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Abstract 

 
The inherent vagueness and ambiguity of non-monotonic 
reasoning makes it impossible to formulate detailed 
specifications to validate KBS performance by using 
traditional test-case-based approach. In this paper, we 
present a practical validation technique for non-monotonic 
KBSs, which utilizes automatically generated test cases 
instead. We show how such test cases and other useful 
validation knowledge can be acquired from operational 
theories, which are functionally equivalent to the original 
non-monotonic theory, and how this validation knowledge 
can be used by domain experts to evaluate the validity of 
the knowledge model. 

Introduction 
 
Validation is a critical step in Knowledge-Based 
Systems (KBSs) development, which aims to 
demonstrate that the system behaves as intended. 
There are two well-defined approaches for validating 
software systems in general, known as the “black-
box” and the “white-box” testing. Black-box testing 
ignores the internal workings of the system and 
specifies performance requirements as test cases with 
known solutions. White-box testing, on the other 
hand, exercises the internal structure of the system 
and explicates the reasoning path leading to the 
generated output. In the context of KBSs, white-box 
testing is associated with knowledge base verification 
which aims to prove that the system’s knowledge is 
structurally correct, while black-box testing is 
associated with system validation which aims to  
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prove that the KBS as a whole performs correctly. 
 
While verification can be easily automated (Zlatareva 
and Preece, 1994), validation places a heavy burden 
on domain experts, who are ultimate decision-makers 
about whether the KBS meets performance 
requirements. In this paper, we propose a white-box 
validation technique, which aims to reduce the 
validation load on domain experts by providing them 
with automatically generated input - output 
specifications and other semantic relations underlying 
the knowledge model.  That is, instead of being 
caught up with crafting a carefully designed set of 
test cases, domain experts are presented with 
automatically generated specifications, which they 
evaluate to determine the functional correctness of the 
KBS. 
 
The idea of using automatically generated test cases 
for KBS validation is not new. It has been 
successfully implemented and applied for validation 
of traditional rule-based systems (Vignollet and 
Lelouche 1993; Zlatareva, 1993). Here we show how 
this idea can be applied to KBSs incorporating vague, 
incomplete or commonsense knowledge. Due to the 
complexity of such systems, producing detailed 
performance specifications, required for typical 
black-box validation, is a very difficult or even 
impossible task. As suggested in (Jarrold, 2003), 
“validation of intelligence for commonsense systems 
should be more like giving a psychological test than 
doing a proof of correctness”.  
 
The paper is organized as follows. First, we briefly 
elaborate on the existing approaches to KBS 
validation, stressing the need for less stringent 
validation technique suitable for non-monotonic and 
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other types of systems with vague and ambiguous 
knowledge. Next, we review the logical framework 
introduced in (Zlatareva, 2004), which is used as a 
test-bed for the proposed validation analysis. We use 
an extended example to show how to systematically 
explicate a complete set of input -- output 
specifications and other semantic relations underlying 
the knowledge model, and how these specifications 
can be used by domain experts to evaluate KBS 
performance.  
 

Why test-case-based validation does not work 
for non-monotonic KBSs  

 
Traditional KBS validation employs the black-box 
testing, and thus depends on the availability of a 
carefully selected set of test cases with known 
solutions. By running these test cases and comparing 
the results generated by the system to the expected 
ones, domain experts judge about the quality of KBS 
performance. Unfortunately, there are few situations 
where the results generated by the system can be 
determined as objectively correct, especially if the 
system exploits assumptions and/or ambiguous 
knowledge in its reasoning. The success of the black-
box testing in such cases strongly depends on the 
quality of the test cases themselves. As pointed out in 
(Tsuruta, 2002), validation knowledge is different 
than domain knowledge, and acquiring it must be 
carried out independently from the mainstream KBS 
development. This puts an extra burden on domain 
experts, who are commonly recognized as a 
“bottleneck” in KBS development. On the other hand, 
validation is an on-going process. Even if validation 
knowledge is precisely acquired and processed, it 
reflects the desired final state of the knowledge 
model, and may not be helpful at earlier stages when 
detecting and correcting performance errors may be 
easier.   
 
In this paper, we describe a white-box validation 
technique, which does not require explicit validation 
knowledge. Instead, it derives validation knowledge 
in a form of synthetic test cases by simulating the 
behavior of the KBS and explicating hidden semantic 
relations in the knowledge model. These explicated 
relations are then evaluated by domain experts to 
determine their validity. It is important to note that 
the targeted relations explicated during the validation 
process are different than ones of interest for 
knowledge base verification. Verification is 

concerned with structural correctness of the model, 
which is why it analyzes every step of explicated 
reasoning paths. Validation, on the other hand, 
assumes that the knowledge model is syntactically 
correct and concentrates on the semantic aspect of it, 
namely on input – output specifications and other 
hidden semantic relations implied by underlying 
assumptions.   
 
