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Abstract 
In building intelligent tutoring systems, it is critical to be 
able to understand and diagnose student responses in 
interactive problem solving.  We present a novel application 
of the q-matrix method, an educational data mining 
technique, to the problem of analyzing formal proofs.  Our 
results indicate that automated analysis of formal proof data 
can provide an intelligent tutoring system with useful 
diagnostic information for generating feedback and guiding 
ITS design. 

Introduction 
According to the ACM computing curriculum, discrete 
mathematics is a core course in computer science, and an 
important topic in this course is solving formal logic 
proofs.  However, this topic is of particular difficulty for 
students, who are unfamiliar with logic rules and 
manipulating symbols.   To allow students extra practice 
and help in writing logic proofs, we are building an 
intelligent tutoring system on top of our existing Proof 
Verifier program.  Our experience in teaching discrete 
math, and in surveys conducted on our Proof Verifier, 
indicate that students particularly need feedback when they 
get stuck.  An intelligent tutoring system, such as those in 
(Conati, et al., 2002; Heffernan & Koedinger, 2002; Van 
Lehn & Martin 1998) may provide the individualized 
feedback that students need.  However, these systems are 
quite costly to develop (Murray, 1999), and many systems, 
including REDEEM (Ainsworth, et al., 2003), ASSERT 
(Baffes & Mooney, 1996), and CTAT (Koedinger, et al. 
2004), have been exploring ways to reduce the time needed 
to develop ITSs without sacrificing the ability to adapt to 
students. In our past work, we have applied the q-matrix 
method to quickly modify an existing computer-based 
training tool to be a simple ITS, using knowledge 
discovery and data mining techniques to model student 
knowledge and direct knowledge remediation (Barnes, 
2005a & 2005b; Barnes, et al. 2005).   
 
We propose a few ways that educational data mining could 
be applied to reduce ITS design time and to focus that 
design on areas where students need the most help. 
Namely, we demonstrate the novel use of the q-matrix 

method in determining proof strategies and suggest some 
ways this method can be used to generate feedback. 

Background 
The original inspiration for the q-matrix method came from 
Tatsuoka, et al.’s rule space research, which showed that it 
was possible to automate the diagnosis of student 
knowledge states, based solely on student item-response 
patterns (Tatsuoka, 1983). The rule-space idea evolved into 
a q-matrix, a binary matrix showing the relationship 
between test items and latent or underlying attributes, or 
concepts (Birenbaum, et al., 1993), and they are now used 
in intelligent tutoring systems to relate underlying concepts 
to problems (e.g. Van Lehn, et. al, 1998). Students were 
assigned knowledge states based on their test answers and 
the constructed q-matrix.   
 
An example binary q-matrix is given in Table 1.  A q-
matrix, or “attribute-by item incidence matrix”, contains a 
one if a question is related to the concept, and a zero if not. 
For example, in this q-matrix, questions q1, q6, and q7 are 
all related by concept con1, while q1 is also related to q2, 
q4, and q7 by concept con2. In contrast, question q5 can be 
answered correctly without understanding any of the 
concepts c1-c3.  This indicates that prerequisite knowledge 
not represented in the q-matrix affects the answer to q5. 
Brewer extended q-matrices to include values ranging from 
zero to one, representing a probability that a student will 
answer a question incorrectly if he does not understand the 
concept (1996). 
 
In 1996, Brewer created a method to extract a q-matrix 
from student data, and found that the method could be used 
to recover knowledge states of simulated students more 
accurately than by using factor analysis. In (Barnes, et al., 
2005), we applied the method to large groups of students, 
and found that experts disagreed on q-matrices, and found 
Brewer’s extraction method comparable to standard 
knowledge discovery techniques for grouping student data.  
In particular, the method outperformed factor analysis in 
modeling student data and resulted in much more 
understandable q-matrices, but had higher error than k-
means cluster analysis on the data.  However, cluster 
analysis is not as suitable for automated direction of 
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student learning as the q-matrix method, because human 
intervention would usually be required to create behaviors 
to associate with each cluster. 
 

