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Abstract 
The main contribution of this paper is to suggest a novel 
technique for automatic creation of accurate ensembles. The 
technique proposed, named GEMS, first trains a large 
number of neural networks (here either 20 or 50) and then 
uses genetic programming to build the ensemble by 
combining available networks. The use of genetic 
programming makes it possible for GEMS to not only 
consider ensembles of very different sizes, but also to use 
ensembles as intermediate building blocks which could be 
further combined into larger ensembles. To evaluate the 
performance, GEMS is compared to different ensembles 
where networks are selected based on individual test set 
accuracy. The experiments use four publicly available data 
sets and the results are very promising for GEMS. On two 
data sets, GEMS has significantly higher accuracy than the 
competing ensembles, while there is no significant 
difference on the other two.  

Introduction 
The primary goal when performing predictive modeling is 
to achieve high accuracy, i.e., a low error between the 
predicted value and the target value, when the model is 
applied to novel data. Although there are many available 
data mining techniques, Artificial Neural Networks 
(ANNs) are often used if there is no explicit demand 
requiring a transparent model. The motivation is that 
ANNs are known to often produce very accurate models in 
many diverse domains.  

Within the research community it is, however, a well-
known fact that the use of ensembles consisting of several 
models normally produces even higher accuracy, 
compared to single models; see e.g. the papers by Hansen 
and Salmon (1990) and Krogh and Vedelsby (1995). 
Despite this, the use of ensembles in applications is still 
limited. Two possible reasons for this are insufficient 
knowledge about the benefits of using ensembles and 
limited support in most data mining tools. In addition, even 
when ensembles are used, very simple designs are often 
preferred. A typical choice would be to train exactly five 
(or ten) ANNs with identical topology and simply average 
the output.  

With this in mind, algorithms for constructing accurate 
ensembles should be of significant interest to both 
researchers and practitioners within the data mining 
community. The overall purpose of this paper is to suggest 

and evaluate a novel technique for automatic creation of 
ANN ensembles. 

Background and related work 
Although any algorithm for constructing ensembles must 
somehow determine ensemble members, the actual 
selection could be performed in many different ways. 
Standard techniques like bagging, introduced by Breiman 
(1996), and boosting, introduced by Shapire (1990), rely 
on resampling techniques to obtain different training sets 
for each of the classifiers. Both bagging and boosting can 
be applied to ANNs, although they are more common 
when using decision trees; see e.g. (Opitz and Maclin, 
1999). Another option is to train each classifier 
independently and then either combine all classifiers or 
select a subset of classifiers to form the actual ensemble. 
Regardless of exactly how the actual creation is carried 
out, a very important part of all algorithms creating 
ensembles is how the evaluation of possible ensembles is 
performed. 

Several approaches try to create ensembles by somehow 
applying genetic algorithms (GAs) to search for optimal 
ensembles. Zhou et al. (2001), (2002) proposed a method 
named GASEN, where several ANNs are trained before 
GAs are used to select an optimal subset of individual 
networks. In GASEN, the optimization is performed on 
individual ANNs and each ANN is coded (in the gene) as a 
real number denoting the benefit of including that ANN in 
the final ensemble. The optimization criterion (the fitness) 
is rather technical but boils down to accuracy on a hold-out 
(test) set. The number of ANNs in the ensemble can vary 
since all ANNs with strength values higher than a specific 
threshold (which is a pre-set parameter) are included in the 
ensemble.  

Opitz and Shavlik (1996) proposed a method called 
ADDEMUP where the GA is used for creating new ANNs 
as parts of an ensemble. The size of the ensemble is 
predetermined and fixed. ADDEMUP uses a fitness 
function directly balancing accuracy against diversity, also 
using a test set. 

