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Abstract

The goal of this paper is to propose a tabu search heuristic
for the car sequencing problem (CSP) used for the ROADEF
2005 international Challenge. This NP-hard problem was
proposed by the automobile manufacturer Renault. The first
objective of the car industry is to assign a production day
to each customer-ordered car and the second one consists of
scheduling the order of cars to be put on the line for each pro-
duction day, while satisfying as many requirements as possi-
ble of the plant shops: paint shop and assembly line.

Introduction
The car sequencing problem is well described in (Perron
and Shaw 2004). Car sequencing is a standard feasibil-
ity problem in the constraint programming community
(Dincbas et al. 1997), (Gent 1998), (Hentenryck et al.
1992), (Parrello et al. 1986), (Régin and Puget 1997),
(Smith 1997), (Warwick and Tsang 1995). It is known for
its difficulty and there exists no definitive method to solve
it. Some instances are part of the Constraint Satisfaction
Problem Lib repository (see www.csplib.org). As with any
difficult problem, we can use two approaches to solve it.
The first is based on complete search and has the ability
to prove the existence or the non-existence of a solution.
This approach uses the maximum amount of constraint
propagation (Régin and Puget 1997). The second approach
is based on local search methods and derivatives. We
mention local search (Davenport and Tsang 1999), (Lee
et al. 1998), (Puchta and Gottlieb 2002), genetic algorithms
(Warwick and Tsang 1995) or ant colony optimization
approaches (Solnon 2000). These methods are, by nature,
built to find feasible solutions and are not able to prove the
non-existence of feasible solutions. Recent efforts have
shown important improvements in this area (Michel and
Hentenryck 2002).

The problem was proposed by the automobile manufac-
turer Renault and was the subject of the Challenge ROADEF
2005 (Roadef 2005). In such a problem, a set of cars has
to be scheduled minimizing a given objective function. Two
additional goals are very important in an industrial context:
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the algorithm should be quick and robust. Not more than
10 minutes on a PC Pentium4 (1.6Ghz/785 Mo RAM) are
allowed to generate a solution, and the mean value over 10
runs is used to measure the quality of a method (i.e. not
just the best value over 10 runs). The CSP is NP-complete
(Gent 1998) and could be formulated as a constraint satis-
faction problem (Gottlieb et al. 2003). Therefore heuristics
are appropriate to solve it. In this work, we propose a ro-
bust meta-heuristic for the CSP, which is mainly based on
tabu search. We will see that our method provides competi-
tive results on the given benchmark instances. See (Zufferey
et al. 2004) for more details on this work.

Description of the car sequencing problem
The objectives of the car industry are the following (Roadef
2005): (1) assign a production day to each ordered car
(which was not part of the Challenge); (2) schedule the
order of cars to be put on the line for each production day,
while satisfying as many requirements as possible of the
plant shops (paint shop and assembly line).

The paint shop has to minimize the consumption of
paint solvent, which is used to wash spray guns. If two
consecutive scheduled cars are not of the same color, a
spray gun clean is needed. Therefore, we would like to
minimize the number of paint color changes in the sequence
of scheduled vehicles. A solution consists of a sequence of
the last cars of production day D − 1 (which are already
scheduled) and all cars of day D. In any particular day
D being scheduled, after B (batch size) consecutive cars
with the same color, it is necessary (i.e. a hard constraint)
to change color, even if it seems natural to clean the
spray guns and continue with the same color. If the so-
lution satisfies the hard constraint, it is said to be admissible.