Table 1.  Example q-matrix 
 

 q1 q2 q3 q4 q5 q6 q7 
c1 1 0 0 0 0 1 1 
c2 1 1 0 1 0 0 1 
c3 1 1 1 0 0 0 0 

 
Each cluster in the q-matrix method is represented by its 
concept state, a vector of bits where the kth bit is 0 if the 
students do not understand concept k, and a 1 if they do.  
Each concept state also has associated with it an ideal 
response vector (IDR), or representative vector, that is 
determined using the concept state and the q-matrix.  For 
each question q in the q-matrix we examine the concepts 
needed to answer that question. If the concept state 
contains all those needed for q, we set bit q in the IDR to 1, 
and otherwise to 0.  There are 2NumCon concept states for a 
q-matrix with NumCon concepts.  A concept state’s ideal 
response vector (IDR) is the answer we predict a student in 
that state would give under ideal conditions (e.g. he does 
not make any slips or guesses). 
 
Mathematically, given a q-matrix Q with NumCon 
concepts, and a concept state Con, where Con(k) denotes 
whether concept k is understood or not, we calculate the 
ideal response (IDR) for each question Ques as: 

IDR(Ques)=

! 

1 Con(k) =1

1"Q(k,Ques) Con(k) = 0

# 
$ 
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Table 2 lists the IDRs for all the possible concept states for 
the q-matrix given in Table 1.  The all-zero concept state 
000 describes the “default” knowledge not accounted for in 
the model, while the all-one concept state 111 describes 
full understanding of all concepts.  Concept state 011’s 
IDR corresponds to a binary OR of the IDRs for concept 
states 001 and 010, plus the addition of a 1 for q2, which 
requires both concepts c2 and c3 for a correct outcome. 
 
Table 2.  Ideal Response Vectors for each Concept State 
 

Concept  
State 

IDR Concept State IDR 

000 0000100 100 0000110 
001 0010100 101 0010110 
010 0001100 110 0001111 
011 0111100 111 1111111 

 

Q-Matrix Model Evaluation 
To evaluate the fit of a given q-matrix to a data set, we 
compute its concept states and IDRs as in Table 2 and 

assign each data point to the concept state whose IDR is 
the closest match. Each data point’s associated error is the 
L1 (Hamming) distance between the concept’s IDR and the 
data point, yielding a direct count in the number of bit 
differences between the data point and IDR.  In other 
words, the distance d(p,IDR) between data point p and its 
IDR is summed over all questions q: 

! 

d(p,IDR) = p(q) " IDR(q)
q

#  (2) 

For example, for a data vector 0111110 and the q-matrix 
given in Table 1, the nearest IDR would be 0111100 in 
concept state 011, and the error associated with this 
assignment is 1, since there is only one difference between 
the data point and its nearest IDR.  The total error for a q-
matrix on a given data set is the sum of the errors over all 
data points.   

Q-Matrix Model Extraction 
The q-matrix algorithm, as devised by Brewer in 1996, is a 
simple hill-climbing algorithm that creates a matrix 
representing relationships between concepts and questions 
directly from student response data.  The algorithm varies 
c, the number of concepts, and the values in the q-matrix, 
minimizing the total error for all students for a given set of 
n questions.  To avoid of local minima, each hill-climbing 
search is seeded with different random q-matrices and the 
best of these is kept. 
 
First, c, the number of concepts, is set to one, and a random 
q-matrix of concepts versus questions is generated with 
values ranging from zero to one.  Also, 2c concept states 
are generated. A binary string of length c represents each 
state where a zero in position k represents that a student in 
this state does not understand concept k, and a one 
represents that he does.  For each concept state, its 
corresponding ideal response vector is generated based on 
the q-matrix.  
 
We then compute the total error for the q-matrix computed 
over all students as described in the previous section.  
After the error has been computed for a q-matrix each 
value in the q-matrix is changed by a small amount, and if 
the overall q-matrix error is improved, the change is saved. 
This process is repeated for all the values in the q-matrix 
several times, until the error in the q-matrix is not changing 
significantly. 
 