We have recently proposed and evaluated a novel, but 
simpler, approach also based on GAs (Johansson, 
Löfström and Niklasson, 2005a). Here several individual 
ANNs are trained separately, on the same data set, and 
then GAs are used to directly find an accurate ensemble 
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from these ANNs. More specifically, each gene is 
represented as a sequence of zeroes and ones (a 
“bitstring”) where the chromosomes correspond to a 
particular ANN. As expected a “1” would indicate that the 
specific ANN should be included in the ensemble. The 
optimization is performed on ensembles and the fitness is 
based directly on ensemble accuracy on training and/or test 
sets. The number of ANNs in the ensemble can vary since 
optimization is performed on the ensemble level. In that 
study we also evaluated numerous, more basic ways of 
creating ensembles, without the use of GAs. Although our 
novel technique performed best, an interesting result was 
that some extremely straightforward approaches came very 
close. More specifically; if we trained 50 ANNs with 
slightly different architectures (for details see the original 
paper) and used the ten ANNs with highest individual 
accuracy on the test set to form the ensemble, these 
ensembles turned out to have almost as high accuracy on 
the production set as the ones created using GAs.  

With these results in mind, together with the fact that 
several (if not most) existing techniques use test set 
accuracy to select ensemble members, we decided to look 
into the importance of test set accuracy in the next study, 
(Johansson, Löfström and Niklasson, 2005b). Here the 
evaluation boiled down to whether the correlation between 
test set accuracy and production set accuracy is high 
enough to motivate its use as selection criterion. The 
somewhat surprising result was that the correlation 
between accuracy on one hold-out set (the test set) and 
another hold-out set (the production set) often was very 
low. As a matter of fact, in our experiments there was, in 
general, absolutely nothing to gain from using an ensemble 
with high test set accuracy compared to a random 
ensemble. 

Method 
In this section we first introduce a novel technique named 
GEMS (Genetic Ensemble Member Selection) for the 
creation of ANN ensembles. In the second part, we 
describe the details regarding the experiments conducted. 
Since GEMS consists of two steps, each requiring several 
design choices and parameters, we start with a brief 
description of the main characteristics.  

In the first step of GEMS a number of ANNs are trained 
and stored in a pool. Each ANN uses a 1-of-C coding (i.e. 
a localist representation) so the number of output units is 
equal to the number of classes. The activation level of the 
output units for a specific ANN is termed its result vector. 
In the second step Genetic Programming (GP), is used to 
create the actual ensemble. When using GP, the ensembles 
are coded as (genetic) programs, each individual 
representing a possible combination of the available 
ANNs. More specifically; each ensemble is represented as 
a tree, where the internal nodes contain operators while the 
leaves must be either ANNs from the pool or (random) 
constants. At the moment, GEMS has only two operators; 
FACT and AVG. FACT is used to multiply a result vector 

with a constant while AVG averages the result vectors 
from its children. 

It should be noted that this in fact means that GEMS 
builds ensembles using a mix of smaller ensembles and 
single ANNs as building blocks. Fig. 1 shows a GEMS 
ensemble coded in the tree format described above. This 
very small, sample, ensemble uses only three ANNs and 
the result is the average of ANN3 (multiplied with a factor 
0.8) and the average of ANN1 and ANN2. 

 

Fig. 1: A sample GEMS ensemble 

GEMS 
This study consists of two experiments. The number of 
available ANNs is 50 and 20, respectively. In both 
experiments, half of the ANNs has one hidden layer, while 
the other half has two hidden layers. Each ANN is a fully 
connected multi-layer perceptron network, with slightly 
randomized architecture. For an ANN with only one 
hidden layer the number of hidden units is determined 
from (1) below. 
 
   ( ) ( )h v c rand v c= ∗ + ⋅ ∗⎢ ⎥⎣ ⎦       (1) 
 
where v is the number of input variables and c is the 
number of classes. rand is a random number in the interval 
[0, 1]. For ANNs with two hidden layers the number of 
units in each hidden layer is determined from (2) and (3) 
below. 
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where c again is the number of classes and h is calculated 
using (1). All networks were trained with the Levenberg-
Marquardt backpropagation algorithm. 

When performing GP the two most important 
parameters are the representation language used and the 
fitness function. In this study we wanted to keep both as 
simple as possible. With this in mind the function and 
terminal sets are: 

 
F = {AVG, FACT} 
 
T = {ANN1, ANN2, …, ANNn, ℜ} 

 
where ℜ is a random number in the interval [0, 1]. 
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ℜ is only used as a scaling factor together with the FAC 
operator.  