In order to smooth the workload of the assembly line,
vehicles that require special assembly operations have to
be evenly distributed throughout the total processed cars.
These vehicles should not exceed a given quota over any
sequence of vehicles. This requirement is modelled by a
ratio constraint N/P . Ratio constraints are associated with
car characteristics which require extra operations on the
assembly line (for instance, sun-roof, air conditioning, etc).
The meaning of a ratio constraint Ni/Pi is that at most
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Ni cars, in each consecutive sequence of Pi cars, can be
associated with constraint i.
There are two classes of ratio constraints: high priority level
constraints and low priority level constraints. High priority
level constraints are due to car characteristics that require
a heavy workload on the assembly line. Low priority level
constraints result from car characteristics that cause small
inconvenience to production. Let H (resp. L) be the set of
all high (resp. low) level ratio constraints. High priority
level ratio constraints must be satisfied preferentially to low
priority level constraints.
Ratio constraints are soft constraints: the complete satisfac-
tion of all the ratio constraints cannot be ensured beforehand
when a production day is scheduled. The problem may be
over-constrained. Hence the optimization objective is to
minimize the number of violations of ratio constraints.
Violations of a specific high level ratio constraint Hi are
said to be Hi-violations, whereas violations of any high
level ratio constraint are called H-violations. A solution
without any Hi-violations is said to be Hi-feasible, and
one without any H-violations is called H-feasible (similar
definitions hold for low level ratio constraints). Renault
classifies the high priority level constraints of each instance
into two sub-classes: Easy to satisfy (i.e. Renault found an
H-feasible solution), and Difficult to satisfy (i.e. Renault
failed to find an H-feasible solution, but an H-feasible
solution may exist).

When production day D is scheduled, the ultimate
scheduled vehicles of production day D − 1 must be taken
into account. Vehicles of production day D − 1 are already
scheduled, therefore their positions cannot be changed.
The computation of the number of violations (of ratio
constraints) on production day D must take into account the
last cars of production day D − 1.
Production day D + 1 is ignored while scheduling pro-
duction day D. For each ratio constraint, we compute the
violations concerning the ultimate vehicles of production
day D, as if the first scheduled cars of production day D +1
are not associated with this ratio constraint.

We will now formulate the problem in a mathematical
way. A solution s is a vector composed of the ultimate n′

cars of production day D− 1 (which are already scheduled)
and the n cars of production day D. Thus, “s(i) = j”
means that we have car j at position i in the solution
s. The following information is provided by Renault for
each car c: PD(c), which is the production day of car
c, where PD(c) ∈ {D − 1, D}; Color(c), which is the
color of car c (integer), where Color(c) ∈ {1, . . . , 50};
Hi(c) ∈ {0, 1}, where Hi(c) = 1 indicates that car c is
involved in constraint Hi; Li(c) ∈ {0, 1}, where Li(c) = 1
indicates that car c is involved in constraint Li.
The main objectives are: for the paint shop to mini-
mize the number of color changes, and for the assembly
line to minimize the number of violations of the ratio
constraints. This leads to the overall objective function
F (s) := α · FH(s) + β · FL(s) + γ · FC(s), where
FH(s) = number of H-violations in solution s, FL(s) =

number of L-violations in solution s, and FC(s) =
number of paint color changes in solution s. The sets
of weights α, β, γ were specified by Renault for three
different types of instances of the problem. The nature of
the problem depends on the values of α, β, γ that appear
in the definition of F (s). For instances of type A, we have
α, β, γ ∈ {0; 1; 100; 10, 000} and for instances of type B
and X , we have α, β, γ ∈ {0; 1; 100; 1, 000, 000}. We
describe below how to compute these functions. Note that
the ways of computing the various components of F were
not provided by the organizers of the Challenge.

In order to compute FH(s), we need the follow-
ing quantities. FHi(s) is the number of Hi-violations
(of a specified constraint Hi) in solution s. Wk is a
window of size k, i.e. a sequence of k consecutive
cars. FHi(s, Wk) is the number of Hi-violations in a
specified window Wk in solution s, which is equal to
max{(number of cars concerned with Hi in window Wk)−
Ni; 0}. In most of the cases we have k = Pi. However, for
cars scheduled near the end of day D, we have to consider
values of k smaller than Pi in order to give proper weight
to associated violations. For a ratio constraint N/P , the
last windows will have a decreasing length between P − 1
and N + 1. If in these windows, the number of cars associ-
ated with the ratio constraint is strictly greater than N , there
will be violations, which are independent of the first vehi-
cles of production day D + 1. In the following, expression
”WP = a” means that the window W of size P ends at posi-
tion a. These considerations lead to the following equations:
FHi(s, Wk) = max[−Ni +

∑

c∈Wk

Hi(c); 0]; FHi(s) =

b∑

WPi
=a

FHi(s, WPi
)+

Pi−1∑

k=Ni+1

FHi(s, Wk = n′+n); FH(s) =

∑

i|Hi∈H

FHi(s). We set a and b as follows. The first win-

dow contains the Pi − 1 last scheduled cars of production
day D − 1 and the first scheduled car of production day D.
The last window of size Pi contains the Pi last scheduled
cars of production day D. Consequently, a = (n′ + 1) and
b = (n′ + n). Note that the computation of FL(s) is done
in exactly the same way, and FC(s) is simply equal to the
number of color changes in the sequence, counted from the
last car of day D − 1.

