
SORTING THE SORTABLE FROM THE UNSORTABLE

Tracey Baldwin McGrail, Robert W. McGrail

Department of Mathematics, Marist College
Poughkeepsie, NY 12601

Tracey.McGrail@Marist.edu
Department of Computer Science, Bard College

Annandale-on-Hudson, NY 12504
mcgrail@bard.edu

Abstract
This article describes a discovery-based introduction to
elementary genetic algorithms for students of introductory
computer science via a series of programming laboratory
exercises. The exercises focus on sorting weighted scores, a
problem that is both accessible to the novice programmer
and seemingly feasible by means of standard sorting
methods. Students soon discover that standard,
deterministic techniques prove insufficient and so must
settle for approximation by genetic algorithm.
Experimentation with this approach reveals the folly of
sorting weighted scores.

Introduction

This paper describes a series of three introductory-level
laboratory exercises designed to help introduce students to
basic genetic algorithms. Students consider the problem of
arranging a finite sequence of ordered pairs, called
weighted scores, in descending order. The problem
appears to be close enough to the sorting of numbers to
admit a solution using a variation on one of the standard
sorting algorithms. Through the usual program-test-debug
process students soon discover that most of the known
sorts are fundamentally inappropriate for the task.
Furthermore some of the students are able to verify that
none of the popular algorithms fit the bill. They are then
led to consider the use of a genetic algorithm to
approximate the correct order. During the program-test-
debug process they prove that not all sequences of
weighted scores can be sorted.
 The likely pedagogical benefits of these exercises are
many. For starters, they collectively constitute yet another
directed course project, which is a fairly popular learning
device in computer science courses. In fact, this has the
potential for a very effective project, since the problem of
weighted sorting is seemingly simple yet deceptively
complex. During failed attempts to find a solution the

Copyright © 2006, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

serious student is likely to remain confident that a
deterministic algorithm is well within her grasp, yet is
unlikely to become bored by the process.
 The exercises then motivate genetic algorithms, a
popular area of contemporary computing research, at a
most opportune moment. Students are given the choice to
either press on for a deterministic algorithm or resort to
approximation. Meanwhile, the notion of genetic
algorithm is added to their toolbox during classroom
lecture. Those who choose this path soon unravel the
impossibility of sorting weighted scores.
 Intellectual journeys of this particular type are important
to proper pedagogy within the mathematical sciences.
Educational proponents of every field within this general
domain, such as computer science, mathematics, and
physics, have long trumpeted the virtues of abstraction
within the curriculum. Understanding through universal
reasoning is unlikely when the number of concrete
instances is severely limited. Science education is then
hardly distinguishable from training in more vocational
programs. For instance, computer science students often
learn about stock topics, such as the sorting of numbers,
without considering alternative scenarios, such as the
sorting of weighted scores.
 From this point of view, this study of weighted scores
draws strong analogy to the learning of foreign language.
For example, systematic study of French helps the native
English speaker better understand the grammatical
structure of her own tongue. Similarly, attempts to
properly order weighted scores will help one develop a
firm grasp of the sorting of ordinary numbers.
 However, the main motivation for this particular series
of exercises is to inspire student-centered research at the
earliest possible stage. Academic computer science is
especially equipped for such work. Computer science
students need not wait for several semesters of background
material before embarking upon exploratory research. This
stands in stark contrast to the current state of most other
mathematical disciplines. Also, computer science

209

instructors have much more freedom to dedicate sufficient
time for deep exploration into individual topics than their
counterparts in lab science disciplines, such as chemistry
and biology, who are constrained by a standardized
curriculum that requires the introductory course to serve as
part of a broad survey of the field. Hence teachers of first-
year computer science students have greater opportunity to
acclimate their students to the culture of research through
the assignment of research-grade project topics.

Summary
This next section proceeds with background definitions,
notation, and a summary of previous results on weighted
scores. This is followed by a section describing a simple
genetic algorithm that approximates an “optimal order.”
Subsequently, the three lab exercises are presented in
proper chronological order. The concluding section
includes some observations germane to the overall
effectiveness of the series.

Weighted Scores

This section presents the mathematics of the issue central
to this paper. A related problem is the subject of
(Eppstein and Hirschberg 1997) and so the material below
strongly reflects the introductory section of that article.
This section constitutes a summary of (McGrail and
McGrail 2004). The reader should consult that paper for a
complete treatment of these ideas. In fact, much of the
language below is presented verbatim from (McGrail and
McGrail 2004).
 A certain course’s collection of assignments consists of
n equally weighted exercises. The grading policy for this
course allows each student to play some game of chance
that would allow her to generate some arbitrary
nonnegative integer k. She then keeps the best k of her n
grades, thereby dropping the lowest n - k grades.
 For example, assume that there were a total of ten
equally-weighted assignments during the course of the
semester (n = 10). Moreover, suppose that Sue rolled a
single die which produced k = 6, and that her grades were
the following.