The fitness function is based on three components. The 
first component adds a constant value to the fitness for 
each pattern in the training set that is correctly classified. 
The second component is identical to the first with the 
exception that it uses the test set. The third component is a 
penalty for longer programs that adds a negative constant 
value to the fitness for each part of the program.  

We have chosen to base the fitness on both the test set 
and the training set since that strategy proved to be most 
successful in our first study regarding ensembles; see 
(Johansson, Löfström and Niklasson, 2005a). It is, 
however, far from trivial exactly how we should balance 
accuracy on test samples against accuracy on training 
samples. Whether to use a penalty for larger ensembles 
and, if so, the appropriate magnitude, is another tricky 
question. Obviously, the constants used in the fitness 
function will significantly affect the behavior of the GP. In 
this initial GEMS study we elected to set the constants to 
1, 3 and 0.01 respectively; resulting in the fitness function 
given in (4). 

 1
# 3 #

100train testf correct correct size= + ⋅ −    (4) 
 

Crossover and mutation are performed as usual; with the 
addition that it is ensured that an offspring always is a 
correct program. With the representation language chosen, 
this means that the FACT node must have exactly one 
(random) constant child node. The other child could be a 
single ANN (a leaf node) or an AVG node. For an AVG 
node both children could be single ANN terminals, another 
AVG node or a FACT node.  

With this representation language GEMS has the ability 
to combine the available ANNs in a huge number of ways. 
During evolution GEMS is actually using genetic blocks 
representing ensembles to create new ensembles. This 
extreme flexibility is a key property of the GEMS 
technique. Naturally the GP itself also has several 
parameters. The most important are given in Table 1 
below. 

 
Parameter Value 
Crossover rate 0.8 
Mutation rate 0.001 
Population size 500 
Generations 500 
Creation depth 8 
Creation method Ramped half-and-half 
Elitism Yes 

Table 1: GP parameters 

 

Experiments 
The four data sets used in this study are all publicly 
available from the UCI Repository (Blake and Merz, 
1998). For a summary of the data set characteristics, see 
Table 2. Cont is the number of continuous input variables. 
Cat is the number of categorical input variables and Total 
is the total number of input variables. 
 

Data set Instances Classes Cont Cat Total
CMC 1473 3 2 7 9 
TAE 151 3 1 4 3 
Tic-Tac-Toe 958 2 0 9 9 
Vehicle 846 4 18 0 18 

Table 2: Data sets 

For each data set 40 runs were measured. Before each run 
the data set was randomly divided into four parts; a 
training set (50% of the patterns) used to train the ANNs, a 
validation set (10%) used for early stopping, a test set 
(20%) used to select ensembles and a production set 
(20%). The production set is of course a hold-out set used 
exclusively to measure performance. To evaluate GEMS 
we also created four competing ensembles on each run. 
Each competing ensemble consists of a fixed number of 
ANNs, based on test set accuracy; i.e. an ensemble 
consisting of five ANNs includes the best five individual 
ANNs, measured on the test set. The exact number of 
ANNs in the fixed ensembles is given in Table 3 below.  
 

Ensemble 

#ANNs in first 
experiment  

(total 20 ANNs) 

#ANNs in second 
experiment  

(total 50 ANNs) 
Quarter 5 13 
Half 10 25 
Three-quarter 15 39 
All 20 50 

Table 3: Number of ANNs in fixed ensembles 

In this study, the output from a fixed ensemble is always 
the average of the output from all members. Since 1-of-C 
coding is used, the unit (or index in the result vector 
rather) with the highest (averaged) output finally 
determines the predicted class.  

