
Using Validation Sets to Avoid Overfitting in AdaBoost∗

Tom Bylander and Lisa Tate
Department of Computer Science, University of Texas at San Antonio,

San Antonio, TX 78249 USA
{bylander, ltate}@cs.utsa.edu

Abstract

AdaBoost is a well known, effective technique for increas-
ing the accuracy of learning algorithms. However, it has the
potential to overfit the training set because its objective is
to minimize error on the training set. We demonstrate that
overfitting in AdaBoost can be alleviated in a time-efficient
manner using a combination of dagging and validation sets.
Half of the training set is removed to form the validation set.
The sequence of base classifiers, produced by AdaBoost from
the training set, is applied to the validation set, creating a
modified set of weights. The training and validation sets are
switched, and a second pass is performed. The final classi-
fier votes using both sets of weights. We show our algorithm
has similar performance on standard datasets and improved
performance when classification noise is added.

Introduction
AdaBoost was first introduced by Freund and Schapire (Fre-
und & Schapire 1997). Since then AdaBoost has shown to
do well with algorithms such as C4.5 (Quinlan 1996), De-
cision Stumps (Freund & Schapire 1996), and Naive Bayes
(Elkan 1997). It has been shown that AdaBoost has the po-
tential to overfit (Groves & Schuurmans 1998; Jiang 2000),
although rarely with low noise data. However, it has a
much higher potential to overfit in the presence of very
noisy data (Dietterich 2000; Ratsch, Onoda, & Muller 2001;
Servedio 2003). At each iteration, AdaBoost focuses on
classifying the misclassified instances. This might result in
fitting the noise during training. In this paper, we use valida-
tion sets to adjust the hypothesis of the AdaBoost algorithm
to improve generalization, thereby alleviating overfitting and
improving performance.

Validation sets have long been used in addressing the
problem of overfitting with neural networks (Heskes 1997)
and decision trees (Quinlan 1996). The basic concept is to
apply the classifier to a set of instances distinct from the
training set. The performance over the validation set can
then be used to determine pruning, in the case of decision
trees, or early stopping, in the case of neural networks.

∗This research has been supported in part by the Center for In-
frastructure Assurance and Security at the University of Texas at
San Antonio.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In both cases, the training set is used to find a small hy-
pothesis space, and the validation set is used to select a hy-
pothesis from that space. The justification is that in a large
hypothesis space, minimizing training error will often result
in overfitting. The training set can instead be used to estab-
lish a set of choices as training error is minimized, with the
validation set used to reverse or modify those choices.

A validation set could simply be used for early stopping
in AdaBoost. However, we obtain the most success by also
performing2-dagging(Ting & Witten 1997), and modifying
weights. Dagging is disjoint aggregation, where a training
set is partitioned into subsets and training is performed on
each set. Our algorithm partitions the original training set
into 2 partitions, applies boosting on one partition and vali-
dation with the other partition. It switches the training and
validation sets then applies boosting and validation again.
In each boosting/validation pass, the sequence of weak hy-
potheses from boosting on the training partition are fit to
the validation partition in the same order. The sequence is
truncated if and when the average error of the training and
validation set is 50% or more. The final weights are derived
from averaging the error rates.

Our results show that a large improvement is due to the
2-dagging. When a training set contains classification noise,
learning algorithms that are sensitive to noise and prone to
overfitting can fit the noise. When the 2-dagging partitions
the training set, a noisy example will be in only one of the
subsets. Although the hypothesis created from that sub-
set may overfit the noisy example, the hypothesis created
from the other subset will not overfit that particular exam-
ple. Aggregating the hypotheses counteracts the overfitting
of each separate hypothesis. A further improvement is ob-
tained by using the validation set to stop early and to modify
the weights. While this might not be the best way to use val-
idation sets for boosting, we do demonstrate that validation
sets can be used to avoid overfitting efficiently.

Several techniques have been used to address overfitting
of noisy data in AdaBoost. BrownBoost (Freund 1999), an
adaptive version of Boost By Majority (Freund 1990), gives
small weights to misclassified examples far from the margin.
Using a ”soft margin” (Ratsch, Onoda, & Muller 2001) ef-
fectively does not give preference to hypotheses that rely on
a few examples with large weights from continuous misclas-
sification. MadaBoost (Domingo & Watanabe 2000) pro-

544

vides an upper bound on example weights based on initial
probability. SmoothBoost (Servedio 2003) smooths the dis-
tribution over the examples by weighting on the margin of
error and creating an upper bound so that no one example
can have too much weight. NadaBoost (Nakamura, Nomiya,
& Uehara 2002) adjusts the weighting scheme by simply
adding a threshold for the maximum allowable weight. In
this paper, we address overfitting of noisy data by using a
validation set to smooth the hypothesis weights.

