
Evaluation of the q-matrix method in understanding student logic proofs

Tiffany Barnes

Department of Computer Science
University of North Carolina at Charlotte

9201 University City Blvd, Charlotte, NC 28223
tbarnes2@uncc.edu

Abstract
In building intelligent tutoring systems, it is critical to be
able to understand and diagnose student responses in
interactive problem solving. We present a novel application
of the q-matrix method, an educational data mining
technique, to the problem of analyzing formal proofs. Our
results indicate that automated analysis of formal proof data
can provide an intelligent tutoring system with useful
diagnostic information for generating feedback and guiding
ITS design.

Introduction
According to the ACM computing curriculum, discrete
mathematics is a core course in computer science, and an
important topic in this course is solving formal logic
proofs. However, this topic is of particular difficulty for
students, who are unfamiliar with logic rules and
manipulating symbols. To allow students extra practice
and help in writing logic proofs, we are building an
intelligent tutoring system on top of our existing Proof
Verifier program. Our experience in teaching discrete
math, and in surveys conducted on our Proof Verifier,
indicate that students particularly need feedback when they
get stuck. An intelligent tutoring system, such as those in
(Conati, et al., 2002; Heffernan & Koedinger, 2002; Van
Lehn & Martin 1998) may provide the individualized
feedback that students need. However, these systems are
quite costly to develop (Murray, 1999), and many systems,
including REDEEM (Ainsworth, et al., 2003), ASSERT
(Baffes & Mooney, 1996), and CTAT (Koedinger, et al.
2004), have been exploring ways to reduce the time needed
to develop ITSs without sacrificing the ability to adapt to
students. In our past work, we have applied the q-matrix
method to quickly modify an existing computer-based
training tool to be a simple ITS, using knowledge
discovery and data mining techniques to model student
knowledge and direct knowledge remediation (Barnes,
2005a & 2005b; Barnes, et al. 2005).

We propose a few ways that educational data mining could
be applied to reduce ITS design time and to focus that
design on areas where students need the most help.
Namely, we demonstrate the novel use of the q-matrix

method in determining proof strategies and suggest some
ways this method can be used to generate feedback.

Background
The original inspiration for the q-matrix method came from
Tatsuoka, et al.’s rule space research, which showed that it
was possible to automate the diagnosis of student
knowledge states, based solely on student item-response
patterns (Tatsuoka, 1983). The rule-space idea evolved into
a q-matrix, a binary matrix showing the relationship
between test items and latent or underlying attributes, or
concepts (Birenbaum, et al., 1993), and they are now used
in intelligent tutoring systems to relate underlying concepts
to problems (e.g. Van Lehn, et. al, 1998). Students were
assigned knowledge states based on their test answers and
the constructed q-matrix.

An example binary q-matrix is given in Table 1. A q-
matrix, or “attribute-by item incidence matrix”, contains a
one if a question is related to the concept, and a zero if not.
For example, in this q-matrix, questions q1, q6, and q7 are
all related by concept con1, while q1 is also related to q2,
q4, and q7 by concept con2. In contrast, question q5 can be
answered correctly without understanding any of the
concepts c1-c3. This indicates that prerequisite knowledge
not represented in the q-matrix affects the answer to q5.
Brewer extended q-matrices to include values ranging from
zero to one, representing a probability that a student will
answer a question incorrectly if he does not understand the
concept (1996).

In 1996, Brewer created a method to extract a q-matrix
from student data, and found that the method could be used
to recover knowledge states of simulated students more
accurately than by using factor analysis. In (Barnes, et al.,
2005), we applied the method to large groups of students,
and found that experts disagreed on q-matrices, and found
Brewer’s extraction method comparable to standard
knowledge discovery techniques for grouping student data.
In particular, the method outperformed factor analysis in
modeling student data and resulted in much more
understandable q-matrices, but had higher error than k-
means cluster analysis on the data. However, cluster
analysis is not as suitable for automated direction of

491

student learning as the q-matrix method, because human
intervention would usually be required to create behaviors
to associate with each cluster.