Results 
Given the limited space, we elect to present results from 
only one data set and experiment in great detail. We 
choose the experiment with 50 ANNs and the Tic-Tac-Toe 
data set. All other results will be presented in summarized 
form only, as mean values. Table 4 and 5 show both test 
and production results from all 40 runs.  
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Run Quarter Half Three-
quarter 

All GEMS 

1 0.865 0.849 0.839 0.833 0.901 
2 0.875 0.859 0.844 0.833 0.917 
3 0.880 0.870 0.875 0.859 0.953 
4 0.865 0.870 0.865 0.854 0.901 
5 0.870 0.865 0.849 0.844 0.906 
6 0.859 0.854 0.844 0.833 0.932 
7 0.828 0.818 0.802 0.792 0.891 
8 0.906 0.911 0.891 0.891 0.938 
9 0.865 0.865 0.849 0.823 0.927 
10 0.917 0.911 0.927 0.917 0.948 
11 0.943 0.911 0.880 0.859 0.969 
12 0.927 0.891 0.865 0.849 0.964 
13 0.844 0.844 0.823 0.818 0.917 
14 0.880 0.870 0.870 0.859 0.901 
15 0.911 0.891 0.880 0.870 0.948 
16 0.906 0.891 0.865 0.844 0.917 
17 0.859 0.844 0.818 0.818 0.901 
18 0.917 0.891 0.854 0.839 0.938 
19 0.927 0.896 0.885 0.885 0.958 
20 0.896 0.859 0.844 0.839 0.943 
21 0.859 0.844 0.828 0.833 0.901 
22 0.932 0.901 0.896 0.885 0.948 
23 0.859 0.849 0.854 0.828 0.906 
24 0.911 0.891 0.880 0.859 0.953 
25 0.870 0.870 0.849 0.839 0.932 
26 0.922 0.911 0.901 0.880 0.948 
27 0.854 0.844 0.818 0.802 0.906 
28 0.948 0.917 0.859 0.839 0.964 
29 0.875 0.849 0.844 0.844 0.922 
30 0.880 0.854 0.849 0.828 0.922 
31 0.891 0.859 0.833 0.813 0.927 
32 0.880 0.849 0.823 0.802 0.917 
33 0.859 0.849 0.854 0.849 0.901 
34 0.865 0.859 0.859 0.854 0.917 
35 0.917 0.896 0.880 0.865 0.953 
36 0.922 0.911 0.875 0.865 0.974 
37 0.849 0.839 0.818 0.807 0.917 
38 0.938 0.911 0.901 0.875 0.974 
39 0.922 0.917 0.896 0.885 0.953 
40 0.922 0.906 0.896 0.865 0.958 
Mean 0.890 0.875 0.860 0.847 0.932 

Table 4: Tic-Tac-Toe test set results using 50 ANNs 

In this experiment, GEMS ensembles have, on average, 
more than 4 % higher test set accuracy than the second 
best ensemble, which is the Quarter ensemble. 

Run Quarter Half Three-
quarter 

All GEMS 

1 0.811 0.811 0.811 0.805 0.853 
2 0.847 0.826 0.816 0.821 0.874 
3 0.821 0.789 0.779 0.768 0.874 
4 0.847 0.847 0.837 0.826 0.853 
5 0.842 0.816 0.821 0.821 0.853 
6 0.858 0.853 0.842 0.842 0.889 
7 0.811 0.821 0.800 0.789 0.853 
8 0.889 0.879 0.879 0.868 0.900 
9 0.858 0.858 0.853 0.837 0.853 
10 0.889 0.874 0.853 0.853 0.916 
11 0.932 0.895 0.853 0.853 0.942 
12 0.847 0.853 0.821 0.811 0.837 
13 0.858 0.837 0.832 0.816 0.900 
14 0.816 0.795 0.805 0.795 0.832 
15 0.853 0.847 0.837 0.842 0.863 
16 0.816 0.816 0.800 0.795 0.842 
17 0.895 0.895 0.879 0.874 0.905 
18 0.858 0.847 0.847 0.842 0.874 
19 0.879 0.842 0.816 0.795 0.900 
20 0.853 0.842 0.805 0.821 0.905 
21 0.837 0.853 0.821 0.821 0.868 
22 0.884 0.884 0.863 0.863 0.900 
23 0.821 0.816 0.811 0.800 0.853 
24 0.816 0.795 0.779 0.774 0.842 
25 0.853 0.842 0.842 0.847 0.884 
26 0.905 0.879 0.874 0.874 0.863 
27 0.858 0.863 0.826 0.816 0.884 
28 0.900 0.895 0.874 0.863 0.958 
29 0.863 0.868 0.842 0.858 0.863 
30 0.842 0.811 0.789 0.774 0.884 
31 0.916 0.916 0.900 0.884 0.932 
32 0.911 0.858 0.832 0.837 0.911 
33 0.947 0.921 0.926 0.900 0.932 
34 0.858 0.847 0.842 0.853 0.853 
35 0.900 0.874 0.837 0.847 0.942 
36 0.837 0.832 0.826 0.805 0.858 
37 0.842 0.821 0.805 0.805 0.879 
38 0.895 0.900 0.879 0.874 0.921 
39 0.895 0.884 0.874 0.863 0.884 
40 0.921 0.895 0.879 0.879 0.926 
Mean 0.864 0.852 0.838 0.833 0.884 