The rest of this paper is organized as follows. First we
describe the AdaBoost.M1 algorithm, used for multiclass
datasets. We then present our AdaBoost.MV algorithm. Fi-
nally, we describe our experiments including a comparison
with the BrownBoost algorithm and conclude with a discus-
sion of the results.

AdaBoost.M1 Algorithm

Algorithm AdaBoost.M1
Input: train set ofm examples ((x1, y1),...,(xm, ym))

with labelsyi ∈ Y = {1, . . . , k}
learning algorithmL
integerT specifying number of iterations

Initialize D1(i) = 1
m for all i

Do for t = 1, . . . , T

1. CallL providing it with the distributionDt

2. Get back a hypothesisht: X → Y

3. Calculate the error ofht: εt =
∑

i:ht(xi) 6=yi

Dt(i)

4. if εt ≥ 1/2, then setT = t− 1 and abort

5. Setβt = εt
1− εt

6. Update distributionDt:

Dt+1(i) =
Dt(i)
Zt

×
{

βt if ht(xi) = yi

1 otherwise

whereZt is a normalization constant.

Output the final classifier:

hfin(x) = arg max
y∈Y

∑
t:ht(x)=y

log
1
βt

Figure 1: The AdaBoost.M1 algorithm

AdaBoost.M1 is a version of the AdaBoost algorithm
(Freund & Schapire 1997) that handles multiple-label classi-
fication. The AdaBoost.M1 algorithm takes a set of training
examples ((x1, y1),...,(xm, ym)), wherexi ∈ X is an in-
stance andyi ∈ Y is the class label. It initializes the first
distribution of weightsD1 to be uniform over the training
examples. It calls a learning algorithm, referred to asL, it-
eratively for a predeterminedT times. At each iteration,L
is provided with the distributionDt and returns a hypothesis
ht relative to the distribution. It calculates the errorεt with
respect to the distributionDt and the hypothesisht. Theβt

value, a function of the error, is used to update the weights
in the distribution at every iterationt. If an example is mis-
classified it receives a higher weight. TheZt value is the
normalization factor. Theβt value is also used to calculate
the final weight for each hypothesisht as log(1/βt). The
final hypothesishfin(x) is a weighted plurality vote deter-
mined by the weights of the hypotheses.

Validation Algorithms
FitValidationSet Subroutine

Subroutine FitValidationSet
Input: validation set ofm examples ((x1, y1),...,(xm, ym))

with labelsyi ∈ Y = {1, . . . , k}
hypotheses{h1, . . . , hT } from AdaBoost.M1
errors{ε1, . . . , εT } from AdaBoost.M1

Initialize D′
1(i) = 1

m for all i
Do for t = 1, . . . , T

1. Calculate the error ofht: ε′t =
∑

i:ht(xi) 6=yi

D′
t(i)

2. if (εt + ε′t)/2 ≥ 1/2, then setT = t− 1 and abort

3. Setβ′
t = ε′t

1− ε′t

4. Update distributionD′
t:

D′
t+1(i) =

D′
t(i)
Z ′

t

×
{

β′
t if ht(xi) = yi

1 otherwise

whereZ ′
t =

∑
D′

t(i)

Output the errorsε′t

Figure 2: The FitValidationSet algorithm

The inputs to theFitValidationSet subroutine (Figure 2)
are the validation set, the classifiers from boosting on the
training set, and the errors from boosting on the training set.
FitValidationSet applies AdaBoost.M1’s distribution updat-
ing scheme to the classifiers in sequential order. The first
distributionD′

1 is initialized to be uniform. The validation
error ε′t is calculated for each classifierht with respect to
distributionD′

t. The next distributionD′
t+1 is determined

using the same distribution update as AdaBoost.M1. FitVal-
idationSet will stop early if(εt + ε′t)/2 ≥ 1/2, whereεt is
the error ofht on the distributionDt from AdaBoost.M1. In
our algorithm, the validation set is used to adjust the weights
away from fitting (maybe overfitting) the training set toward
fitting the validation set. There are a variety of other rea-
sonable sounding ways to use a validation set in boosting.
Informally, our algorithm can be justified as follows.

