
Learning Personalized Query Modifications

Erika E. Torres-Verdín, Manfred Huber

Department Of Computer Science and Engineering
University of Texas at Arlington
Box 19015, Arlington TX, 76019

e-mail: etorres.verdin@gmail.com, huber@cse.uta.edu

Abstract

The continuous development of the Internet has resulted in
an exponential increase in the amount of available
information. A popular way to access this information is by
submitting queries to a search engine which retrieves a set
of documents. However, search engines do not consider the
specific needs of every user and they retrieve the same
results for everyone. This suggests the necessity to create a
profile that incorporates the search preferences of every
user. We present an intelligent system that is capable of
learning the search profile of a particular user given a set of
queries. We represent the search profile with a probabilistic
network that incorporates semantic information and create
and implement a gradient-based learning algorithm to
update the profile. The ultimate goal of the system is to
modify original queries to improve the degree of relevance
between the user’s search interests and the retrieved
documents. The proposed system is a client-side application
that is dependent on the search engine. We demonstrate the
system by learning a search profile that is used to suggest
query modifications within a specific domain of interest.

Introduction
In their search for information people often consult
different sources and establish data preferences according
to their needs. The Internet has rapidly become one of the
largest knowledge bases available and a common way to
find information is by submitting a query to a search engine
which will retrieve a set of related documents. While
people with well-defined information needs often have a
clear idea as to the kind of knowledge they are looking for,
they still often find it difficult to express this idea in a few
keywords. Moreover, it is frequently a very difficult task to
formulate a search query that will retrieve precisely the
documents that match a particular interest. This paper
describes a client-side application that learns a particular
user’s search profile in the form of a probabilistic network
and uses it to suggest custom query modifications based on
previous queries and search results. To learn the profile,
the system generates a modified query for every user query,
submits them to the search engine, and allows the user to
classify the results as either relevant or irrelevant. The goal

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

is to obtain information about as many relevant documents
as possible. The system then selects the most representative
words from the classified documents according to their
entropy loss value (Rosenfeld 1996) and includes them into
the network. With these words, the system creates a set of
new modified queries by randomly combining words in the
original query and those obtained from the classified
documents. The system submits the modified queries to the
search engine and scores the results by comparing the
retrieved URLs with the URLs of the classified documents.
The network is then trained with the best modified query
using a gradient-based algorithm to store the best query
modifications and generalize them to new queries.
There have been a number of related research works aimed
at helping users find relevant web pages. Query expansion
techniques are focused on adding words to an existing
query (Xu and Croft 2000). A common characteristic of
these techniques is that they do not consider the search
history of the user. Significant work has focused on
building intelligent agents that assist users while browsing
the Internet; some examples are Syskill and Webert
(Pazzani and Billsus 1997), WebWatcher (Joachims,
Freitag and Mitchell 1997) and Letizia (Lieberman 1995).
Other projects have focused on learning a search profile
and executing personalized web search such as Lira
(Babalanovic and Shoham 1995) or WebMate (Chen and
Sycara 1998). Work in the area of personalized search
categories maps the user’s queries to a set of categories
based on a user profile and general knowledge (Liu, Yu,
and Meng 2002). In contrast, the system presented here
represents the search profile with a probabilistic network
that attempts to infer the information need behind each
individual query and suggests personalized modifications.
In the remainder, the paper first describes the network’s
construction and the procedure to infer modified queries. It
then introduces the training algorithm before illustrating the
system by learning profiles for different information needs.

Building the search profile
In the approach presented here the search profile of a
particular user is represented as a probabilistic network.
Every time the user presents a new query, the structure of
the network is changed to include the words in the query
and their different meanings as identified by an electronic

159

dictionary. In addition, the most representative words of the
documents classified relevant and their respective meanings
are added. To select the most representative features, every
original query and its associated relevant and irrelevant
documents are stored in a database and analyzed to remove
HTML tags and stop words. The most significant words are
then selected by first eliminating words for which the ratio
of relevant to irrelevant documents is worse that the
original ratio. Then words are selected whose entropy loss
value is above a threshold defined as a percentage of the
highest entropy loss value. In order to break ties, words
with identical entropy loss values are grouped and the ones
that together best cover the relevant documents are chosen.

