
Explicating Semantic Relations in Non-Monotonic Theories to Facilitate
Validation Analysis

Neli P. Zlatareva

Department of Computer Science
Central Connecticut State University

1615 Stanley Street
New Britain, CT 06050

zlatareva@ccsu.edu

Abstract

The inherent vagueness and ambiguity of non-monotonic
reasoning makes it impossible to formulate detailed
specifications to validate KBS performance by using
traditional test-case-based approach. In this paper, we
present a practical validation technique for non-monotonic
KBSs, which utilizes automatically generated test cases
instead. We show how such test cases and other useful
validation knowledge can be acquired from operational
theories, which are functionally equivalent to the original
non-monotonic theory, and how this validation knowledge
can be used by domain experts to evaluate the validity of
the knowledge model.

Introduction

Validation is a critical step in Knowledge-Based
Systems (KBSs) development, which aims to
demonstrate that the system behaves as intended.
There are two well-defined approaches for validating
software systems in general, known as the “black-
box” and the “white-box” testing. Black-box testing
ignores the internal workings of the system and
specifies performance requirements as test cases with
known solutions. White-box testing, on the other
hand, exercises the internal structure of the system
and explicates the reasoning path leading to the
generated output. In the context of KBSs, white-box
testing is associated with knowledge base verification
which aims to prove that the system’s knowledge is
structurally correct, while black-box testing is
associated with system validation which aims to

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

prove that the KBS as a whole performs correctly.

While verification can be easily automated (Zlatareva
and Preece, 1994), validation places a heavy burden
on domain experts, who are ultimate decision-makers
about whether the KBS meets performance
requirements. In this paper, we propose a white-box
validation technique, which aims to reduce the
validation load on domain experts by providing them
with automatically generated input - output
specifications and other semantic relations underlying
the knowledge model. That is, instead of being
caught up with crafting a carefully designed set of
test cases, domain experts are presented with
automatically generated specifications, which they
evaluate to determine the functional correctness of the
KBS.

The idea of using automatically generated test cases
for KBS validation is not new. It has been
successfully implemented and applied for validation
of traditional rule-based systems (Vignollet and
Lelouche 1993; Zlatareva, 1993). Here we show how
this idea can be applied to KBSs incorporating vague,
incomplete or commonsense knowledge. Due to the
complexity of such systems, producing detailed
performance specifications, required for typical
black-box validation, is a very difficult or even
impossible task. As suggested in (Jarrold, 2003),
“validation of intelligence for commonsense systems
should be more like giving a psychological test than
doing a proof of correctness”.

The paper is organized as follows. First, we briefly
elaborate on the existing approaches to KBS
validation, stressing the need for less stringent
validation technique suitable for non-monotonic and

432

other types of systems with vague and ambiguous
knowledge. Next, we review the logical framework
introduced in (Zlatareva, 2004), which is used as a
test-bed for the proposed validation analysis. We use
an extended example to show how to systematically
explicate a complete set of input -- output
specifications and other semantic relations underlying
the knowledge model, and how these specifications
can be used by domain experts to evaluate KBS
performance.

Why test-case-based validation does not work
for non-monotonic KBSs

Traditional KBS validation employs the black-box
testing, and thus depends on the availability of a
carefully selected set of test cases with known
solutions. By running these test cases and comparing
the results generated by the system to the expected
ones, domain experts judge about the quality of KBS
performance. Unfortunately, there are few situations
where the results generated by the system can be
determined as objectively correct, especially if the
system exploits assumptions and/or ambiguous
knowledge in its reasoning. The success of the black-
box testing in such cases strongly depends on the
quality of the test cases themselves. As pointed out in
(Tsuruta, 2002), validation knowledge is different
than domain knowledge, and acquiring it must be
carried out independently from the mainstream KBS
development. This puts an extra burden on domain
experts, who are commonly recognized as a
“bottleneck” in KBS development. On the other hand,
validation is an on-going process. Even if validation
knowledge is precisely acquired and processed, it
reflects the desired final state of the knowledge
model, and may not be helpful at earlier stages when
detecting and correcting performance errors may be
easier.

In this paper, we describe a white-box validation
technique, which does not require explicit validation
knowledge. Instead, it derives validation knowledge
in a form of synthetic test cases by simulating the
behavior of the KBS and explicating hidden semantic
relations in the knowledge model. These explicated
relations are then evaluated by domain experts to
determine their validity. It is important to note that
the targeted relations explicated during the validation
process are different than ones of interest for
knowledge base verification. Verification is

concerned with structural correctness of the model,
which is why it analyzes every step of explicated
reasoning paths. Validation, on the other hand,
assumes that the knowledge model is syntactically
correct and concentrates on the semantic aspect of it,
namely on input – output specifications and other
hidden semantic relations implied by underlying
assumptions.