We don’t want to overfit either the training set or the vali-
dation set. We also don’t want to forget the weights learned
from either set, so our algorithm chooses a weight in be-
tween the two. For the method of adjustment, averaging the
errors followed by computing a weight is more stable than
computing two beta values or two weights and averaging
them. It is natural to stop when the average error is 50% or

545

more. Stopping when either error is 50% is another possi-
bility, but does not work quite as well empirically. As we
mentioned earlier, we do not claim this is the best way to
use a validation set, but we do show that a validation set can
be efficiently and effectively applied.

AdaBoost.MV Algorithm

Algorithm AdaBoost.MV
Input: train set ofm examples ((x1, y1),...,(xm, ym))

with labelsyi ∈ Y = {1, . . . , k}
learning algorithmL
integerT specifying number of iterations

Divide the training set into two equally sized sets
N (train set) andV (validation set)
by performing a stratified, randomized split.

Do for k = 1 to 2

1. CallAdaBoost.M1providing itN , L, andT

2. Set{hk,1, . . . , hk,T }to the classifiers from
AdaBoost.M1

3. Set{εk,1, . . . , εk,T } to the errors from
AdaBoost.M1.

4. Call FitToValidate providing it V , classifiers
{hk,1, . . . , hk,T }, and errors{εk,1, . . . , εk,T }

5. Set{ε′k,1, . . . , ε
′
k,T } to the errors from

FitValidationSet.

6. Setεk,t to (εk,t + ε′k,t)/2 for t ∈ {1, . . . , T}
7. ExchangeN ↔ V

Output the final classifier:

hfin(x) = arg max
y∈Y

2∑
k=1

∑
t:ht(x)=y

log
1− εk,t

εk,t

Figure 3: The AdaBoost.MV algorithm

The AdaBoost.MV algorithm (Figure 3) inputs a set of
training examples, a weak learning algorithmL, and a pa-
rameterT specifying the number of boosting iterations. It
first performs a randomized, stratified split of the examples
into two equally sized sets: a training setN and validation
setV . The algorithm then performs two passes.

The first pass calls AdaBoost.M1 with the training setN ,
obtaining the classifiers and the error rates. Next, it calls
FitValidationSet with the validation setV and the classifiers,
obtaining another set of error rates. The weight for each
classifier is calculated from the average of the corresponding
two error rates. AfterN andV are switched, the second pass
performs the same sequence of actions. If AdaBoost.M1 and
FitValidationSet do not abort early, then there will be2T
base classifiers in the final hypothesis.

The two passes allow each example to be used once for
boosting and once for validation. More than two passes
could be performed by doing more than two folds or doing
two folds multiple times. However, we did not want to do

Table 1: Datasets: UCI Repository

Datasets Examples Classes Attributes
anneal 798 6 38
balance 625 3 5
breast cancer 286 2 9
breastw 698 2 9
horse colic 368 2 24
credit a 690 2 15
credit g 1000 2 20
diabetes 768 2 8
heartc 303 5 14
hearth 294 5 14
hepatitis 155 2 20
hypothyroid 3772 4 30
ionosphere 351 2 34
iris 150 3 4
krvskp 3196 2 36
labor 57 2 16
lymph 148 4 19
mushroom 8124 2 23
sick 3772 2 30
sonar 207 2 61
splice 3190 3 62
vote 435 2 16
waveform 5000 3 40

more work than the original AdaBoost.M1, and we wanted
the number of base classifiers and boosting iterations to be
as similar to AdaBoost.M1 as possible.

Experiments and Results
We compared AdaBoost.MV to AdaBoost.M1 and Brown-
Boost using stratified 10-fold cross-validation. We imple-
mented AdaBoost.MV and BrownBoost in Weka (Witten &
Frank 2000) and compared them to each other as well as
AdaBoost.M1. Experiments were run with three different
base classifiers: Decision Stump, C4.5, and Naive Bayes.
We used 23 benchmark datasets from the UCI repository
(Blake & Merz 1998). For each dataset, Table 1 lists the
number of examples, the number of classes, and the number
of attributes. Each combination was used to generate 100
classifiers. Because all three algorithms can stop early, the
number of classifiers actually generated is sometimes less
than the number requested, especially when created with the
Naive Bayes classifier.

