
A Case–Based Approach to Explore Validation Experience

Rainer Knauf
Faculty of Computer Science

and Automation
Ilmenau Technical University

PO Box 100565, 98684 Ilmenau, Germany

Setsuo Tsuruta
School of Information Environment

Tokyo Denki Unversity
2-1200 Musai-gakuendai, Inzai

Chiba, 270-1382, Japan

Abstract

The success of TURING Test technologies for system valida-
tion depends on the quality of the human expertise behind the
system. As an additional source of human experts’ valida-
tion knowledge a Validation Knowledge base (VKB) and so
called Validation Expert Software Agents (VESAs) revealed
to be useful. Both concepts aim at using collective (VKB)
and individual (VESA) experience gained in former valida-
tion sessions. However, a drawback of these concepts were
their disability to provide a reply to cases, which have never
been considered before. The paper proposes a case–based
data mining approach to cluster the entries ofVKBandVESA
and derive a reply to unknown cases by considering a num-
ber of most similar known cases and coming to a ”weighted
majority” decision. The approach has been derived from the
k Nearest–Neighbor approach.

Introduction
Typically, the validation of intelligent systems is performed
by comparing their functionality with original human vali-
dation knowledge. In contrast to verification, which aims at
ensuring compliance with specifications and the absence of
specific errors without executing the system, validation typ-
ically involves rigorous and extensive testing of the system
by a TURING Test technology. However, experts may not al-
ways agree among themselves. The size of the test case set,
the frequency of the validation exercises and the number of
experts required for each such exercise can combine to pose
great burdens of time and effort on human experts. Experts
are a scarce resource, have limited time, and are expensive
to employ. These limitations have the potential to seriously
degrade a validation exercise.

To make TURING TEST validation results less dependent
on the experts’ opinions and to decrease the workload of the
experts, aValidation Knowledge Base(VKB) was developed
as a model of collective human expertise of former expert
panels andValidation Expert Software Agents (VESA) were
developed as a model of individual human expertise (Tsuruta
et.al. 2002; Knauf et al. 2004a). These concepts have been
implemented in a validation framework (Knauf et al. 2002).
To estimate the usefulness of these concepts and to reveal
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their weaknesses, a prototype test was performed (Knauf et
al. 2005).

This test revealed a basic disadvantage of these concepts.
Since they both hack back to authentic human knowledge of
former validation sessions, they were not capable to provide
solutions or ratings to cases that have never been considered
in the past.

Although in ”toy applications” with a manageable amount
of test cases (like (Knauf et al. 2005)) these concepts don’t
suffer from this feature, it is certainly an issue in real world
application fields. Even with a background of a large val-
idation experience it rarely happens that for an actual case
exactly the same one has been processed before.

According to the idea of Case–Based Reasoning, the so–
called Locally–weighted Regressionand, as far as investi-
gated, the way human experience works, we propose a de-
rived version of the so–calledk Nearest–Neighbor(k–NN)
data mining method (Jantke et al. 2003; Singh 1998) to bring
about a decision among thek most similar cases in the case
base.

In opposition to classical case–based approaches, the sug-
gested version of thek–NN method is applied within a nor-
malized numerical input space of cases, in which the Eu-
clidean distance is the basis for the defined the similarity
measure.

The paper is organized as follows: The next section pro-
vides a short summary about the concepts developed so far:
the validation framework,VKB andVESA. Section three is
a short introduction to thek–NN method and section four
introduces its adaption towards a usability for the intended
purpose. In section five we discuss requirements to a test
scenario for the suggested approach and section six summa-
rizes the results.

The Concepts of VKB and VESA so far
For a systematic validation of intelligent systems (Knauf et
al. 2002) introduces a 5–step validation framework, which
consists of the steps (1) test case generation, (2) test case
experimentation, (3) evaluation of the experimental results,
(4) validity estimation, and (5) system refinement based on
the revealed invalidities.