Tabu search for the CSP
Let X be the set of all solutions of a given problem, and
let F be an objective function which has to be minimized
on X . A set N(x), called neighborhood of x, is associated
with each solution x ∈ X . The solutions in N(x) (also
called neighbors of x) are obtained from x by performing
local changes called moves. A very well-known local search
method is tabu search, which was proposed in (Glover
1989). Its basic version can be described as follows. Tabu
search needs an initial solution x0 in X as input. It then
successively generates solutions x1, x2, . . . in X such that
xi+1 ∈ N(xi). When a move is performed from xi to
xi+1, it is forbidden (tabu) to perform the reverse of such
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a move (with some exceptions) for a certain number of
iterations. Solution xi+1 is set equal to arg min

x∈N ′(xi)
F (x),

where N ′(x) is a subset of N(x) containing all solutions x′

which can be obtained from x by performing a move that is
not tabu, or such that F (x′) < F (x∗), where x∗ is the best
solution found so far. The process is stopped when a fixed
number Iter (parameter) of iterations without improving x∗

have been performed. Many variants and extensions of this
basic algorithm can be found in (Glover and Laguna 1997).

We first group cars with the same characteristics in
equivalent classes. We define a H-distance between two
cars x and y as the number of high level constraints they
do not have in common. The DistH matrix contains the
H-distances of all couples (x,y). Each element is computed
as follows: DistH(x, y) :=

∑
i [Hi(x) + Hi(y)] mod 2.

According to the H-distance, we define H-classes. Two
cars x and y are in the same H-class if DistH(x, y) = 0.

We will propose a tabu search for each component of F :
TABUFH, TABUFL and TABUFC will respectively focus
on FH , FL and FC. The common points are described as
follows. A neighbor solution s′ is obtained from a solution
s by swapping two cars x and y, which are in the car set
associated with day D. We denote this move by m(x, y).
Note that such a type of move is not new as it was also
used, for example, in the local search proposed in (Puchta
and Gottlieb 2002). However, we will see below that the
proposed way of evaluating a neighbor solution is original
and very efficient. We will only consider moves leading
to a solution s′ which respects the hard constraint B. At
each iteration, we generate Xcand (parameter) different
x-candidates, where an x-candidate is a possible candidate
for the move m(x, y). For each x-candidate, we then
generate Y cand (parameter) different y-candidates, and
finally we choose the best y-candidate according to the
minimization of ∆FC(s, m), ∆FH(s, m) or ∆FL(s, m).
If we focus on FH , preliminary experiments led us to use
Xcand = 2 and Y cand = n− | {car z | DistH(x, z) =
0} |. In other words, we use a small number of x-candidates
and consider all possible relevant y-candidates for each
x-candidate. We select the best of the Xcand · Y cand

moves and break ties randomly. If we focus on FL,
preliminary experiments led us to Xcand = 100 and
Y cand = n− | {car z | DistL(x, z) = 0} |, i.e. a
much larger number of x-candidates. If we focus on FC,
preliminary experiments showed that Xcand = 1 seems
appropriate in this case.

In order to generate an initial solution when FH is the
most important component of F , we build a solution step by
step (i.e. car by car). Let sp be the current partial solution.
At each step, we choose the next car c such that it minimizes
FH(sp + {c}). More precisely, we compute ∆FH(c) =∑

i ∆FHi(c), where ∆FHi(c) is the number of additional
Hi-violations (over all possible windows which include c)
induced by car c, when scheduled. If more than one car
provides a minimum value for ∆FHi(c), we break ties by

choosing c with larger value of SatH(c) := 1
|H| ·

|H|∑

i=1

Hi(c),

in order to avoid having many cars involved in lots of ratio
constraints at the end of the sequence. If there are still sev-
eral possibilities, we then break ties with the next most im-
portant component of the objective function (i.e. ∆FL(c)
if FL is more important than FC, ∆FC(c) otherwise), and
finally with the third component of the objective function (if
any).
Note that if FC is the most important component, it is easy
to generate an FC-optimal solution by simply grouping cars
of the same color and respecting the hard constraint B.