After a q-matrix is computed in this fashion, the algorithm 
is run again with a new random starting point several 
times, and the q-matrix with minimum error is saved, to 
avoid falling into a local minimum.  It is not guaranteed to 
be the absolute minimum, but provides an acceptable q-
matrix for a given number of c concepts. 
 
To determine the best number of concepts to use in the q-
matrix, this algorithm is repeated for increasing values of 
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c. The final q-matrix is selected when 1) a pre-set stopping 
criterion has been met (such as less than 1 error per 
student) or when adding an additional concept does not 
decrease the overall q-matrix error significantly, and 2) the 
number of concepts is significantly smaller than the 
number of questions.  Based on our work with the q-
matrix, we have determined a rule of thumb for the number 
of concepts, as the log (base = number of variables) of the 
number of responses. This heuristic, which needs 
experimental validation, may reduce the q-matrix method 
run time by providing a target number of concepts. 

Modification for Proofs 
Solutions to formal logic proofs are not well-suited to a 
traditional application of the q-matrix method, where we 
analyze student responses as answers to questions common 
to all students.  In solving proofs, instead of answering a 
single question, students type in consecutive lines of a 
proof, which consist of 4 parts: the statement, reference 
lines, the axiom used, and the substitutions which allow the 
axiom to be applied in this particular case.  After the 
student enters these 4 parts to a line, the program verifies 
that: 1) the statement is true, based on the previous lines of 
the proof, and 2) the axiom and appropriate substitutions 
listed correspond to the reference lines and statement. The 
program prompts the student to continue if the proof line is 
valid, or warns the student that there was a problem with 
the line if it is not.  In each case, the student is returned to 
entering his proof.   
 
There are several reasons that a straightforward q-matrix 
analysis could not be used for proofs.  These are: 
1. The program does not accept “wrong” proof lines.  

Therefore, there is no data to make a model that 
discriminates based on right versus wrong answers. 

2. A proof can be incomplete for many reasons, including 
lack of time or the inability to continue. 

3. Statements in one student’s proof may or may not appear 
in another’s. 

4. Students solve proofs with different methods and in 
different orders. 

5. There are too many valid proofs to anticipate every one. 
6. If we did anticipate all possible valid proofs, considering 

each different answer as a  “question” would require 
considerably more student data.  Also, many proofs are 
the same approach executed in different orders.  
 

Although the program does not display invalid proof 
statements, these data were collected and saved along with 
each student proof.  This type of data, though not used 
here,  can later be analyzed to determine the types of errors 
students make in proof writing.  

Method 
In this research, we apply the q-matrix method to proofs 
written by a large group of students and analyze the results 
to determine if we can understand student proofs using the 
q-matrix alone.  Our hypothesis was that concept states 
resulting from extracted q-matrices would reflect 
fundamental methods for solving proofs, and that this 
automatic analysis would provide meaningful information 
for generating feedback in our planned ITS. 
 
The Proof Verifier, written on the NovaNET educational 
system (see http://www.pearsondigital.com/novanet/), was 
administered to approximately 200 students in the Fall 
2002 Discrete Mathematics course, CSC 226, at NC State 
University.  Using the verifier was required for credit in 
the class, but students were allowed to attempt each 
problem until it was solved. As students work each of the 
10 proofs, their work is saved.  We later process their 
proofs to extract the rules used by each student in a 
particular proof, creating “answer vectors” for each student 
– where the ith bit of the answer vector contains a one if 
the student used the ith rule, and a zero if not. 
 
The steps in this experiment were to: 1) determine a 
mapping from student responses to answer vectors to be 
used as inputs to the q-matrix method, 2) remove variables 
that might not be interesting or useful in the analysis of 
student proofs, 3) derive a q-matrix to explain the student 
data, 4) interpret the resulting q-matrix in the context of the 
given proof to solve.  