Due to the heavy involvement of humans, the most ex-
pensive step of our 5–step validation framework (Knauf et
al. 2002) is the test case experimentation step. The recently
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tj EK EI sol
opt

Kj rijk cijk τ DC

t1 e1, e3 [e1, e2, e3] o6 [1, 0, 1] [0, 1, 1] 1
t1 e2 [e1, e2, e3] o17 [0, 1, 0] [1, 1, 1] 4
t2 e1, e3 [e1, e2, e3] o7 [0, 0, 1] [0, 0, 1] 1
. . . . . . . . . . . . . . . . . . . . . . . .

Table 1:An example forVKB’s entries
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Figure 1: The use of theV KB in the Test Case Generation and Experimentation

proposed concepts ofVKB andVESAaim at reducing this
cost factor significantly (Knauf et al. 2005).VKB contains
validation knowledge of previous validation processes and
VESAs systematically model human validators by keeping
the personal validation knowledge of their corresponding ex-
perts and analyzing similarities with other experts (Knaufet
al. 2005).

According to the formal settings in (Knauf et al. 2002)
and (Kurbad 2003), theVKB contains a set of previous (his-
torical) test cases, which can be described by 8-tuples

[tj , EK , EI , sol
opt
Kj , rIjK , cIjK , τ,DC ]

where

• tj is a test case input (a test data),

• EK is a list of experts who provided this particular solu-
tion,

• EI is a list of experts who rated this solution,

• sol
opt
Kj is a solution associated totj , which gained the

maximum experts’ approval in a validation session,

• rIjK is the rating of this solution, which is provided by
the experts inEI ,

• cIjK is the certainty of this rating,

• τ is a time stamp associated with the validation session in
which the rating was provided, and

• DC is an informal description of the application domain
C that is helpful to explain similarities between different
domains or fields of knowledge.

An example, which is a part ofVKB in the prototype test, is
shown in table 1. Here,e1, e2, ande3 are particular (real) hu-
man experts,o1, .., o25 are test case outputs (solutions), and
the time stamps are represented by natural numbers1, .., 4.

Figure 1 sketches how theV KB is employed in the test
case experimentation, which consists of

• one session to solve the test cases by both experts and the
system under validation, and

• a consecutive session to rate all upcoming solutions in an
anonymous TURING test.

The purpose of aVESAis to model a particular human
expertise in the validation process. In the validation frame-
work proposed in (Knauf et al. 2002), human expertise is
requested for two tasks:

• solving test cases in a test case solving session and

• rating (other experts’) solutions to these test cases in a test
case rating session.

In the test case solving session, aVESAis requested, if
an expertei is not available to solve or rate a casetj . ei’s
former (latest) solution is considered by this expert’sVESA.

If ei never considered casetj before, similarities with
other experts who might have the same “school” or “think-
ing structures” are considered. Among all experts who ever
provided a solution totj , the one with the largest subset
of the solutions likeei’s for the other cases that both solved
is identified as the one with the most similar behavior.ei’s
solution is assumed to be the same as this other expert’s.
This solution is consequently adopted by theVESAthat cor-
responds to the missing expert. For a formal description of a
VESA’s solving and rating behavior, see (Knauf et al. 2005).
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Formally, aVESAi acts as follows when requested to pro-
vide an assumed solution of expertei for a test case input
tj :

1. In caseei solvedtj in a former session, his/her solution
with the latest time stamp will be provided byVESAi.

2. Otherwise,

(a) All validatorse′, who ever delivered a solution totj
form a setSolver0

i , which is an initial dynamic agent
for ei: Solver0

i := {e′ : [tj , EK , . . .] ∈ VKB , e′ ∈
EK}

(b) Select the most similar expertesim with the largest
set of cases that have been solved by bothei and
esim with the same solution and in the same ses-
sion. esim forms a refined dynamic agentSolver1

i

for ei: Solver1

i := esim with esim ∈ Solver0

i and
|{[tj , EK , , sol

opt
Kj , , , τS , ] : ei ∈ EK , esim ∈

EK}| → max!