Description of TabuFC
We first determine a car x of the solution s, that is not tabu
and that induces a maximum number of color changes. In
order to decrease the value of FC(s), we have to choose a
non tabu car y carefully. Suppose we have the following sit-
uation involving six cars a−x−b and c−y−d. It is promis-
ing to switch x and y if Color(x) ∈ {(Color(c); Color(d)}
and Color(y) ∈ {(Color(a); Color(b)}. If we switch two
cars x and y, we forbid moving cars x and y for t iterations,
where we randomly generate t ∈ {tmin, . . . , tmax} after
each move. Preliminary experiments showed that tmin = 5
and tmax = 30 seem to be appropriate values.

Description of TabuFH (or TabuFL)
In order to reduce the FH-value of the solution s, we
would like to move the car that currently induces the
highest number of H-violations. We define a Hi-violated
window as a window for which we have at least one
violation according to Hi. Let V Hi(s, c) be the number
of Hi-violations induced by car c (and only car c!) in
s. This number is actually the number of times that c
is in a Hi-violated window and Hi(c) = 1. We set

V H(s, c) =
|H|∑

i=1

V Hi(s, c). It is promising to move a car c

such that
∑

i|FHi(s)>0

V Hi(s, c) is large. In order have a small

CPU time in the generation and selection of a neighbor so-
lution s′ of s, we propose a refined delta computation, i.e. a

way to compute ∆FH(s, m) =
|H|∑

i|Hi(x)6=Hi(y)

∆FHi(s, m)

very quickly. Let PV Hi(s, c) be the number of Hi-
violations a car c′ such that Hi(c

′) = 1 will create at
position p(c, s) when Hi(c) = 0 in solution s. We set

PV H(s, c) =
|H|∑

i=1

PV Hi(s, c). We can now define the

advantage AdvH(y → x) of putting y at position p(x, s) of
solution s as the number of violations that y will eliminate
in the area of position p(x, s) of car x if we switch x and y.

AdvH(y → x) :=
|H|∑

i|Hi(x)=1

V Hi(s, x) · [1 − Hi(y)]. The

disadvantage DisadvH(y → x) should be proportional to
the number of violations y will add in the area of position
p(x, s) of car x if we put y instead of x. DisadvH(y →
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x) :=
|H|∑

i|Hi(x)=0

PV Hi(s, x) · Hi(y). This leads to

∆FH(s, m) = DisadvH(y ↔ x) − AdvH(y ↔ x)
which is very quick to evaluate given the matrices V Hi and
PV Hi, which are updated only one time at the end of each
iteration of tabu search. Moreover, we actually do not need
to update the whole matrices V Hi and PV Hi, but only the
parts near the components associated with cars x and y.

After a move m(x, y), we forbid putting a car c at position
p(x, s) if DistH(x, c) = 0, i.e. if c and x belong to the same
H-class (the same holds for c and y). The duration t of the
tabu status depends on the quality of the move. Preliminary
experiments showed that the following way of updating t is
appropriate: t = −10 · ∆FH(s, m) if ∆FH(s, m) < 0;
t = 3 if ∆FH(s, m) = 0; t = 1 if ∆FH(s, m) > 0. This
dynamic tabu tenure, where the duration of the tabu status
depends on the quality of the move m, performs better than
if we randomly choose t ∈ {tmin, . . . , tmax}.

General strategy and results
The organizers of the Challenge provided test set A at the
very beginning of the Challenge in order to select, in what
we call the first round, a pool of 24 candidates (out of 55)
for the final round. We placed 6th at this stage of the com-
petition. Such a test set was, by far, the most studied by the
candidates, and we only tuned our algorithm according to it.
Thus, we focus only on test set A in this paper. Test set B
was given at the end of the first round only for extra tuning
purposes, and not for another selection round. Finally,
test set X was used to rank the best candidates in the final
round. Only the organizers ran the algorithms (provided by
the teams) on these X instances, for which we were ranked
at position 17. One could argue that performance on set X
is a better independent measure of the different approaches.
However, we believe that some useful insights are obtained
by focusing on the test set where we did so well. Moreover,
we think that there may have been some unforeseen glitches
when our algorithm was run by the organizers on set X .