The Network Topology
The structure of the probabilistic network consists of three
different types of nodes arranged in three levels (Figure 1).
The first level of the network is composed of the input
nodes which represent the words in the original user query.
The second level contains the meaning nodes that represent
the senses of the query words and of the terms extracted
from the relevant documents. These senses are obtained
from WordNet (Fellbaum 1998). The purpose of meaning
nodes is to “understand” to which of the particular senses
of a word the user is referring in his/her query. The third
level of the network is composed of the output nodes that
represent the keywords in the modified query suggested by
the network. An important difference between the output
nodes and the meaning nodes is that the values of the
former represent utilities and not strictly beliefs. The value
of an output node indicates the utility of a word in
expressing a particular meaning to the search engine and in
successfully retrieving relevant documents. The output
nodes with a utility higher than a particular threshold set as
a percentage of the highest utility are used to create the
output query associated with an input query. The words in
the output query are ordered in descending order of utility.

Figure 1. Network topology.

Network connections
Every time a new keyword appears in an original query the
topology of the network changes by adding new nodes and
connections. A keyword in an original query is symbolized
by an input node and a meaning node for each of its senses
as identified by WordNet is introduced. The input node

representing the keyword is connected to all its meaning
nodes. In addition, it is connected to all meaning nodes that
symbolize the senses of keywords that appear in the same
query. For example, with the query “apple producer”, the
input node “apple” is connected to all nodes representing
its senses and also to all nodes representing the senses of
“producer”. For each of the meaning nodes, output nodes
representing all the words associated with this meaning
according to WordNet are created and connected to it.
Some of the output nodes are not related to the senses of
the keywords in a query since they represent the words that
have been extracted from the relevant documents. For these
nodes WordNet is consulted to find and link the set of
corresponding meaning nodes. Then, existing input nodes
are connected to this set of meaning nodes by linking all
the input nodes to the additional meaning nodes

Initialization of the values of the nodes
Once the network topology is determined, the values of the
CPT (Conditional Probability Table) entries of each node
have to be initialized. For input nodes this value indicates
the presence of the keywords in the input query. For
meaning and output nodes the word frequencies provided
by WordNet are used to set the initial CPT values.
Initialization of the Input Nodes. The input nodes are set
to T (TRUE) or F (FALSE) according to the words that
appear in the input query. For example, in a network with
input nodes “A”, “B” and “C”, the first two are set to T
and the third to F if the user query “AB” is presented.
Initialization of the Meaning Nodes. CPT’s for the
meaning nodes are initialized according to the relative
frequency that WordNet assigns to each of the senses.
a) Meaning nodes with one parent: Suppose that there are
two input nodes, “apple” and “producer”. According to
WordNet “apple” has one and “producer” has three
meanings. The ratios of the frequency of each sense are
summarized in Table 1 and transformed into probabilities.
P (apple1=T | apple=T) = 2/2
P(producer1=T | producer=T) =9/16
P (producer2=T | producer=T) =5/16
P(producer3=T | producer=T)=2/16

Table 1 Frequency ratios of the Meaning Nodes

Word Sense Frequency Ratio
Apple Apple1 2/2

producer1 9/16
producer2 5/16

Producer

producer3 2/16

b) Meaning nodes with two or more parents: If two or
more input nodes represent words with common meaning,
then the value of the word with the highest frequency is
used to initialize the meaning node. When the input nodes
do not share a common meaning, we only consider the
words for which WordNet gives an answer. For example, in
the query “apple producer” the input nodes “apple” and