For each pair of algorithms, we count the number of times
each algorithm had a lower error rate and also determined
the relative error reduction. Table 2 provides a summary of
these results.

We do not have the space to fully describe the Brown-
Boost algorithm, but we describe the choices made in our
implementation. Our version of BrownBoost searches for
the largest value ofc (to 0.1 accuracy) that results in exiting
the BrownBoost loop before 100 base classifiers are gener-
ated. We did not implement confidence-rated predictions.

546

Table 2: Summary of Results

Noise
Added

Base Classifiers MV vs. M1: Better -
Worse - Tie

MV vs. BB: Better -
Worse - Tie

BB vs. M1: Better -
Worse - Tie

Decision Stump 12-10-1 12-9-2 10-6-7
No Naive Bayes 14-7-2 14-7-2 12-8-3

C4.5 12-10-1 14-8-1 4-16-3
Decision Stump 13-6-4 9-10-4 13-6-4

10% Naive Bayes 17-6-0 16-6-1 10-6-7
C4.5 18-2-3 22-1-0 7-12-4

Decision Stump 11-11-1 14-7-2 9-6-8
20% Naive Bayes 18-5-0 17-6-0 11-6-6

C4.5 18-5-0 18-4-1 14-7-2
Noise
Added

Base Classifiers MV vs. M1: Average
Error Reduction

MV vs. BB: Average
Error Reduction

BB vs. M1: Average
Error Reduction

Decision Stump 2.85% 2.96% -0.12%
No Naive Bayes 8.98% 8.15% 0.90%

C4.5 2.94% 10.21% -8.09%
Decision Stump 2.65% 0.65% 2.65%

10% Naive Bayes 11.39% 8.94% 2.69%
C4.5 18.50% 21.04% -3.22%

Decision Stump 5.11% 1.55% 2.81%
20% Naive Bayes 13.26% 12.67% 0.67%

C4.5 21.94% 22.19% -0.32%

For multi-class problems, we simply used ”steps” of−1 and
1 for incorrectly and correctly classified examples, respec-
tively.

We also ran experiments with 10% and 20% classification
noise in the training set. Additional experiments were per-
formed to determine how much of the improvement is due
to dagging vs. weight adjustment.

Without Noise Added
Figure 4 shows scatter plots of the error rates of all 23
datasets for each type of base classifier comparing Ad-
aBoost.M1 and AdaBoost.MV. Each point corresponds to
one dataset. The points below the diagonal line are when the
error rate is higher for AdaBoost.M1 than AdaBoost.MV.
T was set to 100 for AdaBoost.M1 and set to 50 for Ad-
aBoost.MV (both result in up to 100 base classifiers). No
noise was added to the datasets. The figure shows that when
using Decision Stumps as our base classifier, AdaBoost.MV
does as well as AdaBoost.M1.

In this case (see Table 2), AdaBoost.MV performed
better than AdaBoost.M1 on 12 of the datasets, worse
on 10 datasets, and tied on 1 dataset (12-10-1). Ad-
aBoost.MV does similar using C4.5 (12-10-1) and better us-
ing Naive Bayes (14-7-2). Compared with AdaBoost.M1,
AdaBoost.MV has a relative error reduction of about 3%
with Decision Stumps, 9% with Naive Bayes, and 3% with
C4.5 on average.

When we compare AdaBoost.MV with BrownBoost, Ad-
aBoost.MV performs at least as well as BrownBoost with
Decision Stumps (12-9-2), Naive Bayes (14-7-2) and C4.5
(14-8-1). However, when looking at the average error re-

duction, AdaBoost.MV reduces the error of BrownBoost by
about 3% with Decision Stumps, 8% with Naive Bayes, and
10% with C4.5.

With Noise Added
When noise is added to the training set using the Ad-
aBoost.M1 algorithm, there is an increased potential for
overfitting. At each iteration AdaBoost.M1 focuses on mis-
classified examples, which are typically the added noise.