Remember that, in the most general case, we have to
minimize an objective function F (s) = 10000 F1(s) +
100 F2(s) + F3(s), where Fi(s) ∈ {FH, FL, FC}. Ba-
sically, the general strategy described below (steps A, B and
C) is applied on every instance. Note that if we reach 600
seconds in any procedure, we immediately stop the process
and return the best visited solution.

A Set F ∗ = ∞

B While 600− t3 seconds are not reached, do
1. generate an initial solution by applying the greedy al-

gorithm focusing on F1;
2. if F1 6= FC, apply the tabu search focusing on F1 (i.e.

TABUFH) during t1 seconds or q1 iterations; note that
we stop if we get F1(s) = 0; in order to save time, we
ignore F2 and F3;

3. without augmenting F1, apply the tabu search focusing
on F2 during t2 seconds or q2 iterations; note that we

stop if we get F2(s) = 0; in order to save time, we
ignore F3;

4. let s be the so obtained solution; if F (s) < F ∗, set
F ∗ = F (s) and s∗ = s

C Without augmenting F1 and F2, apply the tabu search on
s∗ focusing on F3 during t3 seconds;

Preliminary experiments showed that it is slightly bet-
ter to avoid to increase Fi when focusing on Fi+1, for
i ∈ {1, 2}. With such a strategy, when focusing on Fi+1,
we forbid all neighbors that would worsen objective Fi.
Thus, we rule out solutions where it is conceivable that
there is enough improvement in F2 and F3 to more than
compensate for a slight deterioration in F1. However, the
strategy worked well, on average, perhaps because the very
limited computational time is not conducive to investigating
many poorer solutions. In the following, we will specify
the chosen values for ti and qi, for i ∈ {1, 2, 3}. Note that
if we give a value for ti, we do not need to give any value
for qi (and vice versa). In our best strategy (i.e. the best
one we tune according to preliminary experiments) for the
paint shop, we set q2 = 100 and t3 = 10 seconds if F3

exists, otherwise we set t3 = 0 (i.e. for the PHE instance
below). For the easy assembly line instances, because the
high priority ratio constraints are easy, we set t1 = 10
seconds, which is always enough to have FH = 0. We set
q2 = 1000 and t3 = 10 seconds. Finally, for the difficult
assembly line instances, we set q1 = 5000, q2 = 2000,
t3 = 10 if the third component exists, t3 = 0 otherwise.

Note first that any name of instance is straightforward.
For example, PHEL1 means that FC (i.e. the Paint shop)
is more important than FH , which is more important than
FL. The ”E” after the ”H” indicates that the H ratio
constraints are considered as Easy by Renault. There
will be a ”D” if the H ratio constraints are considered as
Difficult by Renault. When we have to consider more than
one instance of such a type, we indicate it by a number at
the last position of the name of the instance. For example,
we have to consider below three instances of type PHEL,
namely PHEL1, PHEL2 and PHEL3. For each instance
of test set A, we provide, in Tables 1, 2 and 3, the results
obtained by Renault (they mention in (Roadef 2005) that
they used a simulated annealing method), and we give the
average (over 10 runs) result obtained by our best strategy
(denoted by Best). In addition, we provide the best average
result obtained by a participant of the Challenge (denoted
by BestComp for ”best competitor”), and the best average
result obtained with our algorithm in the case it is performed
by the organizers (they use different seeds than us) of the
Challenge (this is referred to as InChallenge). Because
BestComp may differ from one instance to another (thus
the best methods may differ too), we will not give any name
of competitors (or any name of best methods), and we refer
to the web site of the Challenge for more details (Roadef
2005). The last line of Tables 1, 2 and 3 (labelled ”Our
Rank”) indicates the rank we obtained in the Challenge
for the considered instance. In brackets, we indicate our
average rank over the associated instances. In addition, we
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indicate for each instance: the numbers n′ and n of cars
respectively associated with day D − 1 and D, the number
|H | (resp. |L|) of ratio constraints of type H (resp. L), and
the number |C| of colors.