Table 1. Example q-matrix

 q1 q2 q3 q4 q5 q6 q7
c1 1 0 0 0 0 1 1
c2 1 1 0 1 0 0 1
c3 1 1 1 0 0 0 0

Each cluster in the q-matrix method is represented by its
concept state, a vector of bits where the kth bit is 0 if the
students do not understand concept k, and a 1 if they do.
Each concept state also has associated with it an ideal
response vector (IDR), or representative vector, that is
determined using the concept state and the q-matrix. For
each question q in the q-matrix we examine the concepts
needed to answer that question. If the concept state
contains all those needed for q, we set bit q in the IDR to 1,
and otherwise to 0. There are 2NumCon concept states for a
q-matrix with NumCon concepts. A concept state’s ideal
response vector (IDR) is the answer we predict a student in
that state would give under ideal conditions (e.g. he does
not make any slips or guesses).

Mathematically, given a q-matrix Q with NumCon
concepts, and a concept state Con, where Con(k) denotes
whether concept k is understood or not, we calculate the
ideal response (IDR) for each question Ques as:

IDR(Ques)=

!

1 Con(k) =1

1"Q(k,Ques) Con(k) = 0

$
%

&
'
(k=1

NumCon

) (1)

Table 2 lists the IDRs for all the possible concept states for
the q-matrix given in Table 1. The all-zero concept state
000 describes the “default” knowledge not accounted for in
the model, while the all-one concept state 111 describes
full understanding of all concepts. Concept state 011’s
IDR corresponds to a binary OR of the IDRs for concept
states 001 and 010, plus the addition of a 1 for q2, which
requires both concepts c2 and c3 for a correct outcome.

Table 2. Ideal Response Vectors for each Concept State

Concept
State

IDR Concept State IDR

000 0000100 100 0000110
001 0010100 101 0010110
010 0001100 110 0001111
011 0111100 111 1111111

Q-Matrix Model Evaluation
To evaluate the fit of a given q-matrix to a data set, we
compute its concept states and IDRs as in Table 2 and

assign each data point to the concept state whose IDR is
the closest match. Each data point’s associated error is the
L1 (Hamming) distance between the concept’s IDR and the
data point, yielding a direct count in the number of bit
differences between the data point and IDR. In other
words, the distance d(p,IDR) between data point p and its
IDR is summed over all questions q:

!

d(p,IDR) = p(q) " IDR(q)
q

(2)

For example, for a data vector 0111110 and the q-matrix
given in Table 1, the nearest IDR would be 0111100 in
concept state 011, and the error associated with this
assignment is 1, since there is only one difference between
the data point and its nearest IDR. The total error for a q-
matrix on a given data set is the sum of the errors over all
data points.

Q-Matrix Model Extraction
The q-matrix algorithm, as devised by Brewer in 1996, is a
simple hill-climbing algorithm that creates a matrix
representing relationships between concepts and questions
directly from student response data. The algorithm varies
c, the number of concepts, and the values in the q-matrix,
minimizing the total error for all students for a given set of
n questions. To avoid of local minima, each hill-climbing
search is seeded with different random q-matrices and the
best of these is kept.

First, c, the number of concepts, is set to one, and a random
q-matrix of concepts versus questions is generated with
values ranging from zero to one. Also, 2c concept states
are generated. A binary string of length c represents each
state where a zero in position k represents that a student in
this state does not understand concept k, and a one
represents that he does. For each concept state, its
corresponding ideal response vector is generated based on
the q-matrix.

We then compute the total error for the q-matrix computed
over all students as described in the previous section.
After the error has been computed for a q-matrix each
value in the q-matrix is changed by a small amount, and if
the overall q-matrix error is improved, the change is saved.
This process is repeated for all the values in the q-matrix
several times, until the error in the q-matrix is not changing
significantly.

After a q-matrix is computed in this fashion, the algorithm
is run again with a new random starting point several
times, and the q-matrix with minimum error is saved, to
avoid falling into a local minimum. It is not guaranteed to
be the absolute minimum, but provides an acceptable q-
matrix for a given number of c concepts.

To determine the best number of concepts to use in the q-
matrix, this algorithm is repeated for increasing values of

492

c. The final q-matrix is selected when 1) a pre-set stopping
criterion has been met (such as less than 1 error per
student) or when adding an additional concept does not
decrease the overall q-matrix error significantly, and 2) the
number of concepts is significantly smaller than the
number of questions. Based on our work with the q-
matrix, we have determined a rule of thumb for the number
of concepts, as the log (base = number of variables) of the
number of responses. This heuristic, which needs
experimental validation, may reduce the q-matrix method
run time by providing a target number of concepts.