Table 5: Tic-Tac-Toe production set results using 50 ANNs 

On the production set, the accuracy of the GEMS 
ensembles is also considerably higher than all the 
competing ensembles. 
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From Table 4 it is very clear that GEMS is more than 
able to achieve high accuracy on the fitness data. Another 
illustration of this is shown in Fig. 2, where test set 
accuracy vs. production set accuracy are plotted for the 
GEMS and the Quarter ensemble.  

Fig. 2: Test set accuracy vs. production set accuracy 

From Fig. 2 it is obvious that GEMS ensembles are much 
more accurate on the test set, compared to the other 
ensembles (here Quarter). As a matter of fact this holds for 
all data sets; see Table 6 and Table 7 below. For the TAE 
and Tic-Tac-Toe data sets, this advantage transfers to the 
production set. Unfortunately, this is not the case for CMC 
and Vehicle. We believe this to be an important 
observation, although we are not sure about the reason.  

Table 6 summarizes the results for the first experiment 
(20 ANNs in pool) for all data sets. The value for each 
ensemble is the average over all 40 runs. 
 

Quarter Half Three-
quarter 

All GEMS Data set 

Test Prod Test Prod Test Prod Test Prod Test Prod
CMC .574 .552 .569 .555 .563 .555 .553 .552 .605 .554
TAE .622 .519 .603 .526 .582 .528 .552 .529 .702 .548
Tic-Tac-Toe .868 .856 .861 .850 .851 .844 .839 .839 .906 .865
Vehicle .866 .837 .864 .845 .857 .845 .852 .845 .892 .845
Mean .732 .691 .724 .694 .713 .693 .699 .691 .776 .703

Table 6: Results using 20 ANNs 

On two of the data sets, TAE and Tic-Tac-Toe, GEMS 
clearly outperforms the other ensembles. A pair-wise t-test, 
between GEMS and Half, shows that the difference is 
statistically significant; the p-values for TAE and Tic-Tac-
Toe are 0.024 and 0.008, respectively. On CMC and 
Vehicle all five techniques show very similar results. 

Table 7 summarizes the results for the second 
experiment (50 ANNs) including the Tic-Tac-Toe results 
presented in detail above.  

 

Quarter Half Three-
quarter 

All GEMS Data set 

Test Prod Test Prod Test Prod Test Prod Test Prod
CMC .569 .551 .564 .552 .556 .550 .551 .550 .589 .552
TAE .609 .503 .580 .503 .548 .508 .524 .513 .724 .536
Tic-Tac-Toe .890 .864 .875 .852 .860 .838 .847 .833 .932 .884
Vehicle .863 .847 .859 .847 .854 .845 .846 .845 .897 .846
Mean .733 .691 .719 .688 .704 .685 .692 .685 .786 .705

Table 7: Results using 50 ANNs 

The results are quite similar to the first experiment. The 
GEMS ensembles on TAE and Tic-Tac-Toe are again 
significantly better than all other ensembles. The p-values 
between GEMS and Quarter are for TAE 0.024 and for 
Tic-Tac-Toe 4.2⋅10-7. The results for CMC and Vehicle 
are, however, once again almost identical. 

A comparison of the results from the two experiments 
shows that there is no significant difference between using 
20 or 50 ANNs, and that this holds for both the fixed 
ensembles and for GEMS. 