(c) Provide the latest solution of the expertesim to the
present test case inputtj , i.e. the solution with the lat-
est time stampτS by VESAi.

3. If there is no such most similar expert, providesol :=
unknown by VESAi.

Table 2 shows an example of aVESA’s solutions in a proto-
type experiment. The experiment was intended to compare a
VESA’s behavior (VESA2, in the example) with the behavior
of its human counterpart (e2, in the example) to validate the
VESAapproach.ti are test case inputs andoi are the outputs
provided by theVESArespectively the associated human ex-
pert.

EK3 solution of EK3 solution of
VESA2 e2 VESA2 e2

t29 o8 o8 t36 o9 o9

t30 o9 o9 t37 o9 o9

t31 o2 o2 t38 o9 o9

. . . . . . . . . . . . . . . . . .

Table 2:An example for aVESA’s solving behavior

In the test case rating session, aVESAi is requested to
provide an assumed rating of expertei to a solution of a test
case inputtj , it models the rating behavior ofei as follows:

1. If ei ratedtj before, look at the rating with the latest time
stampτS , VESAi provides the same ratingr and the same
certaintyc on behalf ofei.

2. Otherwise,

(a) All validatorse′ , who ever delivered a rating totj form
a setRater0

i , which is an initial dynamic agent forei:
Rater0

i := {e′ : [tj , , EI , . . .] ∈ VKB , e′ ∈ EI}

(b) Select the most similar expertesim with the largest
set of cases that have been rated by bothei and
esim with the same ratingr and in the same ses-
sion. esim forms a refined dynamic agentRater1

i

for ei : Rater1

i := esim with esim ∈ Rater0

i and
|{[tj , , EI , sol

opt
Kj , rIjK , , τS , ] : ei ∈ EI , esim ∈

EI , }| → max!

(c) Provide the latest ratingr along with its certaintyc to
tj of esim by VESAi.

3. If there is no most similar expertesim, provide r :=
norating along with a certaintyc := 0 by VESAi.

Table 3 is an example that shows aVESA’s behavior in a rat-
ing session that took place within the prototype experiment.
Possible ratings are 1 (“correct solution to this test case in-
put”) and 0 (“incorrect solution to this test case input”).

EK3 solution rating of
VESA2 e2

t1 o4 0 0
t1 o18 1 1
t2 o20 0 1
. . . . . . . . . . . .

Table 3:An example for aVESA’s rating behavior

Both conceptsVKB andVESAas developed so far, rely
upon the availability of an entry[tj , , , , , , , , ] ∈ VKB,
when they are asked for a solution or rating to a test datatj .
If nobody consideredtj in any previous validation exercise,
both concepts fail. This fact turned out to be a limitation
on the practical value of the concepts so far. Therefore, we
refined these concepts by considering available entries that
are similar totj in case there is no entry fortj itself.

The k–NN Method
This method presupposes, that anobject is described by a
set ofn attributes that have real numbers as their values. An
object has a membership to exactly one out ofm classes in
V = v1, . . . , vm. So the function to be learnt by the method
is f : IRn → V 1. Objects along with a known function
value form a set ofexamples.

A distance d(x1, x2) between two objectsx1 =
[x1

1
, x1

2
, . . . , x1

n] and x2 = [x2

1
, x2

2
, . . . , x2

n] is defined as
the Euclidian distance between these objects in ann–
dimensional input space:

d(x1, x2) =

√

√

√

√

n
∑

p=1

(x1
p − x2

p)
2

By having a fixed numberk, the method works in its sim-
ple setting as follows. It searches thek most similar objects
among the examples to a given object with an unknown class
membership. The class to be learnt is the one of the majority
of thesek cases:

v = max
v∈V

k
∑

p=1

δ(v, f(xp))

with

δ(a, b) =

{

1 , if a = b
0 , otherwise

1Because of irrelevance for our application, we refrain from
considering the method for real-valued functions.
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Figure 2 shows a two–dimensional example withV =
{⊕,⊗}. Here, different values ofk result in different classes
for an object⋄:

v =

{

⊕ , if k = 1
⊗ , if k = 5

In fact, ak that is too small bags the risk that the method

Figure 2: The influence of the parameterk

becomes too sensible to outliers. On the other hand, ak that
is too large, includes too many examples from other clusters
(classes). The topical literature suggests1 << k < 10, for
examplek = 7.

