
An Artificial Neural Network for a Tank Targeting System

Hans W. Guesgenand Xiao Dong Shi
Computer Science Department, University of Auckland

Private Bag 92019, Auckland, New Zealand
hans@cs.auckland.ac.nz, eric0705@gmail.com

Abstract

In this paper, we apply artificial neural networks to control the
targeting system of a robotic tank in a tank-combat computer
game (RoboCode). We suggest an algorithm that not only
trains the connection weights of the neural network, but si-
multaneously searches for an optimum network architecture.
Our hybrid evolutionary algorithm (PSONet) uses modified
particle swarm optimisation to train the connection weights
and four architecture mutation operators to evolve the appro-
priate architecture of the network, together with a new fitness
function to guide the evolution.

Introduction and Background
Artificial Neural Networks (ANNs) have been used in a
variety of areas during the last thirty years (Meyer 1998;
Russell & Norvig 2003; Scapura 1995), more recently in
computer games to improve the quality of the artificial intel-
ligence engine in these games (Schaeffer 2000). This paper
discusses the application of ANNs to control the targeting
system of a robotic tank in a tank-combat game, using the
Robocode environment (Robocode 2005; Robowiki 2005)
as a platform.

ANNs have the ability to learn over time and therefore
to adapt to new situations and strategies. In general, the
structure of an ANN determines its performance. Some tra-
ditional algorithms use a fixed structure and only train the
weights of the connections to optimise the network. Oth-
ers discover a relative optimum architecture first and then
train the weights on this architecture (Koza & Rice 1991;
Odri, Petrovacki, & Krstonosic 1993; Yao & Liu 1997).
Since these algorithms are very prone to overfitting or con-
vergence on local optima, we suggest to apply a hybridized
and evolutionary algorithm (PSONet), which simultane-
ously finds the best structure for the ANN and optimal
weights for its connections by using a new fitness function.

Methodology and Architecture
We restrict ourselves here to fully connected multilayer
feedforward networks, i.e., neural networks in which infor-
mation is passed from the input nodes through the hidden
nodes to the output nodes. Theoretical results show that,

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

given enough hidden nodes, such a network can approximate
any reasonable function to any required degree of accuracy.
This is usually achieved by training the network with an er-
ror backpropagation algorithm (Scapura 1995).

Since backpropagation just optimizes the weights of the
connections on a predefined neural network architecture,
it is difficult to avoid the underfitting or overfitting prob-
lem. An evolutionary approach (Salomon 1998), like parti-
cle swarm optimisation, can overcome these problems. Par-
ticle swarm optimisation (PSO) is a stochastic global opti-
mization technique inspired by the social behavior of bird
flocking (Kennedy & Eberhart 1995; Shenet al. 2004;
Zhang, Shao, & Li 2000). The particles share information
with each other, in particular information about the qual-
ity of the solutions they have found at specific points in the
search space. The best solution discovered by a specific par-
ticle is referred to as the personal best solution. Particles
move towards other personal best solutions with certain ve-
locities in order to discover improved solutions.

We propose a modified particle swarm optimisation al-
gorithm with an annealing factor combined with architec-
ture mutation operators. The proposed approach optimises
the connection weights and the architectures of the neural
networks simultaneously and thereby avoids the problem of
slow convergence speed and the tendency to overfitting. The
particle swarm optimisation algorithm is used for training
the weights of the neural networks, whereas the architecture
mutation operators (hidden node deletion, connection dele-
tion, connection addition, and hidden node addition) are ap-
plied to find the optimal network structure. The individual
steps of our algorithm, called PSONet, are summarized in
Figure 1.

The efficiency and quality of the algorithm depends sig-
nificantly on the fitness function used to rank the neural net-
works. It is based on two factors: the prediction accuracy
and the complexity of the network.

The accuracy of a neural network is defined by the root-
mean-square error (RMSE):

RMSE =

√∑
i,j(Oij − Tij)2

S · N
whereOij andTij are the actual value and target value, re-
spectively, for thejth output in thei training example.S is
the size of training set andN the number of output nodes.

463



Add connections

Evolve with PSO

Delete hidden nodes

Delete connections

No

No

No

No

Yes

Yes

Yes

Yes
Better?

Better?

Better?

Add hidden nodes

Return best ANN

Rank ANNs and select best one

Partially train ANNs with PSO

Initialise ANNS

Evolution

Obtain new population

Stop?