Mapping Responses to Answer Vectors 
The first step in analyzing student proofs was to determine 
a way to map proofs to answer vectors. For each proof, 
there are many possible solutions.  However, our 
conjecture was that many student proofs, though appearing 
different, might be using the same underlying approach.  
Fundamentally, these approaches should overlap in the 
axioms that students used in the process of finding a 
solution.  Therefore, our goal was to find groups of rules 
that, when used together, would devise all or part of the 
most crucial steps in solving a particular proof.  Since there 
are 36 rules on our Axiom List, we generate a bit string of 
length 36 for each student proof that describes the use of 
axioms, by placing a 1 in the ith position if the ith axiom 
were used, and a 0 otherwise. 

Variable Selection 
In this step, we used two criteria to determine which 
variables to consider in our q-matrix analysis. First, since 
we were looking for general relationships among axioms, 
and classes of problem solutions, axioms used by only one 
student solving a proof were not considered for analysis.  
Second, we narrowed the list of axioms to those we would 
consider as those most important in solving proofs.  As in a 
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general data mining process, this step was necessary to 
analyze only those items we felt were most important. 
 
The most important rules in writing proofs are those that 
result in a “change in the knowledge base” of a proof.  In 
other words, the structure of the knowledge in the proof 
undergoes a change when these rules are applied.  
Specifically, the use of a logical implication (one of the 
first 10 axioms on our list), or Negation of Conclusion, 
results in more than a simple rearrangement of the 
variables.  For example, Modus Ponens combines a → b 
with a to find b is true.  In a way, we have eliminated the 
variable a. In our analysis, we also considered rules that 
would be crucial steps in being able to apply logical 
implication rules, including the logical equivalences 
DeMorgan’s, Implication, and Contrapositive.   
 
Rules that do not result in a “change in the knowledge 
base” of the proof include Simplification, Conjunction, and 
the remaining logical equivalences, including rules such as 
Double Negation, Commutative and Associative rules.  An 
additional reason for eliminating these rules from 
consideration was that the Proof Verifier often lets students 
skip these steps, so we’d have no way of knowing whether 
some students applied, but did not enter, these steps. 
 
After eliminating all logical equivalence rules other than 
DeMorgan’s, Implication, and Contrapositive, we then 
grouped rules that were only slightly different ways of 
writing the same approach.  For example, we grouped 
DeMorgan’s for AND and for OR together as one rule.  
We also grouped Constructive Dilemma for AND and OR 
together as one rule, and Modus Ponens and Modus 
Tollens together as another. Though Modus Ponens and 
Modus Tollens may seem dissimilar, in teaching since 
1996, we have observed that students often demonstrate a 
preference for using just one of these rules, versus 
approaches using Disjunctive Syllogism. 
 
The final list of rules selected for analysis, after 
eliminating rules not generally used by students and those 
considered redundant or less important, is: Hypothetical 
Syllogism (HS), Disjunctive Syllogism (DS), Modus 
Ponens and Modus Tollens (MP/MT), Constructive 
Dilemma (CD), DeMorgan’s (DM), Contrapositive (CP), 
Implication (IMP), and Negation of Conclusion (NC). 

Q-matrix Extraction and Analysis 
In a q-matrix, items that relate to all concepts (i.e. with 1’s 
for every concept) are the least frequently answered items.  
Therefore, these items will have zeroes in most ideal 
response vectors.  On the other hand, items related to no 
concepts (i.e. with 0’s for all concepts) are the most 
frequently used items, and all ideal response vectors will 
predict a 1 for these items.  These values have the least 
change over all students.  In a q-matrix, we can then 
interpret the rows as ideal response vectors if we first 
reverse the bits for these two types of questions. (Note that, 

in cases where there are a large number of concepts, we 
should also reverse the bits for questions related to “almost 
all” or “almost no” concepts.) 

Results and Discussion 
Although we analyzed data from all 10 proofs offered in 
the Proof Verifier, for conciseness we present data only 
from Proof 1, listed in Table 3, to illustrate our results.  In 
our experiment, 189 students completed Proof 1 in Fall 
2002.  For each proof, students were allowed to solve the 
proof by direct or indirect proof, as shown in Tables 4-5.  
 