Modification for Proofs
Solutions to formal logic proofs are not well-suited to a
traditional application of the q-matrix method, where we
analyze student responses as answers to questions common
to all students. In solving proofs, instead of answering a
single question, students type in consecutive lines of a
proof, which consist of 4 parts: the statement, reference
lines, the axiom used, and the substitutions which allow the
axiom to be applied in this particular case. After the
student enters these 4 parts to a line, the program verifies
that: 1) the statement is true, based on the previous lines of
the proof, and 2) the axiom and appropriate substitutions
listed correspond to the reference lines and statement. The
program prompts the student to continue if the proof line is
valid, or warns the student that there was a problem with
the line if it is not. In each case, the student is returned to
entering his proof.

There are several reasons that a straightforward q-matrix
analysis could not be used for proofs. These are:
1. The program does not accept “wrong” proof lines.

Therefore, there is no data to make a model that
discriminates based on right versus wrong answers.

2. A proof can be incomplete for many reasons, including
lack of time or the inability to continue.

3. Statements in one student’s proof may or may not appear
in another’s.

4. Students solve proofs with different methods and in
different orders.

5. There are too many valid proofs to anticipate every one.
6. If we did anticipate all possible valid proofs, considering

each different answer as a “question” would require
considerably more student data. Also, many proofs are
the same approach executed in different orders.

Although the program does not display invalid proof
statements, these data were collected and saved along with
each student proof. This type of data, though not used
here, can later be analyzed to determine the types of errors
students make in proof writing.

Method
In this research, we apply the q-matrix method to proofs
written by a large group of students and analyze the results
to determine if we can understand student proofs using the
q-matrix alone. Our hypothesis was that concept states
resulting from extracted q-matrices would reflect
fundamental methods for solving proofs, and that this
automatic analysis would provide meaningful information
for generating feedback in our planned ITS.

The Proof Verifier, written on the NovaNET educational
system (see http://www.pearsondigital.com/novanet/), was
administered to approximately 200 students in the Fall
2002 Discrete Mathematics course, CSC 226, at NC State
University. Using the verifier was required for credit in
the class, but students were allowed to attempt each
problem until it was solved. As students work each of the
10 proofs, their work is saved. We later process their
proofs to extract the rules used by each student in a
particular proof, creating “answer vectors” for each student
– where the ith bit of the answer vector contains a one if
the student used the ith rule, and a zero if not.

The steps in this experiment were to: 1) determine a
mapping from student responses to answer vectors to be
used as inputs to the q-matrix method, 2) remove variables
that might not be interesting or useful in the analysis of
student proofs, 3) derive a q-matrix to explain the student
data, 4) interpret the resulting q-matrix in the context of the
given proof to solve.

Mapping Responses to Answer Vectors
The first step in analyzing student proofs was to determine
a way to map proofs to answer vectors. For each proof,
there are many possible solutions. However, our
conjecture was that many student proofs, though appearing
different, might be using the same underlying approach.
Fundamentally, these approaches should overlap in the
axioms that students used in the process of finding a
solution. Therefore, our goal was to find groups of rules
that, when used together, would devise all or part of the
most crucial steps in solving a particular proof. Since there
are 36 rules on our Axiom List, we generate a bit string of
length 36 for each student proof that describes the use of
axioms, by placing a 1 in the ith position if the ith axiom
were used, and a 0 otherwise.

Variable Selection
In this step, we used two criteria to determine which
variables to consider in our q-matrix analysis. First, since
we were looking for general relationships among axioms,
and classes of problem solutions, axioms used by only one
student solving a proof were not considered for analysis.
Second, we narrowed the list of axioms to those we would
consider as those most important in solving proofs. As in a

493

general data mining process, this step was necessary to
analyze only those items we felt were most important.

The most important rules in writing proofs are those that
result in a “change in the knowledge base” of a proof. In
other words, the structure of the knowledge in the proof
undergoes a change when these rules are applied.
Specifically, the use of a logical implication (one of the
first 10 axioms on our list), or Negation of Conclusion,
results in more than a simple rearrangement of the
variables. For example, Modus Ponens combines a → b
with a to find b is true. In a way, we have eliminated the
variable a. In our analysis, we also considered rules that
would be crucial steps in being able to apply logical
implication rules, including the logical equivalences
DeMorgan’s, Implication, and Contrapositive.