87, 78, 100, 95, 65, 80, 82, 92, 95, and 88
Her lowest four grades are dropped leaving her with

87, 100, 95, 92, 95, and 88
which correspond to a final grade of approximately 92.8.
 Clearly the simplest way for the professor to assign final
grades is to use any standard sorting algorithm to sort the
list of grades in descending order and then keep only the
first k grades.
 A wrinkle appears in the system when the n grades are
of non-uniform weight. In this scenario each grade is
composed of two values, one depicting the total number of

possible points one can earn on that assignment and the
other signifying the number of points awarded to the
student on that assignment. So a score is an ordered pair
(s,w) where w is a positive integer and s is a nonnegative
integer no greater than w. For instance, (20,20) and (0,20)
represent the best and worst possible scores of weight 20,
respectively. Consequently, the collection of grades for a
particular student is a list of n scores. In order to avoid
confusion with the ordered pair syntax, a list of scores is
presented using square brackets and semicolons in the
format below.

L=[(s1,w1);(s2,w2); …;(sn,wn)]
Furthermore, define the average of this list to be the sum of
all of the first coordinates divided by the sum of all of the
second coordinates, or

avg(L) =(s1+s2+…+sn)/(w1+w2+…+wn).
For example,

avg([(55,60);(0,10);(1,10);(100,100)]) = 156/180
which rounds off to 86.7 percent.
 The problem of sorting weighted scores can be stated as
follows:

Given a list L of n scores, reorder L to a new list L’
such that, for each integer k strictly between 0 and n,
the first k scores in L’ have average as large as any
other collection of k elements of L.

For example, consider this list.

[(55,60);(0,10);(1,10);(100,100)]
The reader may verify that the properly ordered version
follows below.

[(100,100);(55,60);(1,10);(0,10)]
Based on this example, the naïve approach is to sort the
scores in order of decreasing proportion using one of the
standard sorting algorithms, such as BUBBLESORT,
INSERTIONSORT, MERGESORT, QUICKSORT, or
SELECTIONSORT (Aho, et al. 1974, Cormen, et al. 2001).
However, it is shown in (McGrail and McGrail 2004) that
each of these algorithms fails to do so properly. For
example, any sort that uses a “divide-and-conquer”
approach relies on the notion that the relative order of any
two elements in a subcollection must agree with their
relative order in a sorted version of the list. This is not the
case with scores. To illustrate this point, it is easy to verify
that the following two lists of scores

[(9,10);(80,100);(5,10)]
and

[(100,100);(5,10);(80,100)]
are sorted. Consequently, the relative order of the scores
(80,100) and (5,10) in a particular list depends on the other
elements in the list.
 An algorithm loosely based on SELECTIONSORT is
presented in (McGrail and McGrail 2004) that attempts to

210

sort lists of scores. Testing revealed that the randomly
generated list of scores

[(2,4);(2,2);(4,7);(6,10)]
was reordered by this algorithm to

[(2,2);(2,4);(6,10);(4,7)].
However, the proper order is

[(2,2);(4,7);(6,10);(2,4)]!
 Another randomly generated list of scores

[(2,4);(6,10);(3,3);(4,7)]
encountered during testing has no correct order. For a
correct order to exist, the best two scores, which are

(3,3) and (2,4),
must be contained in the best three scores, which are

(3,3), (6,10), and (4,7).
This means that not all lists of scores are sortable, so that
no sorting algorithm is possible!
 These results naturally lead to the following series of
questions: Does there exist a reasonably quick algorithm
that sorts all sortable lists? Furthermore, is there a notion
of “best” order for unsortable lists that coincides with
sorted order for sortable lists? If so, how does one
efficiently realize this order? This set of questions is
answered in part in the next section.

A Genetic Approach to Best Order

In this section the notion of a best order for a list of
weighted grades is proposed. This best order is achieved
by means of maximizing a certain fitness measure applied
to orderings of a given list. In the case of a sortable list,
this fitness measure achieves a maximum for the sorted
order. This naturally leads to a genetic algorithm for
approximating best order, which then also estimates sorting
order for sortable lists.
 To that end, consider the list of scores

L=[(s1,w1);(s2,w2); …;(sn,wn)].
Define the truncated list Lk to be

Lk =[(s1,w1);(s2,w2); …;(sk,wk)].
We let the fitness of L be the sum of the averages of the Lk

for 1<=k<n or
Fitness(L)=avg(L1)+avg(L2)+…+avg(Ln-1).