We argue in this paper that white-box validation has
two major advantages:

(i) it decreases the validation load on
domain experts, and

(ii) evaluating hidden semantic relations at

early stages of KBS development makes
it easier to identify incorrect chunks of
the knowledge model, and eventually
helps domain experts discover
unexpected consequences of their own
knowledge.

Further in this paper, we show how the proposed
validation technique can be carried out within a
logical framework intended for structural verification
(Zlatareva, 2004). The backbone of the latter is a
conversion algorithm, which translates the original
non-monotonic theory into a set of monotonic sub-
theories whose stable extensions (transitive closures)
are functionally equivalent to possible extensions of
the original theory. What we gain from this
conversion is that now we deal with monotonic
theories, which are easily amenable to formal
analysis. As we show next, the operational versions
of these theories contain all data dependencies for
acquiring synthetic test cases and other useful
semantic relations to help domain experts evaluate the
validity of the underlying knowledge model.

The representation framework and the
conversion algorithm: an overview

We assume that the non-monotonic theory under
validation consists of the following very general
default rules:

Ri: (premise_1, … , premise_n)
 (assumption_1, … ,assumption_m)
 conclusion_i

433

where:

• (premise_1, …, premise_n) is the set of

monotonic supporters for conclusion_i, which
we call for short the In-list, (terminology
adapted from (Doyle, 1979)).

• (assumption_1, …, assumption_m) is the set of

non-monotonic supporters for conclusion_i,
called the Out-list.

• conclusion_i holds if and only if all of its

monotonic supporters hold, and none of its
non-monotonic supporters holds. We assume
that conclusions may serve as both monotonic
and non-monotonic supporters for other
conclusions.

As described in (Zlatareva 2004), non-monotonic
theories of this type can be converted to a set of
functionally equivalent monotonic theories, which are
more easily amenable to formal analysis. The first
step in the conversion process is to map each non-
monotonic rule into one or more monotonic rules as
follows:

1. If the original rule has an empty assumption list
and its conclusion does not belong to the Out-
list of any other conclusion, then the monotonic
version of it is the same as the original rule.

2. If the original rule has an empty assumption

list, but its conclusion serves as a non-
monotonic supporter for another conclusion,
then it is converted into a set of monotonic
rules some of which capture the implicit
semantic constraints between the negation of
the rule’s premises and the negation of the
rule’s conclusion. Such constraints must have a
real domain counterpart, although these types
of “negative” relations are typically not an
explicit part of the knowledge acquisition
process. They, however, may provide useful
validation knowledge, as we show further in
this paper.

3. If the original rule has a non-empty Out-list,

then it is translated into a set of monotonic
rules, which reflect both the negated relation
between the assumptions and the rule’s
conclusion, and the negated relation between

the latter and the conclusions of the rules,
where original rule conclusion serves as a
premise.

To illustrate the conversion process, consider the
following non-monotonic theory and its monotonic
equivalent:

R1: (A1, A2) () C1
R2: (C1, A3) () C2
R3: (A4, A5) (A8, A9) C2
R4: (C2, A6) (C1) C3
R5: (A1, A3) (C1) C8
R6: (C4, C2) () C5
R7: (C5, A8) () C6
R8: (C6, A9) () C7
R9: (A7) (C3) C4
R10: (A4, C8) (A8, C4) C9

The resulting monotonic theory is the following:

R1*: A1 ∧ A2 C1
R1A*: ¬A1 ¬C1
R1B*: ¬A2 ¬C1
R2*: C1 ∧ A3 C2
R3*: A4 ∧ A5 ∧ ¬A8 ∧ ¬A9 C2
R3A*: A8 ¬C2
R3B*: A9 ¬C2
R4*: C2 ∧ A6 ∧ ¬C1 C3
R4A*: C1 ¬C3
R4B*: ¬C2 ¬C3
R5*: A1 ∧ A3 ∧ ¬C1 C8
R5A*: C1 ¬C8
R6*: C4 ∧ C2 C5
R7*: C5 ∧ A8 C6
R8*: C6 ∧ A9 C7
R9*: A7 ∧ ¬C3 C4
R9A*: C3 ¬C4
R10*: A4 ∧ C8 ∧ ¬A8 ∧ ¬C4 C9
R10A*: A8 ¬C9
R10B*: C4 ¬C9

By identifying consistent subsets of assumptions
defining possible extensions of the original non-
monotonic theory, the resulting monotonic theory can
be divided into a set of sub-theories, which are
functionally equivalent to the possible extensions of
the non-monotonic theory. These consistent subsets