The ensembles constructed by GEMS are extremely 
varied in both size and shape. The length penalty does, 
however, put a big pressure on the evolution, often 
resulting in remarkably small ensembles. As a matter of 
fact, it is not uncommon with ensembles using less than 5 
ANNs. Below are sample ensembles (shown in the internal 
format used by GEMS) from two different runs. The first 
ensemble, shown in Fig. 3, is rather small and the second 
(shown in Fig. 4) is of about average size.  

 
(avg(avg(ann2)(ann3))(avg(ann37)(ann8))) 

Fig. 3: Small sample ensemble in GEMS internal format 

 
(avg(avg(avg(*(0.898)(avg(ann7)(ann18)))(
*(0.874)(avg(ann15)(ann14))))(avg(*(0.227
)(avg(ann15)(ann18)))(*(0.717)(avg(ann15)
(ann4)))))(*(0.574)(avg(avg(ann6)(ann1))(
*(0.186)(ann13))))) 

Fig. 4: Average-size sample ensemble 

The possibility of using a specific ANN more than once in 
an ensemble is often utilized. The ensemble in Fig. 4 is one 
example, since it uses ann15 three times. 

Conclusions 
From the results it is obvious that GEMS is an interesting 
technique that should be further evaluated. In this first 
study we consistently choose very simple parameter 
settings. Despite this, GEMS clearly outperformed the 
other ensembles on two data sets. We believe that different 
parameter settings could significantly increase the 
performance of GEMS, although it might require fine-
tuning for each data set. In addition the versatile nature of 
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GP makes it very easy to include new operators; e.g. a 
“majority vote” node. 

Arguably the most important ability of GEMS is the 
possibility to use any combination of the available ANNs; 
including the option to use specific ANNs several times in 
one ensemble. Perhaps it would be more correct to 
describe GEMS as a Meta ensemble builder, since its 
building blocks in fact are ensembles. 

Discussion and future work 
First of all it must be noted that GEMS, in this study, is 
only compared to other ensembles. Very often novel 
ensemble techniques are instead compared to single 
models. To us it is, however, evident that the use of an 
ensemble is clearly superior to single models and therefore 
such comparisons are left out. 

On the other hand, it seems to be extremely hard to 
come up with a technique that is always able to obtain 
ensembles significantly better than straightforward 
choices. Part of this is probably due to the fact that test set 
accuracy does not seem to be the silver bullet it is often 
assumed to be. As a matter of fact, the standard procedure 
of using test set accuracy when comparing models must be 
questioned. We all agree that the overall goal is to achieve 
high accuracy on unseen data, so naturally the best 
possible test seems to be to measure exactly that, accuracy 
on unseen data. This reasoning, however, has a devious 
shortcoming; the real issue is how a model chosen from 
accuracy on a test set would perform on yet novel data. If 
we use a test set to somehow choose one model over 
another, the underlying assumption must be that there is a 
high correlation between accuracy on that test set and 
accuracy on another set of unseen data; i.e. the production 
set. If this assumption does not hold, there is obviously 
little to gain from using a test set as a basis for ensemble 
construction. 

With this in mind, one very interesting observation is the 
fact that although GEMS consistently had much higher 
accuracy on the test set (compared to the other ensembles) 
this property was not always preserved in the production 
set. Even though the fitness function used all available data 
(i.e. both training and test data) and a length penalty was 
used to encourage smaller ensembles, the most probable 
explanation is that the GP has overfit the test data. Just to 
iterate this important point; at the moment GEMS will 
always have very high accuracy on the part of the data set 
covered by the fitness function, but this does not 
necessarily carry over to the production set. How to deal 
with this problem is the top priority for future studies. At 
the moment we are considering two different strategies.  

The first is the very straightforward choice to dispose of 
the test set altogether. We believe that the best use of the 
data set might be to use all available data for both ANN 
training and GP evolution. One micro technique to enforce 
some diversity among the networks could be to train each 
ANN using only part of the available training data (e.g. 
70%) and randomize the exact patterns for each network.  

The second strategy we consider is to change the GP 
training regime to avoid overspecialization on a specific 
part of the data. One option is to use something similar to 
standard boosting and another is to constantly alter the 
fitness set by randomly adding and removing data patterns 
between generations. Using either of these regimes should 
favor more general ensembles, and hopefully that should 
carry over to the production set. 
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