When 10% classification noise is added to the training sets
(no noise in test sets), AdaBoost.MV performs better than
AdaBoost.M1 with Decision Stumps (13-6-4, error reduc-
tion 3%) and Naive Bayes (17-6-0, error reduction 11%).
Where we see the most improvement is with C4.5. Ad-
aBoost.MV not only improves the error for 18 of the 23
datasets (18-2-3), but also the relative error reduction is 18%
on average. Figure 5 shows a scatter plot of these results.

When 20% classification noise is added to the training
sets, AdaBoost.MV with Decision Stumps does not clearly
outperform AdaBoost.M1 (11-11-1, error reduction 5%).
However, AdaBoost.MV does much better with Naive Bayes
(18-5-0, error reduction 13%) and C4.5 (18-5-0, error reduc-
tion 22%).

We also compared AdaBoost.MV with BrownBoost us-
ing 10% and 20% classification noise. We found that Ad-
aBoost.MV with Decision Stumps did as well as Brown-
Boost with 10% noise (9-10-4, error reduction 1%) and 20%
noise (14-7-2, error reduction 2%). With Naive Bayes, Ad-
aBoost.MV showed an improvement with both 10% noise
(16-6-1, error reduction 9%) and 20% noise (17-6-0, error
reduction 13%). Where we see the biggest difference is with

547

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

A
da

B
oo

st
.M

V
 E

rr
or

 w
ith

 D
ec

is
io

n
S

tu
m

p

AdaBoost.M1 Error with Decision Stump

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

A
da

B
oo

st
.M

V
 E

rr
or

 w
ith

 N
ai

ve
 B

ay
es

AdaBoost.M1 Error with Naive Bayes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

A
da

B
oo

st
.M

V
 E

rr
or

 w
ith

 C
4.

5

AdaBoost.M1 Error with C4.5

Figure 4: Error of AdaBoost.MV vs. AdaBoost.M1 run with 100 classifiers, using Decision Stumps (left), Naive Bayes (middle),
and C4.5 (right).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

A
da

B
oo

st
.M

V
 E

rr
or

 w
ith

 D
ec

is
io

n
S

tu
m

p

AdaBoost.M1 Error with Decision Stump

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

A
da

B
oo

st
.M

V
 E

rr
or

 w
ith

 N
ai

ve
 B

ay
es

AdaBoost.M1 Error with Naive Bayes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

A
da

B
oo

st
.M

V
 E

rr
or

 w
ith

 C
4.

5

AdaBoost.M1 Error with C4.5

Figure 5: Error of AdaBoost.MV vs. AdaBoost.M1 run with 100 classifiers with 10% noise added, using Decision Stumps
(left), Naive Bayes (middle), and C4.5 (right).

C4.5. AdaBoost.MV performs much better than Brown-
Boost with 10% noise (22-1-0, error reduction 21%) and
20% noise (18-4-1, error reduction 22%).

The Effects of 2-Dagging and Early Stopping
As previously mentioned, a gain in accuracy might be
achieved simply by early stopping. In this set of experi-
ments, we determined which elements of AdaBoost.MV led
to the performance gains. We compared three versions of
AdaBoost.MV:
1. 2-Dagging is used, but not early stopping or weight ad-

justment. This is implemented by skipping steps 4-6 of
the AdaBoost.MV algorithm in Figure 3.

2. 2-Dagging and early stopping are used, but not weight
adjustment. The FitToValidate subroutine is used only to
determine the number of classifiers.

3. The full AdaBoost.MV algorithm is used, with dagging,
early stopping, and weight adjustment.
The relative error reduction of these versions vs. Ad-

aBoost.M1 was determined over the 23 datasets for the three
types of base classifiers, with and without 10% classification
noise. Figure 6 shows bar graphs of average error reduction
when no noise is added (left) and 10% classification noise is
added (right).

These bar graphs show that a large part of the error re-
duction is due to dagging alone, though it leads to a per-

formance decrease for Decision Stumps with noise. Adding
early stopping generally leads to a small performance de-
crease. However, AdaBoost.MV, which performs the com-
bination of dagging, early stopping, and weight adjustment
consistently provides an increase in performance over the
two other versions.

Conclusion

Our results (Table 2) show that AdaBoost.MV alleviates
some of the overfitting by AdaBoost.M1. It is evident that
there is more improvement in performance with more com-
plex base classifiers. There is little or no improvement with
Decision Stumps, but a large improvement with C4.5. Com-
paring AdaBoost.MV with BrownBoost, the same pattern
occurs with the largest improvement using C4.5.