160

“producer” are linked to the meaning nodes “apple1”,
“producer1”, “producer2” and “producer3”. Because
WordNet does not provide any senses that link the two
input words, the meaning nodes “producer1”, “producer2”
and “producer3” are initialized using only the information
for the word “producer”. The same applies for the meaning
node “apple1”. When WordNet does not provide a
frequency count for a meaning, as in case of brand names,
the probabilities are initialized to a low value such as 0.01.
Initialization of the Output Nodes. Output nodes are
initialized in a similar way as meaning nodes. However it is
important to remember that the values of output nodes
represent utilities, normalized to values between 0 and 1. In
the case of output nodes with one parent, WordNet is
consulted to determine how frequently the corresponding
words have the sense assigned to them trough the meaning
nodes. These frequencies are translated into probabilities.
For an output node with more than one parent the utility
value is calculated as a combination of all possible states
(T/F) of the parents using the Noisy-OR gate (Pearl 1988).

Prediction of a query modification
The values of the CPTs were initialized using only the
information provided by WordNet. The user’s queries
present new evidence that is used to update the CPTs. Once
the network has learned the target output for one or more
queries, it can be used to predict the output of a new query.
The prediction is not straightforward because only the CPT
entries of meaning nodes corresponding to combinations of
input nodes used in the query are updated while all others
remain unchanged. The case of the output nodes is different
because they do not directly depend on the input nodes, and
the learning algorithm updates all their CPT entries.
Suppose that the network in Figure 2 has learned the best
modification for the original queries Q1=AB and Q2=BC
and the modification for query Q3=AC has to be predicted.

Figure 2. Probabilistic network and the CPT for node D.

In this situation, the CPT entry of D for {A=T, B=F, C=T}
has to be predicted using the CPT entries corresponding to
{A=T, B=T, C=F} and {A=F, B=T, C=T}. We can obtain
Q3 from Q2 and Q1 using the following equations:

()
()

()
()FC,TB,TATDP

TC,FB,TATDP

Q|TDP
Q|TDP

====
====

=
=
=

1

3

()
()

()
()TC,TB,FA|TDP

TC,FB,TA|TDP
Q|TDP
Q|TDP

====
=====

=
=

2

3

Assuming that all queries are equally likely and all input
nodes are independent given the meaning node D, we get:

() ()
()

()
()TD|FCP

TD|TCP
TD|TBP
TD|FBP

)Q|TD(PT|QDPz
==
==⋅

==
==⋅=≅== 131

() ()
()

()
()TD|TBP

TD|FBP
TD|FAP
TD|TAP

)Q|TD(PT|QDPz
==
==⋅

==
==⋅=≅== 232

Using P(D=T|Q1), P(D=T|Q2), and the assumption that
ratios that have never been observed are 1, the unknown
ratios of Equations 3 and 4 can be found. x=P(D=T|Q3) can
then be estimated from z1 and z2 in a way similar to
estimating a constant quantity x from n noisy measurements
,zi (i=1,..,n), of x. To estimate x=P(D=T|Q3) from z1 and z2,
the following formula (Kalman Filter) is used:

22
2

2
1

2
1

12
2

2
1

2
2 zzx̂ ⋅��

�

�
��
�

�

σ+σ
σ+⋅��

�

�
��
�

�

σ+σ
σ=

where x̂ is the estimate of x and 2
1σ and 2

2σ represent the
errors (variances) in z1 and z2, respectively. The following

illustrates the estimation of the variances using 2
1σ as an

example. Let the ratios ()
()TD|TBP

TD|FBP
==
== and ()