Rules that do not result in a “change in the knowledge
base” of the proof include Simplification, Conjunction, and
the remaining logical equivalences, including rules such as
Double Negation, Commutative and Associative rules. An
additional reason for eliminating these rules from
consideration was that the Proof Verifier often lets students
skip these steps, so we’d have no way of knowing whether
some students applied, but did not enter, these steps.

After eliminating all logical equivalence rules other than
DeMorgan’s, Implication, and Contrapositive, we then
grouped rules that were only slightly different ways of
writing the same approach. For example, we grouped
DeMorgan’s for AND and for OR together as one rule.
We also grouped Constructive Dilemma for AND and OR
together as one rule, and Modus Ponens and Modus
Tollens together as another. Though Modus Ponens and
Modus Tollens may seem dissimilar, in teaching since
1996, we have observed that students often demonstrate a
preference for using just one of these rules, versus
approaches using Disjunctive Syllogism.

The final list of rules selected for analysis, after
eliminating rules not generally used by students and those
considered redundant or less important, is: Hypothetical
Syllogism (HS), Disjunctive Syllogism (DS), Modus
Ponens and Modus Tollens (MP/MT), Constructive
Dilemma (CD), DeMorgan’s (DM), Contrapositive (CP),
Implication (IMP), and Negation of Conclusion (NC).

Q-matrix Extraction and Analysis
In a q-matrix, items that relate to all concepts (i.e. with 1’s
for every concept) are the least frequently answered items.
Therefore, these items will have zeroes in most ideal
response vectors. On the other hand, items related to no
concepts (i.e. with 0’s for all concepts) are the most
frequently used items, and all ideal response vectors will
predict a 1 for these items. These values have the least
change over all students. In a q-matrix, we can then
interpret the rows as ideal response vectors if we first
reverse the bits for these two types of questions. (Note that,

in cases where there are a large number of concepts, we
should also reverse the bits for questions related to “almost
all” or “almost no” concepts.)

Results and Discussion
Although we analyzed data from all 10 proofs offered in
the Proof Verifier, for conciseness we present data only
from Proof 1, listed in Table 3, to illustrate our results. In
our experiment, 189 students completed Proof 1 in Fall
2002. For each proof, students were allowed to solve the
proof by direct or indirect proof, as shown in Tables 4-5.

Table 3. Proof 1 problem description
Given: a → b, c → d, ¬(a → d) Prove: b ∧ ¬c

Table 4. Proof 1 Example of Direct Proof

 Statement Line Reason
1. a → b Given
2. c → d Given
3. ¬ (a → d) Given
4. ¬ (¬ a v d) 3 Implication
5. a ∧ ¬ d 4 Demorgan’s
6. a 5 Simplification
7. ¬ d 5 Simplification
8. b 1,6 Modus Ponens
9. ¬c 2,7 Modus Tollens
10. b ∧ ¬c 8,9 Conjunction

Table 5. Proof 1 Example of Indirect Proof

 Statement Line Reason
1. a → b Given
2. c → d Given
3. ¬ (a → d) Given
4. ¬ (b ∧ ¬c) Neg of Conclusion
5. b → c 4 Implication
6. a → c 1,5 Hyp. syllogism
7. a → d 2,6 Hyp. syllogism
8. (a→ d) ∧ ¬ (a→ d) 3,8 Conjunction
9. contradiction

Table 6 lists the q-matrix extracted from Fall 2002 data,
and Table 7 summarizes ideal and student response
vectors.

Table 6. Proof 1 q-matrix
 HS DS MP/

MT
CD DM CP IMP NC

Con 1 1 1 0 1 0 1 0 1
Con 2 0 1 1 1 0 1 0 0

By analyzing the q-matrix given in Table 6, we can draw
several conclusions about student proofs without seeing
them. First, since their columns are all ones, we know that
Disjunctive Syllogism (DS), Constructive Dilemma (CD),
and Contrapositive (CP) are not often used for Proof 1.
Likewise, since their columns are all zeroes, DeMorgan’s
(DM) and Implication (IMP) are often used for Proof 1.

494

From Con 1, we see that Hypothetical Syllogism (HS) and
Negation of Conclusion (NC) are used together, and from
Con 2, Modus Ponens/Tollens (MP/MT) distinguishes
some student responses from others.