An important aspect of our experiments is that the im-
provement is achieved using the same number of base clas-
sifiers. Because each base classifier in AdaBoost.MV is
trained on half of the training data, we expect AdaBoost.MV
to be more efficient than AdaBoost.M1. Timings of our ex-
periments showed this to be true. For example, in the exper-
iments run using C4.5 with 10% noise added to the training
sets, the average runtime for BrownBoost is about 5 times
greater than the runtime for AdaBoost.MV, 8 to 10 times
greater on some large datasets such as mushroom and sick.
AdaBoost.M1 has a runtime of about 2 to 3 times greater

548

Decision
Stump

Naive Bayes Decision tree

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

2−Dagging 2−Dagging, early
stop

2−Dagging, early
stop, adjust
weight

Base Classifiers − No Noise Added

A
ve

ra
ge

 E
rr

or
 R

ed
uc

tio
n

Decision
Stump

Naive Bayes Decision tree

−2.50

0.00

2.50

5.00

7.50

10.00

12.50

15.00

17.50

2−Dagging 2−Dagging, early
stop

2−Dagging, early
stop, adjust
weight

Base Classifiers − 10% Noise Added

A
ve

ra
ge

 E
rr

or
 R

ed
uc

tio
n

Figure 6: Average error reduction by using AdaBoost.MV with dagging only, dagging and early stopping, and dagging, early
stopping, and adjusting the weights with the validation set, no noise (left), 10% classification noise (right)

than AdaBoost.MV.
In the future, we will continue to look for ways to better

use our techniques. We will also look for ways to apply
dagging and validation to other learning algorithms.

References
Blake, C. L., and Merz, C. J. 1998. UCI repository of
machine learning databases.
Dietterich, T. 2000. Ensemble methods in machine learn-
ing. Lecture Notes in Computer Science1857:1–15.
Domingo, C., and Watanabe, O. 2000. Scaling up a
boosting-based learner via adaptive sampling. InPacific-
Asia Conference on Knowledge Discovery and Data Min-
ing, 317–328.
Elkan, C. 1997. Boosting and naive bayesian learning.
Technical report, Department of Computer Science and En-
gineering, University of California, San Diego, CA.
Freund, Y., and Schapire, R. E. 1996. Experiments with a
new boosting algorithm. InProc. Thirteenth Int. Conf. on
Machine Learning, 148–156.
Freund, Y., and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting.J. of Computer and System Sciences55(1):119–
139.
Freund, Y. 1990. Boosting a weak learning algorithm by
majority. InCOLT: Proceedings of the Workshop on Com-
putational Learning Theory.
Freund, Y. 1999. An adaptive version of the boost by ma-
jority algorithm. InCOLT: Proceedings of the Workshop
on Computational Learning Theory.
Groves, A. J., and Schuurmans, D. 1998. Boosting in the
limit: Maximizing the margin of learned ensembles. In
Proc. Fifteenth Int. Conf. on Artificial Intelligence, 692–
699.

Heskes, T. 1997. Balancing between bagging and bump-
ing. In Advances in Neural Information Processing Sys-
tems, 466.
Jiang, W. 2000. Process consistency for adaboost. Techni-
cal report, Department of Statistics, Northwestern Univer-
sity.
Nakamura, M.; Nomiya, H.; and Uehara, K. 2002. Im-
provement of boosting algorithm by modifying the weight-
ing rule. In Annals of Mathematics and Artificail Intelli-
gence, volume 41, 95–109.
Quinlan, J. R. 1996. Bagging, boosting, and C4.5. In
Proc. Thirteenth National Conf. on Artificial Intelligence,
725–730.
Ratsch, G.; Onoda, T.; and Muller, K. R. 2001. Soft mar-
gins for adaboost.J. of Machine Learning42(3):287–320.
Servedio, R. A. 2003. Smooth boosting and learning with
malicious noise.J. of Machine Learning Research4:633–
648.
Ting, K. M., and Witten, I. H. 1997. Stacking bagged and
dagged models. InProc. 14th International Conference on
Machine Learning, 367–375. Morgan Kaufmann.
Witten, I. H., and Frank, E. 2000.Data Mining: Practi-
cal machine learning tools with Jave implementations. San
Francisco, California: Morgan Kaufmann.

549