()TD|FCP
TD|TCP

==
==

(Equations 3 and 4) be J and K, respectively. In the absence
of other information, J and K can be assumed to be the
expected values of two independent random variables, J’
and K’, that represent ratios of probability values for
combinations of input nodes. If it is also assumed that the
prediction errors are small compared to their expected
values, i.e. J'J <<σ and K'K <<σ , then the variances of J’

and K’ can be estimated as 22 J'J ⋅β=σ and 22 K'K ⋅β=σ ,

where β is a small constant. The variance of z1 is then
2

1
2

1 'K'Jz)Q|TD(P σ⋅==σ and the variance 2
'K'Jσ is

[] []'KE'JE 'K'J'K'J'K'J ⋅σ+⋅σ+σ⋅σ=σ 22222
 where E[J’] and E[K’]

are the expected values of J’ and K’ respectively. In this
case E[J’]=J and E[K’]=K. Although Equations 3 and 4
contain only two ratios, the approach can also be applied in
cases with more rations and a new query can thus be
predicted given any number of learned queries. As the
network learns more queries, the value estimates should
improve, leading to better query modifications over time.

Learning the search profile
The system learns a search profile from queries of a
particular user and the classification that he/she assigns to
some of the retrieved documents. For every original query
the system internally creates a set of query modifications
using the different meanings of the query words and the
terms extracted from the classified documents. Every
modified query is submitted to the search engine and the
retrieved URL’s are compared with those of the classified
documents to calculate the expected number of relevant
documents. The learning process then consists of updating
the CPTs in the network such that given the words in the

A B C
P(D|ABC)

T F

T T T Not Learned Not Learned

T T F Learned Learned

T F T Not Learned Not Learned

T F F Not Learned Not Learned

F T T Learned Learned

F T F Not Learned Not Learned

F F T Not Learned Not Learned

(1)

(2)

(3)

(4)

161

user’s query (input nodes) the system produces the best
modified query (output nodes). The CPTs of the network
are updated using a gradient-based algorithm using a set of
training examples indicating the direction of change of the
CPT values. The training data consists of a set of original
queries, their modifications, and a quality score. To train
the network, a mapping mechanism converts desired output
queries to utilities for the output nodes. The main steps are:
a) Set up a measure to score the quality of the modified
queries derived from the user’s original queries.
b) Map the target queries to values of the output nodes of
the network and use these values to construct a training set.
c) Use a gradient-based learning algorithm to update the
CPTs of the network with the training examples from b).

Query performance measure
Let S be the sample space of all combinations of relevant
and irrelevant documents retrieved by a search engine in
response to a query. Each element of S is a set of
documents, denoted by sr, where r is the number of relevant
documents: S={s0,s1,…,sN}. Given no further information,
the prior probability of each outcome set, P(sr), is given by:

() rMrrMr
r qp

rMr
M

qp
r

M
sP −−

−
=��

�

�
��
�

�
=

)!(!
!

where M and M-r are the total number of documents and
the number of irrelevant documents, respectively. The
constants p and q are the probabilities of relevant and
irrelevant documents, respectively. We use P(sr) to
estimate the prior probability of every set of documents to
be retrieved by a modified query. The values of p and q are
obtained from the set of documents retrieved by the
original query. Suppose that we submit the modified query
and the relevance of some of the retrieved URLs is already
known because the associated documents have been
classified previously. Although, the classification of the
remaining URLs is unknown, we can estimate the
performance of the modified query by considering the
classified URLs as k randomly picked documents from the
set of URLs retrieved by the modified query. Given that
among the k selected documents x are relevant and y are
irrelevant, the posterior probability of sr is:

() () ()
()observed_arey,xP

sPsobserved_arey,xP
observed_arey,xsP rr

r
⋅

=

The expectation, Z, of the number of relevant documents
retrieved by a modified query is calculated as:

()�
=

⋅=
N

r
r observed_arey,xsPr)Z(E

0

The best modified query is selected based on its E(Z) value.

Learning the best modification
The creation of network training examples from an original
query and its best modification follows the following steps:
1) Set the input nodes that represent the words in the input
query to True and the rest of the input nodes to False.