First, we can observe that the gap between the results ob-
tained with our best strategy and the ones obtained by the
organizers of the Challenge if they run our program with
other seeds is very small. The organizers even get better re-
sults than us on some instances. Such an observation shows
that our algorithm is robust, i.e. does not strongly depend on
the seed of the random generator. We respectively obtained
rank 12, 8 and 1 on the paint shop instances (4 instances), the
easy assembly line instances (5 instances), and the difficult
assembly line instances (7 instances). Such a good perfor-
mance led us to the general 6th rank among 55 candidates.
We observed that our algorithm always obtained the best re-
sults on the first component of the objective function F . As
we did, several teams were able to generate FC-optimal so-
lutions on the paint shop instances, and H-feasible solutions
on the easy assembly line instances. For these instances, the
second and third components of F were helpful to rank the
teams. On the contrary, only a few teams performed well on
FH when considering the difficult assembly line instances.
This explains the first rank reached by our algorithm on such
seven instances. The large number of visited solutions prob-
ably explains the success of our method on the first compo-
nent of F , and we think that our heuristic worked not as well
on the other component because of the additional constraints
we have to deal with.

Results for the paint shop instances

PHEL1 PHEL2 PHEL3 PHE

(n′; n) (99;335) (14;485) (29;875) (27;954)
(B; | C |) (15;12) (450;12) (15;14) (15; 14)

(| H |; | L |) (4;2) (3;6) (7;2) (5;-)

Renault FC 30 11 64 69
Best FC 27 11 63 68

InChallenge FC 27 11 64 68
BestComp FC 27 11 63 68

Renault FH 197 48 462 392
Best FH 368.7 39.4 433.8 236.2

InChallenge FH 367.8 39.4 436 244.6
BestComp FH 367 39 423 156

Renault FL 61 5 883 -
Best FL 106.9 168.2 830.9 -

InChallenge FL 101.2 151.4 832.4 -
BestComp FL 52 1 782 -

Our Rank (12) 15 7 15 7

Table 1: Results for the paint shop instances.

The obtained results are detailed in Table 1. First, we
would like to mention that the code we gave to Renault con-
tained an error in our greedy method focusing on FC, it
is why we use 64 colors instead of 63 for instance PHEL3.
This error was removed from the code of the best strategy
proposed here. We can see that for instances PHEL1 and
PHE, Renault is not able to generate FC-optimal solutions.
On instance PHEL1, Renault obtains a poor FC-value, but
a very good FH-value. This is not surprising: the worse
the results are on a component of F , the better they may
be on another component. For instances on which Renault

and our strategy get FC-optimal solutions, we get lower
FH-values than Renault. The FL-values of Renault are
surprisingly low on the first two instances, which probably
means that they give more importance to FL than we did. If
we compare the results labelled by InChallenge with the
BestComp ones, we can observe the following. For PHEL1
and PHEL2, the main differences occur in the last compo-
nent of the objective function, whereas for PHEL3 and PHE,
BestComp performs better from the second component of
the objective function. More generally, we will again see in
Tables 2 and 3 that we always get the best results on the first
component of F , and that BestComp generally performs
better from the second component onward. Such an obser-
vation might indicate that we should augment t2 (or resp.
t3). However, such an action will indirectly reduce the time
that we spend on F1 (or resp. on F2). Therefore, it will
probably decrease our global performance. This kind of be-
havior was confirmed by additional experiments not shown
in this paper.

Results for the easy assembly line instances

HEPL1 HEPL2 HEPL3 HEPL4 HELP

(n′; n) (99;335) (14;485) (29;875) (228;1004) (228;1004)
(B; | C |) (15; 12) (450; 12) (15;14) (10; 24) (10; 24)

(| H |; | L |) (4; 2) (3; 6) (7;2) (4;18) (4;18)

Renault FH 28 2 2 0 0
Best FH 0 0 0 0 0

InChallenge FH 0 0 0 0 0
BestComp FH 0 0 0 0 0

Renault FC 46 70 195 290 290
Best FC 38.2 39.6 136.3 232.9 840.7

InChallenge FC 38.8 38.8 137.4 232.8 833.2
BestComp FC 34 31 113 232.8 754.6

Renault FL 50 2 787 2075 2075
Best FL 95.1 63.4 802.9 3694.5 377.4

InChallenge FL 107.8 49.4 801.4 3705.2 377.2
BestComp FL 51 0 761 3705.2 133.6

Our Rank (8) 17 14 9 1 15

Table 2: Results for the easy assembly line instances.