Table 7. Proof 1 Ideal and Student Response Vectors

Row Response

 Students Error
Err * #
Stud

 00001010 State 00: Baseline
1 00000010 1 1 1
2 01000010 1 2 2
3 01001010 1 1 1
4 01001110 2 2 4
5 00000011 1 2 2
 10001011 State 01: Concept 1
6 10000011 3 1 3
7 10001011 23 0 0
8 01001011 2 2 4
9 10101011 8 1 8

10 01101011 1 3 3
11 00001111 1 2 2
12 10001111 2 1 2

 00101010 State 10: Concept 2
13 00100010 11 1 11
14 01100010 1 2 2
15 00110010 1 2 2
16 00101010 40 0 0
17 10101010 2 1 2
18 01101010 24 1 24
19 11101010 1 2 2
20 00111010 13 1 13
21 00100110 1 2 2
22 10100110 1 3 3
23 00110110 1 2 2
24 00101110 13 1 13
25 00111110 18 2 36
26 00100011 2 2 4
27 00101011 3 1 3

 11111111 State 11: Concepts 1 and 2
28 10110110 1 3 3
29 01111110 8 2 16
30 11101011 1 2 2
31 01100111 1 3 3

 TOTAL: 189 175

Table 7 provides a summary of Proof 1 responses, and
their corresponding concept states. In this table, responses
are grouped by concept state and their corresponding ideal
response vectors (IDRs). We then list actual student
responses in each of these states and the number of

students responding with this vector. Finally, we list the
error associated with assigning each actual response to a
concept state (by counting the number of different bits in
the IDR and actual response) and the total error for all the
students with a given actual response vector. The last row
of the table sums the student and total error columns.

State 00 represents the use of neither concept 1 or 2. There
are 6 student proofs in this state, whose IDR is 00001010,
representing the use of DeMorgan’s and Implication rules.
One student (row 1) used only Implication, which is not
sufficient for solving Proof 1, which revealed an error in
our Proof Verifier. The remaining solutions in State 00 all
use Disjunctive Syllogism (DS), or Negation of Conclusion
in their solutions. State 11 corresponds to an all-ones IDR,
meaning that solutions combined both concepts.

State 01 solutions, with the IDR 10001011, use
Hypothetical Syllogism, DeMorgan’s, Implication, and
Negation of Conclusion. This set of rules corresponds to 23
of the 40 responses in state 10 (as in Table 7). Eight
responses in this state used all these rules except for
DeMorgan’s, indicating that this proof can be solved using
Negation of Conclusion, Hypothetical Syllogism and
Implication, as shown in Table 5.

Most students are in State 10, with 132/189 responses.
State 10 solutions, with the IDR 00101010, use Modus
Ponens and/or Modus Tollens, DeMorgan’s, and
Implication. An example student proof using these rules is
given in Table 5. As shown in Table 7, 40 students used
these same rules for their proofs, making this answer
vector the most common. Five students in this state also
used Negation of Conclusion (NC) (see Table 7, rows 26-
27). This seems to show that there are 2 distinct ways to
use Negation of Conclusion in this proof, one using
Hypothetical Syllogism, as in state 01, and the other using
Modus Ponens/Tollens, as in state 10. This rich
understanding of solutions to Proof 1 resulted solely in
examining the q-matrix, and verifying our conclusions with
actual student data.

Generating Feedback
Based on this analysis, we could construct several different
feedback scenarios for students solving Proof 1. We could
automatically generate hints that suggest common
strategies, such as: 1. Try Modus Ponens/Tollens, 2. Most
solutions to Proof 1 use both DeMorgan’s and Implication.
Based on the current student solution, we could also offer
tailored hints. If the student has already used either
Hypothetical Syllogism or Negation of Conclusion, we
may suggest the use of the other to “complete” the use of
Concept 1. We can also use the q-matrix analysis to guide
the choice of where to generate the most-needed hints for
adaptation in the Proofs ITS. For example, we can create
hints for each concept or state, greatly reducing the space
of solutions that needs hint generation.

495

Conclusion
The main contribution of this work is the novel application
of the q-matrix method, a tool used for educational
assessment and remediation, as a more generalized data
mining tool. In this application, we have demonstrated the
use of the q-matrix method in both clustering and
understanding groups of student responses. Using the
extracted q-matrices, we were able to make predictions
about student responses, as supported by student data, and
also find errors in our program. We were able to create
proofs that used only the predicted responses in the
solution, confirming our hypothesis that q-matrices would
extract groups of rules that were fundamental to solving
the given problem.