Table 3. Proof 1 problem description 
Given: a → b,   c → d, ¬(a → d)  Prove:   b ∧ ¬c 

 
Table 4. Proof 1 Example of Direct Proof 

   Statement    Line  Reason 
1. a → b           Given 
2. c → d         Given 
3. ¬ (a → d)        Given 
4. ¬ (¬ a v d )    3   Implication 
5. a ∧ ¬ d      4   Demorgan’s 
6. a        5    Simplification 
7. ¬ d       5   Simplification 
8. b        1,6  Modus Ponens 
9. ¬c        2,7  Modus Tollens 
10. b ∧ ¬c      8,9  Conjunction 

 
Table 5.  Proof 1 Example of Indirect Proof 

   Statement    Line  Reason 
1. a → b           Given 
2. c → d         Given 
3. ¬ (a → d)                    Given 
4. ¬ (b ∧ ¬c)        Neg of Conclusion 
5. b → c      4   Implication 
6. a → c      1,5   Hyp. syllogism 
7. a → d      2,6  Hyp. syllogism 
8. (a→ d) ∧ ¬ (a→ d)  3,8  Conjunction 
9. contradiction 

 
Table 6 lists the q-matrix extracted from Fall 2002 data, 
and Table 7 summarizes ideal and student response 
vectors. 
 

Table 6.  Proof 1 q-matrix 
 HS DS MP/ 

MT 
CD DM CP IMP NC 

Con 1 1 1 0 1 0 1 0 1 
Con 2 0 1 1 1 0 1 0 0 

 
By analyzing the q-matrix given in Table 6, we can draw 
several conclusions about student proofs without seeing 
them.  First, since their columns are all ones, we know that 
Disjunctive Syllogism (DS), Constructive Dilemma (CD), 
and Contrapositive (CP) are not often used for Proof 1. 
Likewise, since their columns are all zeroes, DeMorgan’s 
(DM) and Implication (IMP) are often used for Proof 1. 
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From Con 1, we see that Hypothetical Syllogism (HS) and 
Negation of Conclusion (NC) are used together, and from 
Con 2, Modus Ponens/Tollens (MP/MT) distinguishes 
some student responses from others. 
 
 

Table 7. Proof 1 Ideal and Student Response Vectors 
 

Row Response 
# 

 Students Error 
Err * # 
Stud 

 00001010 State 00: Baseline 
1 00000010 1 1 1 
2 01000010 1 2 2 
3 01001010 1 1 1 
4 01001110 2 2 4 
5 00000011 1 2 2 
 10001011 State 01: Concept 1 
6 10000011 3 1 3 
7 10001011 23 0 0 
8 01001011 2 2 4 
9 10101011 8 1 8 

10 01101011 1 3 3 
11 00001111 1 2 2 
12 10001111 2 1 2 

 00101010 State 10: Concept 2 
13 00100010 11 1 11 
14 01100010 1 2 2 
15 00110010 1 2 2 
16 00101010 40 0 0 
17 10101010 2 1 2 
18 01101010 24 1 24 
19 11101010 1 2 2 
20 00111010 13 1 13 
21 00100110 1 2 2 
22 10100110 1 3 3 
23 00110110 1 2 2 
24 00101110 13 1 13 
25 00111110 18 2 36 
26 00100011 2 2 4 
27 00101011 3 1 3 

 11111111 State 11: Concepts 1 and 2 
28 10110110 1 3 3 
29 01111110 8 2 16 
30 11101011 1 2 2 
31 01100111 1 3 3 

 TOTAL: 189  175 
 
Table 7 provides a summary of Proof 1 responses, and 
their corresponding concept states.  In this table, responses 
are grouped by concept state and their corresponding ideal 
response vectors (IDRs).  We then list actual student 
responses in each of these states and the number of 

students responding with this vector.  Finally, we list the 
error associated with assigning each actual response to a 
concept state (by counting the number of different bits in 
the IDR and actual response) and the total error for all the 
students with a given actual response vector.  The last row 
of the table sums the student and total error columns.  
 