We argue in this paper that white-box validation has 
two major advantages:  
 

(i) it decreases the validation load on 
domain experts, and  

 
(ii) evaluating hidden semantic relations at 

early stages of KBS development makes 
it easier to identify incorrect chunks of 
the knowledge model, and eventually 
helps domain experts discover 
unexpected consequences of their own 
knowledge.  

 
Further in this paper, we show how the proposed 
validation technique can be carried out within a 
logical framework intended for structural verification   
(Zlatareva, 2004). The backbone of the latter is a 
conversion algorithm, which translates the original 
non-monotonic theory into a set of monotonic sub-
theories whose stable extensions (transitive closures) 
are functionally equivalent to possible extensions of 
the original theory.  What we gain from this 
conversion is that now we deal with monotonic 
theories, which are easily amenable to formal 
analysis. As we show next, the operational versions 
of these theories contain all data dependencies for 
acquiring synthetic test cases and other useful 
semantic relations to help domain experts evaluate the 
validity of the underlying knowledge model. 
 

The representation framework and the 
conversion algorithm: an overview 

 
 
We assume that the non-monotonic theory under 
validation consists of the following very general 
default rules: 
 
Ri:   (premise_1, … , premise_n)  
        (assumption_1, … ,assumption_m)  
         conclusion_i 
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where: 
 
• (premise_1, …, premise_n) is the set of 

monotonic supporters for conclusion_i,  which 
we call for short the In-list, (terminology 
adapted from (Doyle, 1979)). 

 
• (assumption_1, …, assumption_m) is the set of 

non-monotonic supporters for conclusion_i, 
called the Out-list.  

 
• conclusion_i holds if and only if all of its 

monotonic supporters hold, and none of its 
non-monotonic supporters holds. We assume 
that conclusions may serve as both monotonic 
and non-monotonic supporters for other 
conclusions.  

 
As described in (Zlatareva 2004), non-monotonic 
theories of this type can be converted to a set of 
functionally equivalent monotonic theories, which are 
more easily amenable to formal analysis. The first 
step in the conversion process is to map each non-
monotonic rule into one or more monotonic rules as 
follows: 
 

1. If the original rule has an empty assumption list 
and its conclusion does not belong to the Out-
list of any other conclusion, then the monotonic 
version of it is the same as the original rule.  

 
2. If the original rule has an empty assumption 

list, but its conclusion serves as a non-
monotonic supporter for another conclusion, 
then it is converted into a set of monotonic 
rules some of which capture the implicit 
semantic constraints between the negation of 
the rule’s premises and the negation of the 
rule’s conclusion. Such constraints must have a 
real domain counterpart, although these types 
of “negative” relations are typically not an 
explicit part of the knowledge acquisition 
process. They, however, may provide useful 
validation knowledge, as we show further in 
this paper. 

 
3. If the original rule has a non-empty Out-list, 

then it is translated into a set of   monotonic 
rules, which reflect both the negated relation 
between the assumptions and the rule’s 
conclusion, and the negated relation between 

the latter and the conclusions of the rules, 
where original rule conclusion serves as a 
premise. 

 
To illustrate the conversion process, consider the 
following non-monotonic theory and its monotonic 
equivalent:  
 
R1: (A1, A2) ( )  C1 
R2: (C1, A3) ( )  C2 
R3: (A4, A5) (A8, A9)  C2 
R4: (C2, A6) (C1)  C3 
R5: (A1, A3) (C1)  C8 
R6: (C4, C2) ( )  C5 
R7: (C5, A8) ( )  C6 
R8: (C6, A9) ( )  C7 
R9: (A7) (C3)  C4 
R10: (A4, C8) (A8, C4)  C9 
 
The resulting monotonic theory is the following: 
 
R1*: A1 ∧ A2  C1 
R1A*: ¬A1  ¬C1 
R1B*: ¬A2  ¬C1 
R2*: C1 ∧ A3  C2 
R3*: A4 ∧ A5 ∧ ¬A8 ∧ ¬A9  C2 
R3A*: A8  ¬C2 
R3B*: A9  ¬C2 
R4*: C2 ∧ A6 ∧ ¬C1  C3 
R4A*: C1  ¬C3 
R4B*: ¬C2  ¬C3 
R5*: A1 ∧ A3  ∧ ¬C1  C8 
R5A*: C1  ¬C8 
R6*: C4 ∧ C2  C5 
R7*: C5 ∧ A8  C6 
R8*: C6 ∧ A9  C7 
R9*: A7 ∧ ¬C3  C4 
R9A*: C3  ¬C4 
R10*: A4 ∧ C8  ∧ ¬A8  ∧ ¬C4   C9 
R10A*: A8  ¬C9 
R10B*: C4  ¬C9 
 