434

are easy to identify if we consider logical constraints
on the inputs of the monotonic theory. There are four
of them here (namely, {A1, ¬A1}, {A2, ¬A2}, {A8,
¬A8}, {A9, ¬A9}), dividing the input data set into
16 logically consistent subsets of assumptions
(inputs). Therefore, there are 16 monotonic sub-
theories that must be independently verified as
described in (Zlatareva 2004), before the validation
step is initiated. Assuming that all verification tests
were successful, operational versions of monotonic
sub-theories (called grounded stable extensions, or
GSEs) describe each conclusion (output) in terms of
assumptions (inputs) and rules contributing to its
derivation (Zlatareva and Preece 1994). Slightly
transformed to capture the semantics of the original
non-monotonic theory, these input – output mappings
are in fact synthetic test cases, which domain experts
can utilize to evaluate the validity of the knowledge
model. Next, we discuss how synthetic test cases and
other hidden semantic relations embedded in GSEs
are derived and interpreted to facilitate validation
analysis.

Acquiring synthetic test cases and semantic
constraints from GSEs

Typical black-box testing exercises test cases
mapping directly input data sets to outputs. We refer
to such mappings as high-level test cases. Mappings
from input data sets to intermediate conclusions may
also provide helpful validation information,
especially if evaluation of high-level test cases
revealed errors in the knowledge model. We refer to
such mappings as low-level test cases.

Acquiring high-level test cases from GSEs is easy,
because all potentially reachable conclusions are
represented in terms of input data sets originating
them. For example, GSE originated by the inputs
{A1, A2, A3, A4, A5, A6, A7, A8, A9} contains the
following dependencies:

C1: (A1, A2),
C2: (A1, A2, A3),
¬C2: (A8),
¬C2: (A9),
¬C8: (A1, A2),
¬C9: (A8),
¬C3: (A1, A2),
¬C3: (A8),

¬C3: (A9),
C4: (A7),
¬C9: (A7),
C5: (A7, A1, A2, A3),
C6: (A7, A1, A2, A3, A8),
C7: (A7, A1, A2, A3, A8, A9).

Assuming that the theory has been successfully
verified, the following semantic inconsistencies
derivable from here hold (otherwise, the theory would
contain logical contradiction C2 ∧ ¬C2):

¬ (A1 ∧ A2 ∧ A3 ∧ A8),
 ¬ (A1 ∧ A2 ∧ A3 ∧ A9).

Let C7 be a final conclusion in our example theory.
The following high-level test case for C7 is derived
from the GSE referenced above:

(A1, A2, A3, A7, A8, A9) () C7

If domain experts agreed that {A1, A2, A3, A8} and
{A1, A2, A3, A9} are invalid inputs (which is why
C2 ∧ ¬C2 is a pseudo-contradiction, but not a real
one), the detected test case for C7 may suggest a
performance error in the original theory. Whether this
is the case, is up to domain experts to decide, but an
interesting relationship can indeed be noticed
between R3, R7, and R8. The former suggests, that
C2 is Out, if A8 or A9 is Out. But, both assumptions
are required to be In for C7 to be derived, which also
implicitly depends on C2.

Additional, more focused, information about potential
errors in the knowledge model can be obtained from
reviewing low-level test cases mapping inputs to
intermediate conclusions. Here are relevant low-level
test cases (positive and negative), acquired from the
GSE referenced above:

A1, A2 C1
A1, A2, A3 C2
A7 C4
A7, A1, A2, A3 C5
A7, A1, A2, A3, A8 C6
A1, A2 ¬C8
A8 ¬C2
A9 ¬C2
A8 ¬C9
A7 ¬C9

435

Negative test cases state counter-arguments for
unreached conclusions. Consider the last two
relations implying ¬C9. Although the first one seems
trivial, because A8 is a direct non-monotonic
supporter for C9, the second one defines an
interesting counter-argument for C9, which is not
explicitly stated in the original theory. Acquiring
negative test cases is especially difficult task for
domain experts. Reviewing automatically generated
negative test cases, especially for theories employing
assumptions, may reveal potentially unknown or
unexpected dependencies prompting domain experts
to revise their own knowledge.

Similarly, we acquire high-level and low-level test
cases and semantic constraints from all grounded
stable extensions, generated during the conversion
process. Many of these dependencies will be
duplicated in different extensions. After filtering all
duplications, below are shown relevant test cases
capturing the semantics of our example non-
monotonic theory.