In an advanced setting, thek nearest examplesx1, . . . , xk

are weighted by their reciprocal quadratic distance to the ob-
jecty to be classified:

v =

{

f(xi) , if y = xi

maxv∈V

∑k

p=1
ωp ∗ δ(v, f(xp)) , otherwise

with

δ(a, b) =

{

1, if a = b
0, otherwise

ωp =
1

d(y, xp)2

If, for example, one of thek “nearest neighbors” has twice
the distance of another one, its impact on the class member-
ship a quarter of the other one.

Adapting the Method
Here we propose to define the reciprocal quadratic distance
of two cases in a normalized numerical input space of test
case inputs as their similarity.

In our setting, acaseis a pair[tj , solj ] of a test datatj
and itssolutionsolj . Here the datatj is the object andsolj
the function value we look for. The data is a vector oftest
data componentstj = [s1

j , s
2

j , . . . , s
p
j ]. The example set is

formed by the respective components[tj , sol
opt
Kj ] of the cases

in theVKBalong with their time stampτ .
Test data components don’t have to be real–valued. In-

stead, they can be of different data types:

• boolean,

• a set of values with an application–driven ordering rela-
tion in–between, and

• a set of values with no (reasonable) ordering relation in–
between.

Additionally, there is a time stampτ which should be in-
cluded in the similarity measure. The reason to include the
time stamp in the similarity measure is modeling the learn-
ing curve. Most recent knowledge should be favored over
potentially outdated knowledge.

The function values, on the other hand, are of the re-
quested kind: exactly one solutionsolj out of m solutions
sol1, sol2, . . . , solm.

We feel, any similarity approach for our data inVKB has
to meet the following requests:

1. Each test data component should influence the distance
metrics to the same degree, i.e. the components have to
be normalized.

2. Non–numerical test data components with in inherent or-
dering relation have to be enumerated to define a distance
in–between them.

3. Non–numerical test data without an inherent ordering re-
lation contribute a distance of zero in case of identity and
of a maximum with respect to the normalization in case
of non–identity.

4. The time stamp has to be considered a test data compo-
nent as well, i.e. its (p + 1) –th component to involve the
time distance when computing a similarity.

Thus, we pre–process each test data componenttj as well
the data of the case to be classifiedtj⋄ in a way, that it is real
valued in the range[0, 1]. A pre–processed test dataused for
computing the distance metrics iŝtj = [ŝ1

j , ŝ
2

j , . . . , ŝ
p
j , τ̂ ].

Its componentŝsi
j respectivelŷτ are computed as follows:

• For numerical componentssi
j there is a minimum and

maximum valuesi
j min and si

j max for the respective
component in theVKB. The pre–processed component is

ŝi
j =

si
j − si

j min

si
j max − si

j min

• For non–numerical components with an inherent ordering
relation as well as for the time stampτ all particular val-
ues in theVKB are consecutively enumerated by natural
numbers with respect to their order, starting with 0 for
the smallest value and ranging up tomax for their largest
value. Letnj be the respective number of a valuesj after
enumeration. The pre–processed component is

ŝi
j =

nj

max
respectivelyτ̂ =

τ

max

• The pre–processed component for a non–numerical com-
ponentsi

j without an inherent ordering relation is

ŝi
j =

{

0 , if si
j = si

j⋄
1 , otherwise
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We adapt a commonly accepted suggestion of the data min-
ing community2 to choose the value ofk = 7. We feel that
with this prime value ofk the risk of receiving more than
one most accepted solution(s) is almost zero.