 For example, consider the list of scores
L=[(2,4);(6,10);(3,3);(4,7)]

which was shown to be unsortable in the previous section.
It is easy to check that the following reordering of L
provides the maximum fitness score

L’=[(3,3);(2,4);(6,10);(4,7)]
with Fitness(L’) rounding off to 2.36134.
 Notice that, by the definition of sorted order of the
previous section, if L is already sorted, each quantity
avg(Li) is maximum over all subcollections of L of size i.
Hence for a sortable list, the sorted order achieves
maximum fitness.

 The original problem can be safely rephrased in terms of
finding a best order as follows:

Given a list L of n scores, reorder L to a new list L’
so that the sum over k of avg(L’k) achieves a
maximum.

 Now one need only apply an elementary template to
construct an approximation via genetic algorithm (Mitchell
1996). The general algorithm is described below. Here
assume that the input list L is represented by a linear array.
One proceeds as follows:

1. Let A be an array of 10 lists of scores. Initially A
simply holds 10 copies of L.

2. For 0<=i<5, replace A[i+5] with a new list
generated by randomly switching two of the
scores in A[i].

3. Compute the fitness of each list A[i].
4. Reorder the array A in decreasing order of fitness.
5. Repeat steps 2, 3 and 4 for some specified number

of iterations.
6. The output list is A[1].

Some Observations
 More can be discovered about the problem of sorting
weighted scores by studying the fitness landscape
(Mitchell 1996). For a list L of n scores, one considers the
collection of orderings of L. The distance between any
two orderings of L could be defined as the number of
positions in which they differ. So L and L’ are “close” if L’
can be realized from L by switching two scores. The
fitness landscape can be viewed as an (n+1)-dimensional
graph in which each ordering of L is a point in n
dimensions and the associated fitness is plotted along the
(n+1)st axis (Mitchell 1996).
 From this point of view, an optimal order would occur
where there is a peak in the landscape. Once this peak in
fitness is achieved, any change in the order will cause the
fitness to decrease, thus stranding A[1] in this position.
Experimentation with the previous GA has yet to produce a
peak that is not a global maximum. In other words, all
runs of the algorithm have found a maximal order. On
average, the GA produces correct results after
approximately 50 generations for an input list of length 10.

The Laboratories

The following series of programming laboratories guides
the student through the concepts mentioned previously.
The first laboratory introduces the student to the general
notion of sorting numbers. However, it insists that
students invent their own algorithm. This is intended to
place the student into a discovery-based mindset. In the

211

second laboratory, the student explores the applicability of
the standard sorting algorithms to the problem. Finally, in
the third, the student is asked to provide a general solution
to the problem. The presentation is abbreviated to avoid
repetition of the first three sections of this article.

Laboratory 1: Sorting Blocks
This laboratory introduces the student to the general notion
of sorting numbers. It asks the student to design an
algorithm that sorts a collection of numbered blocks into
descending order. The caveat is that none of the standard
sorting algorithms such as BUBBLESORT, INSERTIONSORT,
MERGESORT, QUICKSORT, or SELECTIONSORT (or even
slight variations of these) are considered acceptable. The
written report should include

• A description of the algorithm;
• Examples of the algorithm in action illustrated via

box-and-pointer diagrams; and
• An implementation of the sort.

Laboratory 2: The Standard Approach
In this laboratory, the student considers the applicability of
the standard sorting algorithms to the problem of sorting
weighted grades. The student is given a brief description
of the problem that does not include the results discussed
in this article. She is asked to determine whether any of
BUBBLESORT, INSERTIONSORT, MERGESORT, QUICKSORT,
or SELECTIONSORT solve the problem of sorting weighted
grades. The written report should include the following for
each of the aforementioned methods:

• An explanation of why a direct application of the
algorithm works if she believes so;

• If she believes that a modification of the sort will
work she must provide an implementation along
with an argument supporting its correctness;

• Specific examples of lists that should foil any
version of the algorithm; or

• Some intelligent comments about why the
appropriateness of an algorithm is not as clear as
some of the others if the student is unsure about
the conclusion.

Laboratory 3: A New Beginning
At this juncture, it is assumed that the student is already
convinced that most standard sorting algorithms do not
apply to the problem of sorting weighted scores. In
addition, genetic algorithms have been introduced to the
student in the classroom as a means for sorting ordinary
numbers.
 In this exercise, the student is asked to use their full
repertoire of algorithmic techniques to provide the best
available insight to the problem. The written report should
include one of the following:

• An algorithm that successfully sorts all sequences
of weighted scores very quickly;

• An algorithm that successfully sorts all sequences
of weighted scores, but does not do so very
quickly; or

• A reasonably paced algorithm that sorts most lists
of weighted scores and nearly sorts all of the rest.

The student’s claims must be supported by testing
randomly-generated examples. Moreover, if the student
fails to achieve an algorithm satisfying either of the first
two categories, she should provide some insight as to why
she could not do so.