Positive high-level test cases:

(A1, A2, A3, A7, A8, A9) () C7
(A1, A3, A4, A5, A6) (A2, A8, A9) C9

Positive low-level test cases:

(A1, A2) () C1
(A1, A2, A3) () C2
(A1, A3) () C2
(A4, A4) (A8, A9) C2
(A4, A5) (A1, A8, A9) C3
(A4, A5) (A2, A8, A9) C3
(A4, A5, A6) (A2, A8, A9) C3
(A4, A5, A6) (A1, A8, A9) C3
(A6) (A1) C3
(A6) (A2) C3
(A7) () C4
(A7, A8) () C4
(A7, A9) () C4
(A1, A2, A7) () C4
(A1, A2, A3, A7) () C5
(A1, A2, A3, A7, A8) () C5
(A1, A2, A3, A7, A9) () C5
(A1, A2, A4, A5, A7) (A8, A9) C5
(A1, A2, A3, A7, A8) () C6
(A1, A3) (A2) C8

Automatically generated set of test cases can be
further filtered by eliminating those, whose sets of
assumptions are supersets of another test case’s
assumptions, given that both test cases have the same
set of premises.

Negative high-level test cases can be helpful as well.
Here are negative high-level test cases for C9
explicating the inputs under which C9 is not
reachable:

(A9) () ¬C9
(A1, A2, A7) () ¬C9
(A7, A8) () ¬C9
(A7, A9) () ¬C9

Relations shown next, explicated by other GSEs of
our example theory, can be viewed as negative low-
level test cases, and may occasionally provide domain
experts with additional validation information.

¬A1 ¬C1,
¬A2 ¬C1
A1, A2 ¬C3,
A8 ¬C3,
A9 ¬C3
A4, A5, A6, ¬A2, ¬A8, ¬A9 ¬C4,
A4, A5, A6, ¬A1, ¬A8, ¬A9 ¬C4,
A4, A5, ¬A1, ¬A8, ¬A9 ¬C4,
A4, A5, ¬A2, ¬A8, ¬A9 ¬C4,
A6, ¬A1 ¬C4,
A6, ¬A2 ¬C4
A1, A2 ¬C8

Synthetic test cases and semantic constraints,
acquired from GSEs, provide domain experts with
valuable validation information. In addition, they may
reveal relations and unnoticed or unexpected results
provoking experts to expand or revise their own
domain knowledge. In our example theory, it is easy
to see that the input set {A1, A2, A3, A4, A5, A6,
A7, A8} does not imply a final conclusion. The
acquired semantic constraints explain why none of
the final hypotheses is derived. This analysis suggests
that either this data set represents an invalid input
(which is up to domain experts to decide), or the
theory is incomplete and needs to be revised.

436

Conclusion

In this paper, we have presented a white-box
validation technique intended to help domain experts
validate non-monotonic KBSs. We argued that:

(i) validation of such systems is by default
less rigorous than validation of
monotonic systems,

(ii) the traditional test-case-based approach is

not practical, because of the inherent
vagueness and ambiguity of non-
monotonic reasoning, which makes it
impossible to formulate detailed
performance specifications, and

(iii) utilizing automatically generated

synthetic test cases not only decreases the
validation load on domain experts, but
also can help them to discover
unexpected consequences of their own
knowledge.

The proposed validation analysis utilizes the logical
framework initially proposed for structural
verification (Zlatareva, 2004), which makes it
possible to build a uniform testing tool for non-
monotonic KBSs evaluation.

Although we have tested the proposed validation
technique on several example knowledge bases (50 –
70 rules), and the experiments revealed interesting
relations among non-monotonic rules, more work
remains to be done to determine the complexity of
this analysis when applied to large-scale KBSs.

References

Doyle, J. 1979. Truth Maintenance Systems.
Artificial Intelligence 12: 231 – 272.

Jarrold, W. 2003. Using an Ontology to Evaluate a
Large Rule Based Ontology: Theory and Practice. In
Performance Metrics for Intelligent Systems PerMIS
'03 (NIST Special Publication 1014).

Tsuruta, S., T. Onoyama and Y.Taniguchi 2002.
Knowledge-based Validation Method for Validating

Intelligent Systems. In Proceedings of FLAIRS’2002,
AAAI Press.

Vignollet, L. and R. Lelouche 1993. Test Case
Generation Using KBS Strategy. In Proceedings of
IJCAI’93, Chambery, France.

Zlatareva, N. 1993. Distributed Verification and
Automated Generation of Test Cases. In Proceedings
IJCAI’93 Workshop on Validation of KBS,
Chambery, France.

Zlatareva, N., and Preece A. 1994. An Effective
Logical Framework for Knowledge-Based Systems
Verification. International Journal of Expert Systems:
Research and Applications, vol. 7, No 3.

Zlatareva, N. 2004. Testing the integrity of Non-
Monotonic Knowledge Bases Containing Semi-
normal Defaults. In Proceedings of FLAIRS’2004,
AAAI Press.

437

	New Britain, CT 06050
	Why test-case-based validation does not work for non-monoton
	The representation framework and the conversion algorithm: a
	Acquiring synthetic test cases and semantic constraints from