 
 
By identifying consistent subsets of assumptions 
defining possible extensions of the original non-
monotonic theory, the resulting monotonic theory can 
be divided into a set of sub-theories, which are 
functionally equivalent to the possible extensions of 
the non-monotonic theory. These consistent subsets 
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are easy to identify if we consider logical constraints 
on the inputs of the monotonic theory. There are four 
of them here (namely, {A1, ¬A1}, {A2, ¬A2}, {A8, 
¬A8}, {A9, ¬A9}), dividing the input data set into 
16 logically consistent subsets of assumptions 
(inputs). Therefore, there are 16 monotonic sub-
theories that must be independently verified as 
described in (Zlatareva 2004), before the validation 
step is initiated. Assuming that all verification tests 
were successful, operational versions of monotonic 
sub-theories (called grounded stable extensions, or 
GSEs) describe each conclusion (output) in terms of 
assumptions (inputs) and rules contributing to its 
derivation  (Zlatareva and Preece 1994). Slightly 
transformed to capture the semantics of the original 
non-monotonic theory, these input – output mappings 
are in fact synthetic test cases, which domain experts 
can utilize to evaluate the validity of the knowledge 
model.  Next, we discuss how synthetic test cases and 
other hidden semantic relations embedded in GSEs 
are derived and interpreted to facilitate validation 
analysis.  
 

Acquiring synthetic test cases and semantic 
constraints from GSEs 

 
Typical black-box testing exercises test cases 
mapping directly input data sets to outputs. We refer 
to such mappings as high-level test cases. Mappings 
from input data sets to intermediate conclusions may 
also provide helpful validation information, 
especially if evaluation of high-level test cases 
revealed errors in the knowledge model. We refer to 
such mappings as low-level test cases.  
 
Acquiring high-level test cases from GSEs is easy, 
because all potentially reachable conclusions are 
represented in terms of input data sets originating 
them. For example, GSE originated by the inputs 
{A1, A2, A3, A4, A5, A6, A7, A8, A9} contains the 
following dependencies: 
  
C1:  (A1, A2),     
C2:  (A1, A2, A3),     
¬C2:  (A8),   
¬C2:  (A9),    
¬C8: (A1, A2),   
¬C9:  (A8),  
¬C3:  (A1, A2),   
¬C3: (A8),   

¬C3: (A9),   
C4:  (A7),   
¬C9:  (A7),   
C5: (A7, A1, A2, A3),   
C6: (A7, A1, A2, A3, A8),   
C7: (A7, A1, A2, A3, A8, A9). 
 
Assuming that the theory has been successfully 
verified, the following semantic inconsistencies 
derivable from here hold (otherwise, the theory would 
contain logical contradiction  C2 ∧  ¬C2): 
 
¬ (A1 ∧ A2 ∧ A3 ∧ A8), 
 ¬ (A1 ∧ A2 ∧ A3 ∧ A9). 
 
Let C7 be a final conclusion in our example theory.  
The following high-level test case for C7 is derived 
from the GSE referenced above: 
 
(A1, A2, A3, A7, A8, A9) (  )   C7 
 
If domain experts agreed that {A1, A2, A3, A8} and 
{A1, A2, A3, A9} are invalid inputs (which is why 
C2 ∧ ¬C2 is a pseudo-contradiction, but not a real 
one), the detected test case for C7 may suggest a 
performance error in the original theory. Whether this 
is the case, is up to domain experts to decide, but an 
interesting relationship can indeed be noticed 
between R3, R7, and R8. The former suggests, that 
C2 is Out, if A8 or A9 is Out. But, both assumptions 
are required to be In for C7 to be derived, which also 
implicitly depends on C2.  
 
Additional, more focused, information about potential 
errors in the knowledge model can be obtained from 
reviewing low-level test cases mapping inputs to 
intermediate conclusions. Here are relevant low-level 
test cases (positive and negative), acquired from the 
GSE referenced above: 
 
A1, A2  C1 
A1, A2, A3  C2  
A7  C4 
A7, A1, A2, A3  C5 
A7, A1, A2, A3, A8  C6 
A1, A2   ¬C8 
A8   ¬C2 
A9   ¬C2 
A8  ¬C9 
A7  ¬C9 
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Negative test cases state counter-arguments for 
unreached conclusions.  Consider the last two 
relations implying ¬C9. Although the first one seems 
trivial, because A8 is a direct non-monotonic 
supporter for C9, the second one defines an 
interesting counter-argument for C9, which is not 
explicitly stated in the original theory. Acquiring 
negative test cases is especially difficult task for 
domain experts. Reviewing automatically generated 
negative test cases, especially for theories employing 
assumptions, may reveal potentially unknown or 
unexpected dependencies prompting domain experts 
to revise their own knowledge. 
 