Epilogue

This series of exercises was first employed in a section of
Computer Science I at Bard College during the spring
semester of 2005. Below are some observations pertaining
to the effectiveness of each laboratory exercise as well as
the overall impact of the project on that course.
 Exercise 1 went much better than expected. It was
feared that many students would try to locate a solution on
the Internet and submit a modified version as their own.
The strange diversity of algorithms submitted suggested
otherwise.
 Of the three, Laboratory 2 appeared to have the most
profound effect on the class. Most were able to deduce the
irrelevance of local comparisons between scores, and so
correctly concluded that INSERTIONSORT, MERGESORT,
and QUICKSORT are fundamentally inappropriate for this
application as shown in (McGrail and McGrail 2004).
Many also eliminated one of BUBBLESORT or
SELECTIONSORT from contention, but usually for the
wrong reason. All of the students were convinced that at
least one of BUBBLESORT and SELECTIONSORT would
inspire a working solution. In fact, a handful of students
each submitted a sizable, untested candidate program
accompanied by a bold, but insufficiently supported, claim
of correctness. However, there was universal acceptance
that the sorting of weighted scores requires a fairly
complex methodology.
 In (Eppstein and Hirschberg 1997), it is revealed that no
greedy algorithm exists for finding the best k scores in a
collection. This eliminates any version of SELECTIONSORT
from contention. On the other hand, the observed
efficiency of the GA strongly suggests that some version of
BUBBLESORT might work. However, a precise formulation
of such is unknown to the authors at the time of the writing
of this paper.
 On the other hand, there are versions of SELECTIONSORT
that satisfy the last option of Laboratory 3. The reader is
referred to (McGrail and McGrail 2004) for such an
example. A sizeable minority of the students took this path.

212

Most of their implementations were slow and buggy, and
so did not facilitate extensive testing. Just one of these
students was able to unearth an unsortable list and so prove
the unsortability of lists of weighted scores.
 All of the proponents of BUBBLESORT from Laboratory
2 chose to implement a GA for the third stage. Many of
these students were willing to settle for an approximation
algorithm because the general GA approach reminded
them of the general BUBBLESORT method. Others were
simply eager to implement their own GA.
 The GA implementers enjoyed relatively remarkable
success. Each of them was able to develop the proper
fitness measure and a correctly working program over a
relatively short period of time. Moreover, the GA
implementation helped them to better understand the use of
random number generators in programs. This left them
well equipped to develop effective testing routines. All of
them discovered counterexamples which led them to the
correct conclusions.

Variations on a Theme
One can argue that the fitness measure from the GA
section is not correct since it gives disproportional weight
to the arrangement of the early part of a list. For instance,
suppose that the professor in question always assigns
fifteen graded exercises per semester. Also assume that the
game of chance consists of simply rolling one die to get
result i and then letting k be n - i. Then k ranges from 9 to
14. In this case, the arrangement of the first nine scores
should not matter to the fitness measure.
 A solution for this general situation proceeds as follows.
For each 1<=k<n, let P(k) be the probability that exactly k
scores remain after the game of chance. Replace each term
of the form avg(Li) in the fitness measure with the new
term avg(Li)P(i), yielding the new fitness measure

avg(L1)P(1)+avg(L2)P(2)+…+avg(Ln-1)P(n-1).
Then the reader can verify that sorted lists still achieve
maximum fitness. Moreover, for the case above,
avg(Li)P(i) = 0 for i < 9, so the arrangement of the first
nine scores has no bearing on the fitness.

A Note Concerning the Benefits of Anonymity. Many of
the negative consequences of the internet age to the cause
of education are likely familiar to the reader. Rarely do
interesting problems and exercises proliferate long before
they are followed by easily downloadable solutions or
before they become the topic of conversation on public
forums accessible to students. In the interest of keeping
ready-made solutions out of the reach of novices, it is
recommended that adopters of these exercises use
alternative nomenclature for terms such as “score” and also
vary the collection of sorting algorithms employed in
Laboratory 2.

References

Aho, A, V., Hopcroft, J.E., and Ullman, J. D. 1974. The Design
and Analysis of Computer Algorithms. Boston, MA: Addison-
Wesley.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
2001. Introduction to Algorithms, 2nd Edition. Cambridge, MA:
MIT Press.
Eppstein, D. and Hirschberg, D. 1992. Choosing Subsets with
Maximum Weighted Average. The Journal of Algorithms, 24(1):
177-193.
McGrail, R. W. and McGrail, T. B. 2004. A Grading Dilemma
or the Abyss between Sorting and the Knapsack Problem. The
Journal for Computing in Small Colleges, 19(5): 97-107.
Mitchell, M. 1996. An Introduction to Genetic Algorithms.
Cambridge, MA: MIT Press.

213