2) Obtain the current output query from the network.
3) Compare the output query with the target query
4) If the output query and the target query are the same the
algorithm is completed, otherwise update the values of the
output nodes until the network produces the target query.
The output query produced by the network is composed of
the output nodes whose value is above the threshold,
threshold = percentage × highest_output_value. The words
in the output query are set in decreasing order of their
output node values. The target query is mapped to a set of
output node values calculated as the closest value for each
output node, Oi, in the target query that would put it in the
correct position in the target query. The difference between
Oi and the rest of the output nodes in the target query is
calculated individually using the formulas in Figure 3.

Figure 3. Cases used to update the output nodes.

The cases in Figure 3 follow the same general formula
Value(Oi)=Value(Oi)+α[(targetValue ±ε)-Value(Oi)] where α is
the learning rate and ε is a margin used to make the output
node values more stable. Each individual difference
between an output node Oi and another output node that
must appear in the target query is stored in a vector of
differences named Delta: Delta={�1,�2,�3,…,�N}. Finally,
the average of all ∆j’s is used to update the output nodes:

() () ()()DeltaofsizeDeltaSumOvalueOvalue ii __/α+=
Every time the value of an output node changes, the CPTs
are updated using a gradient-based algorithm.

Learning the profile
Every time a training example is presented to the network,
the output nodes must be updated to produce the desired
output query given an input query. The error in the output
nodes’ values is: Error=Target Value – Current Value. To
reduce this error we apply gradient-descent on the square
error of every output node.

A and B are output nodes that symbolize words that must appear in the target
query
Value (A) is the utility value of node A
Value (B) is the utility value of node B
Case 1:
Target Output: Value (A) > Value (B)
Current Output: Value (A) < Value (B)
 If (Value (B) ≥ Threshold)
 Value (A) = Value (A) + α ((Value (B) + ε) − Value (A))
 Else if (Value (B) < Threshold)
 Value (A) = Value (A) + ((Threshold + ε) – Value (A))
Case 2:
Target Output: Value (A) < Value (B)
Current Output: Value (A) > Value (B)
 If (Value (B) ≥ Threshold and Value (A) ≥ Threshold)
 Value (A) = Value (A) + α ((Value (B) − ε) − Value (A))
 Else if (Value (B) < Threshold and Value (A) ≥ Threshold)
 Value (A) = Value (A) + α ((Threshold − ε) − Value (A))
 Else if (Value (A) < Threshold)
 Value (A) = Value (A) + ((Threshold + ε) – Value (A))
Case 3:
Target Output: Value (A) < Value (B)
Current Output: Value (A) < Value (B)
Since the current output is equal to the target output Value(A) is not updated.
Case 4:
C is an output node that is NOT part of the target output, but it appears in the
current output.
Target Output: Value (C) < Threshold
Current Output: Value (C) ≥ Threshold
Value (C) = Value (C) + α ((Threshold − ε) − Value (C))

162

A training example for the network has the form:
Input: I1=T, I2= T, I3=F
Output: O1 = V1, O2 = V2, O3 = V3…..ON = VN.
where Oi is an output node and Vi its desired value.
Let Oi be an output node of the network, Πi the set of all
parent nodes of Oi and Πij the jth assignment of the states
(true or false) of Πi. We define P(Oi=T) as:

() () ()ij
j

ijii

N

PTOPTOP ∏⋅∏=== �
=

2

1

where N is the number of parents of Oi and 2N is the total
number of possible assignments of states to the parents of
Oi. The problem to be solved is to modify P(Oi=T)
according to the training examples. We can see P(Oi=T) as
a function with parameters P(Oi=T|Πij) and constants
P(Πij). P(Oi=T) can be updated by following the gradient:

()
() ()ij

iji

i P
TOP

TOP
∏=

∏=∂

=∂

The result is multiplied by �Oi which indicates the
magnitude of the desired value change. We define �Oi as
P(Oi=T)target-P(Oi=T)current and update P(Oi|Πij) using:

() () ()
()

() ()[]ijiiji

iji

i
iijiiji

POTOP

TOP

OP
OTOPTOP

∏⋅∆⋅α+∏==

�
�

	