State 00 represents the use of neither concept 1 or 2.  There 
are 6 student proofs in this state, whose IDR is 00001010, 
representing the use of DeMorgan’s and Implication rules. 
One student (row 1) used only Implication, which is not 
sufficient for solving Proof 1, which revealed an error in 
our Proof Verifier.  The remaining solutions in State 00 all 
use Disjunctive Syllogism (DS), or Negation of Conclusion 
in their solutions.  State 11 corresponds to an all-ones IDR, 
meaning that solutions combined both concepts. 
 
State 01 solutions, with the IDR 10001011, use 
Hypothetical Syllogism, DeMorgan’s, Implication, and 
Negation of Conclusion. This set of rules corresponds to 23 
of the 40 responses in state 10 (as in Table 7).  Eight 
responses in this state used all these rules except for 
DeMorgan’s, indicating that this proof can be solved using 
Negation of Conclusion, Hypothetical Syllogism and 
Implication, as shown in Table 5. 
 
Most students are in State 10, with 132/189 responses. 
State 10 solutions, with the IDR 00101010, use Modus 
Ponens and/or Modus Tollens, DeMorgan’s, and 
Implication.  An example student proof using these rules is 
given in Table 5. As shown in Table 7, 40 students used 
these same rules for their proofs, making this answer 
vector the most common.  Five students in this state also 
used Negation of Conclusion (NC) (see Table 7, rows 26-
27). This seems to show that there are 2 distinct ways to 
use Negation of Conclusion in this proof, one using 
Hypothetical Syllogism, as in state 01, and the other using 
Modus Ponens/Tollens, as in state 10.  This rich 
understanding of solutions to Proof 1 resulted solely in 
examining the q-matrix, and verifying our conclusions with 
actual student data. 

Generating Feedback 
Based on this analysis, we could construct several different 
feedback scenarios for students solving Proof 1.  We could 
automatically generate hints that suggest common 
strategies, such as: 1.  Try Modus Ponens/Tollens, 2. Most 
solutions to Proof 1 use both DeMorgan’s and Implication.  
Based on the current student solution, we could also offer 
tailored hints. If the student has already used either 
Hypothetical Syllogism or Negation of Conclusion, we 
may suggest the use of the other to “complete” the use of 
Concept 1.  We can also use the q-matrix analysis to guide 
the choice of where to generate the most-needed hints for 
adaptation in the Proofs ITS.  For example, we can create 
hints for each concept or state, greatly reducing the space 
of solutions that needs hint generation. 
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Conclusion 
The main contribution of this work is the novel application 
of the q-matrix method, a tool used for educational 
assessment and remediation, as a more generalized data 
mining tool.  In this application, we have demonstrated the 
use of the q-matrix method in both clustering and 
understanding groups of student responses. Using the 
extracted q-matrices, we were able to make predictions 
about student responses, as supported by student data, and 
also find errors in our program.  We were able to create 
proofs that used only the predicted responses in the 
solution, confirming our hypothesis that q-matrices would 
extract groups of rules that were fundamental to solving 
the given problem.   
 
Our analysis indicates that large clusters of similar student 
responses skew the q-matrix model, but that a balance 
could still be maintained by keeping the number of 
concepts extracted low. Another interesting finding, as 
reported in (Barnes, 2005a), that was replicated in this 
experiment, is each of the 10 extracted proof q-matrices to 
converge on binary values, even though the q-matrices 
were allowed to vary as probabilities between 0 and 1.  
This finding leads us to believe that, given binary input 
values, good q-matrix models will usually converge to 
binary values, making the q-matrix method very valuable 
in understanding a data set. With binary values, q-matrix 
results may be easily applied to understand student 
responses and generate helpful feedback for our future 
intelligent tutoring system.  In our future work, we plan to 
investigate the properties of the q-matrix method that may 
be causing this binary convergence, and compare this 
algorithm with methods that restrict the search space to 
only binary values in the q-matrix. 
 
We have also suggested some ways that a q-matrix 
extracted from student data can be used to automatically 
generate hints or guide the creation of relevant feedback.  
We suggest that this combination of data-driven and 
traditional ITS methods may be particularly useful in 
reducing the overall cost of creating new ITSs.  
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