and 
partly to maintain the engineering knowledge. However 
by doing so, learning is limited to the existing rules, and 
this process is unable to derive new terms based on the 
experience data. This limitation would be addressed by 
future research. This will be particularly important for 
capturing signatures for unknown failure modes. 
    Another interesting effort would be to utilize cost 
functions in the optimization process. Currently, the 
accuracy and isolation metrics used in the objective 
functions assumes equal penalty for all classification 
defects. However, for a particular event, a false negative 

diagnosis may be much more expensive if it causes more 
serious consequences. Therefore, including tradeoff, or 
cost analysis, in the model fitness evaluation may help to 
fine tune the decision result. 
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