�
�

�

∏=∂
∂

⋅∆⋅α+∏==∏=

where α is the learning rate.
Each conditional probability is then normalized such that
P(Oi=T|Πij) + P(Oi=F|Πij) = 1.0 and P(Oi=T|Πij) ∈ [0, 1].
Following this, the CPT entries of the meaning nodes have
to be updated. Let Mk be a meaning node that is a parent of
the output node Oi for which we calculated P(Oi=T). We
derivate P(Oi) with respect to P(Mk=T) for every child
node Oi of Mk and then average the L partial derivatives:

()
()
L

TMP
TOPL

i k

i�
= =∂

=∂

1

Each of these partial derivatives is again multiplied by the
�Oi of every child node Oi of Mk:

()
()

L

TMP
TOP

O

M

L

i k

i
i

k

�
= =∂

=∂
⋅∆

=∆ 1

The value �Mk is calculated for every meaning node, Mk,
that is a parent of the output node whose value needs to be
updated. The last part of the algorithm consists of updating
the conditional probabilities of the meaning nodes
considering the relationship with the input nodes. We
define P(Mk=T) in a similar manner as we define P(Oi=T):

() () ()kj
j

kjkk

R

PTMPTMP ∏⋅∏=== �
=

2

1

 where R is the number of parents, Πk, of meaning node Mk
and 2R is the total number of possible assignments, Πkj, of
states of the parents of Mk. Now the partial derivatives of
the previous equation with respect to P(Mk=T|Πkj) is:

()
() ()kj

kjk

k P
TMP

TMP
∏=

∏=∂
=∂

Finally we update P(Mk=T|Πkj) :

() () ()
()��

	

�
�

�

∏∂
=∂

⋅∆⋅α+∏==∏=
kjk

k
kkjkkjk

MP

TMP
MTMPTMP

Again, each conditional probability of the meaning nodes
must be normalized so that P(Mk=T | Πkj) ∈ [0,1] and the
entries corresponding to a particular conditioning case Πkj
must sum to 1. Given these equations we can now learn and
store the best modified queries without user involvement.

Experiments
 We have designed two experiments that evaluate different
characteristics of the system. In the first experiment, search
profiles for two persons with different search preferences
were created using the same input queries. The second
experiment evaluates the quality of the network’s query
modification for a novel input query. The network creates
this output query based on the previously learned queries.
In both cases, queries were submitted to a search engine
and evaluated according to the ratio of relevant documents
to the total number of retrieved documents. In both
experiments, the threshold for the extraction of words was
set to 0.5, and the threshold for output nodes was set to 0.6.

First Experiment
Here we built two different search profiles using the same
set of original user queries; one for a fruit producer
interested in apples (User 1), and one for a user of Apple
Macintosh computers (User 2). The network is trained to
learn the best query modifications for each profile.
Tables 2 and 3 show the original and the best-modified
queries with their performance for User 1 and User 2,
respectively. Here the “modified query score” is the
expected ratio of relevant to retrieved documents for a
modified query as determined by the metric presented
previously. The “modified query ratio” is the real ratio of
relevant to retrieved documents for the modified query.

Table 2 Results for the search profile of User 1
User query Modified query Modified query score

Rel/Total
Original query ratio
Rel/Total

Modified query ratio
Rel/Total

Apple consumer information Apple consumer information produce 7.66/15 5/15 13/15
Apple information Apple information apples 9.77/18 8/18 15/18
Apple producer Apple producer growers 9.16/19 8/19

19/19
 Apple virus Apple virus delicious 10.06/18 7/18

15/17

163

The “original query ratio” is the ratio of relevant to
retrieved documents for the original query. The results
show that the system is capable of learning appropriate
query modifications for specific users without requiring the
user to provide feedback on any but the original query
results. The learned queries here always outperformed the
original queries, indicating that the internally derived score
adequately represents the relative quality of the queries.