We can see in Table 2 that for the instances HEPL1,
HEPL2 and HEPL3, Renault is not able to generate H-
feasible solutions. This is surprising because these instances
are classified as easy, i.e. Renault should get H-feasible so-
lutions (by definition). Another strange thing is that Renault
generates the same solution for the instances HEPL4 and
HELP, even though they have different priorities. Note that
in general Renault has good values for the last component
of the objective function, this is, again, an indicator that Re-
nault gives more importance (or weight) to this last compo-
nent than we did (and that is indicated by the associated rel-
ative weights in the objective function). We can remark that
our method obtained very good results on instance HEPL4
(the best ones in the Challenge!).

Results for the difficult assembly line instances
For the first component of the objective function (i.e. for
FH) in Table 3, the value in brackets indicates the num-
ber of times (over 10 runs) the associated algorithm reaches
what we suspect to be the lower bound. We can see that
the FH-values obtained by the best strategy are far better
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HDP HDPL1 HDPL2 HDPL3

(n′; n) (27;954) (18;600) (14;1315) (14; 1260)
(B; | C |) (20; 14) (10;12) (10; 13) (10;13)

(| H |; | L |) (5; -) (5; 12) (5; 8) (5;8)

Renaut FH 115 35 98 73
Best FH 13.1 (9) 0.1 (9) 4 (10) 4 (10)

InChallenge FH 13.4 (6) 0 (10) 4.2 (8) 4 (10)
BestComp FH 13.4 (6) 0 (10) 4 (10) 4 (10)

Renault FC 229 182 468 363
Best FC 138.5 179.9 302.8 296.1

InChallenge FC 137.2 180.8 303.2 296.2
BestComp FC 137.2 179 292.4 267.2

Renault FL - 861 99 205
Best FL - 1225.4 165.2 311.8

InChallenge FL - 1181.4 168.8 293.4
BestComp FL - 642 106.4 160.4

Our Rank (1) 1 3 10 3

HDLP1 HDLP2 HDLP3

(n′; n) (18;600) (14;1315) (14;1260)
(B; | C |) (10;12) (10;13) (10;13)

(| H |; | L |) (5;12) (5;8) (5;8)

Renaut FH 42 106 82
Best FH 0.5 (5) 4 (10) 4 (10)

InChallenge FH 0.2 (8) 4 (10) 4 (10)
BestComp FH 0 (10) 4 (10) 4 (10)

Renault FC 334 392 464
Best FC 369.1 398.4 398.7

InChallenge FC 368.2 394 366.8
BestComp FC 351 359.8 366.8

Renault FL 98 134 77
Best FL 111.7 64 30.7

InChallenge FL 99.4 63.6 29.6
BestComp FL 64 49.8 10.4

Our Rank (1) 12 4 2

Table 3: Results for the difficult assembly line instances.

than the ones obtained by Renault. Moreover, we proved the
H-feasibility of instances HDPL1 and HDLP1.

Conclusion
In this paper, we presented a heuristic mainly based on three
tabu search procedures in order to solve an NP -complete
car sequencing problem. Due to the different weights of
the components that appear in the global objective function
F , and to the small amount of time allowed for each
instance, we decided to work on one component at a time.
Therefore, we had to be careful not to degenerate a solution
according to a component of F on which we already
worked. Furthermore, at each iteration of the proposed
tabu search procedures, it is important to consider a set of
neighbor candidate solutions that can be evaluated quickly,
in order to visit as many solutions as possible. The obtained
results showed that our method is competitive and robust
in comparison with the algorithms proposed by the other
participants of the Challenge. As we usually obtain the best
results according to the first component of F , an interesting
avenue of research would be to find a way to better consider
the other components of F .
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