Our analysis indicates that large clusters of similar student
responses skew the q-matrix model, but that a balance
could still be maintained by keeping the number of
concepts extracted low. Another interesting finding, as
reported in (Barnes, 2005a), that was replicated in this
experiment, is each of the 10 extracted proof q-matrices to
converge on binary values, even though the q-matrices
were allowed to vary as probabilities between 0 and 1.
This finding leads us to believe that, given binary input
values, good q-matrix models will usually converge to
binary values, making the q-matrix method very valuable
in understanding a data set. With binary values, q-matrix
results may be easily applied to understand student
responses and generate helpful feedback for our future
intelligent tutoring system. In our future work, we plan to
investigate the properties of the q-matrix method that may
be causing this binary convergence, and compare this
algorithm with methods that restrict the search space to
only binary values in the q-matrix.

We have also suggested some ways that a q-matrix
extracted from student data can be used to automatically
generate hints or guide the creation of relevant feedback.
We suggest that this combination of data-driven and
traditional ITS methods may be particularly useful in
reducing the overall cost of creating new ITSs.

References
Ainsworth, S.E., Major, N., Grimshaw, S.K., Hayes, M.,
Underwood, J.D., Williams, B. & Wood, D.J. 2003.
REDEEM: Simple intelligent tutoring systems from usable
tools, in T. Murray, S. Blessing & S.E. Ainsworth (eds).
Adv. Tools for Adv. Technology Learning Environments.
pp. 205-232. Amsterdam: Kluwer Academic Publishers.

Baffes, P. & R.J. Mooney. 1996. A novel application of
theory refinement to student modeling. Proceedings of
AAAI-96, pp. 403-408, Portland, OR, August 1996.

Barnes, T. 2005a. Experimental analysis of the q-matrix
method in automated knowledge assessment. Proceedings
of IASTED Computers and Adv. Technology for Education
(CATE 2005), Oranjestad, Aruba, August 29-31, 2005.

Barnes, T. 2005b. The q-matrix method: Mining student
response data for knowledge. Proceedings of AAAI 2005,
Pittsburgh, PA, July 9-13, 2005.

Barnes, T., D. Bitzer & M. Vouk. 2005. Experimental
analysis of the q-matrix method in knowledge discovery.
Proceedings of the 15th International Symposium on
Methodologies for Intelligent Systems, Saratoga Springs,
NY, May 25-29, 2005.

Birenbaum, M., Kelly, A., & Tatsuoka, K. 1993.
Diagnosing knowledge state in algebra using the rule-space
model. Journal for Research in Mathematics Education,
24(5), 442-459.

Brewer, P. 1996. Methods for concept mapping in
computer based education. Computer Science Masters
Thesis, North Carolina State University.

Birenbaum, M., Kelly, A., & Tatsuoka, K. 1993.
Diagnosing knowledge states in algebra using the rule-
space model. Journal for Research in Mathematics
Education, 24(5), 442-459.

Conati, C., A.S. Gertner, & K. VanLehn. 2002. Using
Bayesian networks to manage uncertainty in student
modeling. User Model. User-Adapt. Interact. 12(4): 371-
417.

Heffernan, N.T. & K.R. Koedinger. 2002. An intelligent
tutoring system incorporating a model of an experienced
human tutor. Intelligent Tutoring Systems, pp. 596-608.

Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B.
& Hockenberry, M. 2004. Opening the door to non-
programmers: Authoring intelligent tutor behavior by
demonstration. Proceedings of the 7th Annual Intelligent
Tutoring Systems Conference, Maceio, Brazil, pp. 162-173.

Murray, Tom. 1999. Authoring Intelligent Tutoring
Systems: An analysis of the state of the art. International
Journal of AI in Education (1999), 10: 98-129.

Tatsuoka, K. 1983. Rule space: An approach for dealing
with misconceptions based on item response theory.
Journal of Educational Measurement, 20(4), 345-354.

VanLehn, K., Niu, Z., Siler, S., & Gertner, A. 1998.
Student modeling from conventional test data: A Bayesian
approach without priors. Intelligent Tutoring Systems, pp.
434-443.

496