Yes

No

Better?

Figure 1: Scheme of the PSONet algorithm.

The complexity of a neural network can be expressed in
terms of a penalty:

PENALTY = ζ · k

K

wherek is either the number of connections with nonzero
weights or the number of connections involved in evolution.
K is the total number of connections of a neural network.
ζ is a weighting factor that determines how much the com-
plexity affects the performance of fitness function.

The overall fitness of a neural network is defined as:

FITNESS = RMSE · (1 + PENALTY )

When the fitness of a neural network reaches a predefined
threshold, the algorithm terminates (for the particular sub-
population). This is also the case if the number of gener-
ations has exceeded a maximum or if no improvement has
been made after a certain time period.

Conclusion
The goal of the work described in this paper is to inves-
tigate the feasibility of using an evolutionary algorithm to
evolve the targeting system (artificial neural networks) of a
robot tank in a challenging and realistic battle environment
(Robocode). Our approach uses architecture mutation oper-
ators to find the structure of the network and PSO to train the
weights of its connections. Although PSO is a population-
based optimisation algorithm, it does not employ any evolu-
tion operators (such as crossover or mutation). As a result,
computation costs are lower and fewer parameters have to
be adjusted. In addition, PSO converges quickly and avoids
the overfitting problem to some extent.

ENN/ ENN/ ENN/
SpinBot Iguana2f45 PheonixM

Total score 8208/934 7725/1313 5971/2372
Survival rate 100% 98% 90%

Table 1: Number of nodes and connections in the networks
produced by from PSONet using the test robots for training.

The algorithm was tested in competitions with three dif-
ferent opponents, which we downloaded from the web:
SpinBot, Iguana2f45, and PheonixM. The three opponents
that we chose for testing represent the most common strate-
gies in Robocode. Ten runs were conducted for each mov-
ing strategy, resulting in different neural networks to con-
trol our tank. Table 1 shows the competition results between
ENN and SpinBot, Iguana2f45 and PheonixM, respectively.
ENN is the robot that uses the evolved neural networks as its
targeting system. Each competition includes 50 rounds.

References
Kennedy, J., and Eberhart, R. 1995.The Particle Swarm: So-
cial Adaptation in Information Processing Systems. New York:
McGraw-Hill.
Koza, J., and Rice, J. 1991. Genetic generation of both the
weights and architecture for a neural network. InProc. IJCNN-91,
397–404.
Meyer, J.-A. 1998. Evolutionary approaches to neural control
in mobil robots. InProc. IEEE International Conference on Sys-
tems, Man and Cybernetics, 35–40.
Odri, S.; Petrovacki, D.; and Krstonosic, G. 1993. Evolutional
development of a multilevel neural network.Neural Networks
6:583–595.
Robocode. 2005. http://robocode.sourceforge.net/. Last accessed
on 16 November 2005.
Robowiki. 2005. http://robowiki.net. Last accessed on 18 Novem-
ber 2005.
Russell, S., and Norvig, P. 2003.Artificial Intelligence: A Modern
Approach. Upper Saddle River, New Jersey: Prentice Hall, 2nd
edition.
Salomon, R. 1998. Evolutionary algorithms and gradient search:
Similarities and difference.IEEE Transactions on Evolutionary
Computation2:45–55.
Scapura, D. 1995.Building Neural Networks. Boston, Mas-
sachusetts: Addison-Wesley Professional.
Schaeffer, J. 2000. The game computers (and people) play.
In Zelkowitz, M., ed.,Advances in Computers, volume 50. San
Diego, California: Academic Press. 189–266.
Shen, Q.; Jiang, J.; Jiao, C.; Lin, W.; Shen, G.; and Yu, R.
2004. Hybridized particle swarm algorithm for adaptive structure
training of multilayer feed-forward neural network: Qsar studies
of bioactivity of organic compounds.Journal of Computational
Chemistry25:1726–1735.
Yao, X., and Liu, Y. 1997. A new evolutionary system for evolv-
ing artificial neural networks.IEEE Transactions on Neural Net-
works8:694–713.
Zhang, C.; Shao, H.; and Li, Y. 2000. Particle swarm optimization
for evolving artificial neural network. InProc. IEEE International
Conference on Systems, Man and Cybernetics, 2487–2490.

464