Second Experiment
The search domain for the second experiment is the World
Cup soccer tournament. The goal of this experiment is to
evaluate the ability of the system to generalize from
previous queries to the user’s intent with a new query. The
domain was chosen to provide sufficient ambiguity in terms
of contexts that share common keywords (such as rugby,
cricket, American football, or non World Cup soccer). In
this experiment, one query at a time was presented and the
original queries, the modifications generated by the
network based on past queries, and the best learned queries
were evaluated. Table 4 compares the performance of all
three sets of results for the four original queries used. Here,
“user query ratio”, “network query ratio” and “best
modified query ratio” are the ratio of relevant to retrieved
documents for the original query, the query created by the
network, and the best modified query, respectively. The
results show that the quality of network-generated modified
queries significantly improves as more queries are learned,
here outperforming the original query after the second
training step. This result is expected since in the beginning
the network has no knowledge of the user’s interests.

Discussion and Conclusions
We have designed and implemented a system that is
capable of learning a personalized search profile from
queries created by a particular user and the documents that
he/she has classified. The search profile is represented by a
probabilistic network that is updated using a gradient-based
learning algorithm. The experimental results suggest that

the network is able to predict good query modifications as
it learns more about the user’s search interest. This is
especially helpful for ambiguous queries such as football
match and football whose original performance is very low
compared to the queries produced by the network. We also
demonstrate that the system is able to learn different search
profiles based on the same input queries. This suggests that
the quality of search results might be further improved by
building separate profiles for different user categories.
One concern that might arise is the complexity of the
network. However, this can be reduced by removing
unused output and meaning nodes. In addition, when the
CPTs become very large, they may be substituted with a
neural network which encodes the CPTs in its weights.

References
Babalanovic, M., Shoham, Y. 1995. Learning Information
Retrieval Agents: Experiments with Automated Web
Browsing, AAAI SS IGDR.
Chen L. and Sycara, K. 1998. WebMate: A Personal Agent
for Browsing and Searching, Int. Con. Autonomous Agents.
Fellbaum, C. 1998. WordNet: An Electronic Lexical
Database, MIT Press.
Joachims, T., Freitag, D., and Mitchell, T. 1997. Web
Watcher: A Tour Guide for the World Wide Web, IJCAI.
Lieberman, H. 1995. Letizia: An Agent That Assists Web
Browsing, IJCAI.
Liu, F., Yu, C., and Meng, W. 2002. Personalized Web
Search by Mapping User Queries to Categories, CIKM.
Pazzani, M. and Billsus, D. 1997. Learning and Revising
User Profiles: The Identification of Interesting Websites,
Machine Learning 27, 313-331.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan
Kaufmann Publishers, Inc.
Rosenfeld, R. 1996. Adaptive Statistical Language
Modeling: A Maximum Entropy Approach, CMU Thesis.
Xu, J. and Croft W.B. 2000. Improving the Effectiveness
of Information Retrieval with Local Context Analysis,
ACM Trans Inf Sys, 18(1):79-112.

Table 3 Results for the search profile of User 2

User query

Modified query

Modified query score
Rel/Total

Original query ratio
Rel/Total

Modified query ratio
Rel/Total

Apple consumer information Apple consumer information Mac 9.59/17

8/17

17/17
 Apple information Apple information computer 10.88/18

10/18

18/18
 Apple producer Apple producer Mac 9.40/15

8/15

14/15
 Apple virus Apple virus OS 11.64/17

10/17

17/17

Table 4. Ratios of relevant documents to total documents for the user query, network query and modified query
User query User query

ratio
Network query Network query ratio Best modified query Best modified

query ratio
World Cup 8/17=0.47 Cup 1/20=0.05 World Cup players 14/20=0.7
World Cup match 8/19=0.42 World Cup players match 6/18=0.33 World Cup match results 13/20=0.65
Football match 1/10=0.1 World Cup match results 13/20=0.65 World Cup football matches 14/19=0.737
Football 2/20=0.1 World Cup football 12/19=0.63 World Cup football info 15/20=0.75

164