So we propose to look for the 7 most similar pre-
processed test data in theVKB when asked for a solution
or a rating to a new case. If there is no unique majority
among these 7 cases, we suggest to provide the solution or
rating, which has the most recent average value of the time
stamp among the candidates with the same (maximum) of
cases with this solution or rating.

Refining the VKB concept

If the VKB is asked for a solutionsol(tj) to a test datatj ,
it provides the most recent solution, if there is an entry for
tj in the VKB. If there is no such entry,VKB provides the
reciprocal quadratic distance weighted majority solutionof
the 7 most similar cases:

sol(tj) =











sol
opt
Kj

, if Entry

max
t̂i ∈ T

7
∑

i=1

ωp ∗ δ(solj , soli) , otherwise

with

Entry ≡ ([tj , , , sol
opt
Kj

, , , τ, ] ∈ V KB) ∧

(¬∃[t∗j , , , sol
opt∗
Kj

, , , τ∗, ] ∈ V KB :

τ∗ > τ)

T = {{t̂1, . . . , t̂7} :

¬∃t̂∗ : d(t̂j , t̂∗) < max
i=1,...,7

(d(t̂j , t̂i) =)}

d(t̂j , t̂i) =

√

√

√

√

p
∑

k=1

(ŝk
j − ŝk

i )2 + (τ̂j − τ̂i)2

ωp =
1

d(t̂j , t̂i)2

δ(a, b) =

{

1, if a = b
0, otherwise

As a consequence of this refinement, a non–emptyVKB
will always be able to provide a solution to a given test data
tj , even if there is no respective entry in it.

However, there are still two minor disadvantages of this
approach:

1. The solution provided by theVKB doesn’t have to be an
external one, because the same solution totj might have
been provided by the system or by a human expert in-
volved in the current validation exercise. So theVKB
doesn’t fulfill its intended purpose, which is contributing
external knowledge from outside the current session.

2In the Data Mining Tutor at http//neumann.dfki.uni-
sb.de/damit/ Germany’s major experts in data mining have
been requested to contribute the content of this e–learning system.
For thek–NN method, they suggestk = 7.

2. It the allocation of cases in theVKB is not appropriate,
the k nearest neighbors might be still to far to derive a
solution or a rating to a considered case which is not in the
VKB. Here, the definition of a minimum similarity might
be helpful.

Refining the VESA concept
So far, aVESAmodels human expertise by adapting former
expertise of its original (human) expert or, if this is not avail-
able, another human expert, who solved respectively rated
the considered case and behaved similar to the modeled ex-
pert in the past when handling other cases.

If there is no human expertise at all for a considered case,
the VESAcan’t provide a requested solution or rating to a
test case so far.

If this situation, now the refinedVESAconsiders the 7
most similar cases among the solved respectively rates ones.

If the VESAi (the model of the human expert’sei valida-
tion knowledge) is asked for a solutionsol(tj) or a ratingr
along with a certaintyc to a test datatj and there is no solu-
tion respectively rating and certainty from a former exercise
available,VESA’s reply on this request is based on the setT
of the seven cases, which are most similar totj :

T = {{t̂1, . . . , t̂7} : ¬∃t̂∗ : d(t̂j , t̂∗) < max
i=1,...,7

(d(t̂j , t̂i))}

For deriving a solutionsol(tj), VESAi acts as follows:

1. All validation expertse′, who ever delivered a solution
to any case inT form a setSolver0

i , which is an initial
dynamic agent forei: Solver0

i := {e′ : [tk, EK , . . .] ∈
V KB, tk ∈ T, e′ ∈ EK}.

2. Select the most similar expertesim with the largest set
of cases that has been solved by bothei andesim with
the same solution and in the same session.esim forms
a refined dynamic agentSolver1

i for ei: Solver1

i :=
esim : esim ∈ Solver0

i , |{[ , EK , . . .] : ei ∈ EK , esim ∈
EK}| −→ max!.