Similarly, we acquire high-level and low-level test 
cases and semantic constraints from all grounded 
stable extensions, generated during the conversion 
process. Many of these dependencies will be 
duplicated in different extensions. After filtering all 
duplications, below are shown relevant test cases 
capturing the semantics of our example non-
monotonic theory. 
 
Positive high-level test cases: 

 
(A1, A2, A3, A7, A8, A9) (  )  C7 
(A1, A3, A4, A5, A6) (A2, A8, A9)  C9 
 
Positive low-level test cases: 
 
(A1, A2) (  )  C1 
(A1, A2, A3) (  )  C2 
(A1, A3) (  )  C2 
(A4, A4) (A8, A9)  C2 
(A4, A5) (A1, A8, A9)  C3 
(A4, A5) (A2, A8, A9)  C3 
(A4, A5, A6) (A2, A8, A9)  C3 
(A4, A5, A6) (A1, A8, A9)  C3 
(A6) (A1)  C3 
(A6) (A2)  C3 
(A7) (  )  C4 
(A7, A8) (  )  C4 
(A7, A9) (  )  C4 
(A1, A2, A7) (  )  C4 
(A1, A2, A3, A7) (  )  C5 
(A1, A2, A3, A7, A8) (  )  C5 
(A1, A2, A3, A7, A9) (  )  C5 
(A1, A2, A4, A5, A7) (A8, A9)  C5 
(A1, A2, A3, A7, A8) (  )  C6 
(A1, A3) (A2)  C8 
 

Automatically generated set of test cases can be 
further filtered by eliminating those, whose sets of 
assumptions are supersets of another test case’s 
assumptions, given that both test cases have the same 
set of premises.  
 
Negative high-level test cases can be helpful as well. 
Here are negative high-level test cases for C9 
explicating the inputs under which C9 is not 
reachable:  
 
(A9) ( )   ¬C9 
(A1, A2, A7) ( )   ¬C9 
(A7, A8) ( )   ¬C9 
(A7, A9) ( )   ¬C9 

 
Relations shown next, explicated by other GSEs of 
our example theory, can be viewed as negative low-
level test cases, and may occasionally provide domain 
experts with additional validation information.  
 
¬A1   ¬C1,    
¬A2   ¬C1 
A1, A2   ¬C3,    
A8   ¬C3,    
A9   ¬C3 
A4, A5, A6, ¬A2,  ¬A8,  ¬A9   ¬C4, 
A4, A5, A6, ¬A1,  ¬A8,  ¬A9   ¬C4,  
A4, A5, ¬A1,  ¬A8,  ¬A9  ¬C4, 
A4, A5, ¬A2,  ¬A8,  ¬A9   ¬C4, 
A6, ¬A1   ¬C4,    
A6, ¬A2   ¬C4 
A1, A2   ¬C8 

 
 

Synthetic test cases and semantic constraints, 
acquired from GSEs, provide domain experts with 
valuable validation information. In addition, they may 
reveal relations and unnoticed or unexpected results 
provoking experts to expand or revise their own 
domain knowledge. In our example theory, it is easy 
to see that the input set {A1, A2, A3, A4, A5, A6, 
A7, A8} does not imply a final conclusion. The 
acquired semantic constraints explain why none of 
the final hypotheses is derived. This analysis suggests 
that either this data set represents an invalid input 
(which is up to domain experts to decide), or the 
theory is incomplete and needs to be revised.  
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Conclusion 
 
In this paper, we have presented a white-box 
validation technique intended to help domain experts 
validate non-monotonic KBSs. We argued that:  
 

(i) validation of such systems is by default 
less rigorous than validation of 
monotonic systems,  

 
(ii) the traditional test-case-based approach is 

not practical, because of the inherent 
vagueness and ambiguity of non-
monotonic reasoning, which makes it 
impossible to formulate detailed 
performance specifications, and  

 
(iii) utilizing automatically generated 

synthetic test cases not only decreases the 
validation load on domain experts, but 
also can help them to discover 
unexpected consequences of their own 
knowledge. 

 
The proposed validation analysis utilizes the logical 
framework initially proposed for structural 
verification (Zlatareva, 2004), which makes it 
possible to build a uniform testing tool for non-
monotonic KBSs evaluation.  
 
Although we have tested the proposed validation 
technique on several example knowledge bases (50 – 
70 rules), and the experiments revealed interesting 
relations among non-monotonic rules, more work 
remains to be done to determine the complexity of 
this analysis when applied to large-scale KBSs.  
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