3. Determine the setV KB(esim, T ) ∈ V KB of solu-
tions to any caset ∈ T , which are supported byesim:
V KB(esim, T ) = {[t, EK , . . .] : t ∈ T, esim ∈ EK}.

4. VESAi provides the reciprocal quadratic distance
weighted majority solution likeVKBdoes, but based only
on the subsetV KB(esim, T ) ⊆ V KB.

5. If the VKB is too small to determineT , VESAi provides
sol := unknown.

For deriving a ratingr along with a certaintyc, VESAi acts
as follows:

1. All validation expertse′, who ever delivered a rating to
any case inT form a setRater0

i , which is an initial dy-
namic agent forei: Rater0

i := {e′ : [tk, , EI , . . .] ∈
V KB, tk ∈ T, e′ ∈ EI}.

2. Select the most similar expertesim with the largest set
of cases that has been rated by bothei andesim with the
same rating and in the same session.esim forms a refined
dynamic agentRater1

i for ei: Rater1

i := esim : esim ∈
Rater0

i , |{[ , , EI , . . .] : ei ∈ EI , esim ∈ EI}| −→
max!.
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3. Determine the setV KB(esim, T ) ∈ V KB of rat-
ings to any caset ∈ T , which are provided byesim:
V KB(esim, T ) = {[t, , EI , . . .] : t ∈ T, esim ∈ EI}.

4. VESAi provides the reciprocal quadratic distance
weighted majority rating likeVKBdoes, but

• based only on the subsetV KB(esim, T ) ⊆ V KB,
• by including the solutions as a(p + 2)–th component

(besides thep inputss1, . . . , sp and the time stampτ ),
and

• by considering the ratingr ∈ {0, 1} as the classes to
derive by thek–NN method.

There is a certaintycIjK attached to each ratingrIjK .
The certaintyc is set to the majority of certainties (0 or 1)
of the cases that derived the rating, in stalemate situations
c is set to 0:c := 0.

5. If the VKB is too small to determineT , VESAi provides
r := norating along with a certaintyc := 0.

Summary
To compensate the weaknesses and/or the unavailability of
human experts for system validation, a models of both col-
lective experience (a Validation Knowledge BaseVKB) and
individual human experience (Validation Expert Software
AgentsVESAs) have been introduced.

However, these models suffer from not providing a re-
quested reply to cases that have never been considered by
human expert panels in the past.

To overcome this drawback, the paper suggests a cluster-
ing of the available cases, which is known as a data mining
method, thek nearest neighbor (k–NN) method. By this
method, the entries ofVKBand theVESAs are clustered and
a requested reply is derived by considering a number ofk
most similar example cases with a known class member-
ship.For providing solutions, the solution to test cases are
considered as classes to be derived, for providing ratings,
the ratings are the target of classification.

When used with an appropriatek, this method is robust
against single examples with a wrong class membership.
Since theVKB is constructed by human input, this feature
is desirable.

However, some assumptions of thek–NN method are
not met in our settings. Therefore, the paper introduces a
method to pre–process the examples cases in theVKB for
using thek–NN method.

Due to the nature of all data mining technologies, the
quality of theVKB and VESAresponses dirived by using
thek–NN method heavily depends on the quantity and qual-
ity of the collected data. In fact, these data needs to have
some minimum density in the input space to ensure that
there are enough test cases in the same cluster to form a ma-
jority within the k nearest ones, that are weighted by their
quadratic distance to a considered point. Indeed, the rela-
tionship between nature of the input space, the allocation of
the data base entries, and the expected quality of the results
of this method needs some more research.

Our upcoming research on this approach faces three is-
sues:

1. an empirical evaluation of the approach by a prototype
experiment,

2. the derivation of requirements to the size of the data base
and the allocation of its entries to ensure that this method
leads to satisfactory results,

3. a derivation of an appropriatek for successfully applying
thek–NN method, and

4. a method to estimate the quality of a set of examples with
respect to its chances to improve the performance of our
VKBandVESAconcepts.
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