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Abstract 
In this paper, three approaches are presented for generating 
and validating sequences of different size neural nets. First, 
a growing method is given along with several weight 
initialization methods, and their properties. Then a one 
pass pruning method is presented which utilizes orthogonal 
least squares. Based upon this pruning approach, a one-
pass validation method is discussed. Finally, a training 
method that combines growing and pruning is described. 
In several examples, it is shown that the combination 
approach is superior to growing or pruning alone. 

 Introduction   

According to the structural risk minimization (SRM) 
principle, a sequence of learning machines of increasing 
size should be produced, and trained as well as possible. 
The machine with the smallest validation error is the best 
compromise between the training error and the 
complexity of the network. If this principal is followed 
with neural nets, the final training error as a function of 
the number of hidden units, Ef(Nh), will be monotonically 
nonincreasing. Sequences of networks are produced 
though growing methods and pruning methods. In 
growing methods (Delashmit 2003), one can design a set 
of different size networks in an orderly fashion, each with 
one or more hidden units than the previous network 
(Fahlman et. al. 1990) (Chung & Lee 1995). A drawback 
of growing methods is that the network can get trapped in 
local minima and they are also sensitive to initial 
conditions.  
   In pruning methods, a large network is trained and then 
less useful nodes or weights are removed  (Hassibi et. al. 
1993) (LeCun et.al. 1990) (Sakhnini, Manry, & 
Chandrasekaran 1999). Some pruning algorithms remove 
less useful hidden units using the Gram-Schmidt 
procedure as reported by Kaminsky and Strumillo (1997) 
for Radial Basis Functions and Maldonado et.al. (2003) 
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for the multilayer perceptron (MLP). Unfortunately, if 
one large network is trained and pruned, the resulting 
error versus Nh curve is not minimal for smaller networks. 
In other words, it is possible, though unlikely, for each of 
the hidden units to be equally useful after training. 
   In this paper, we investigate three approaches for 
generating and validating sequences of different size 
neural nets. First, a growing method is described, along 
with analyses of weight initialization methods. Then a 
pruning method is presented which requires only one pass 
through the training data. A one-pass validation method is 
presented, which is based upon pruning. Next, a method 
that combines growing and pruning is presented. Results 
show that this third approach overcomes the shortcomings 
of growing or pruning alone. 

Multilayer Perceptron 
Figure 1 depicts feed-forward MLP, having one hidden 
layer with Nh nonlinear units and an output layer with M 
linear units. For the pth pattern, the jth hidden unit’s net 
function and activation are 
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Here the threshold of the jth node is handled by letting 
xp,N+1 be one. Weight w(i, j) connects the ith input to the jth 
hidden unit. The kth output for the pth pattern is, 
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where 1 ≤ k ≤ M. The first sum in (3) describes the effect 
of bypass weights connecting inputs and outputs. There 
are Nv training patterns denoted by vN

ppp 1)},{( =tx , where 
each pattern consists in an input vector xp and a desired 
output vector tp. For the pth pattern, the N input values are 
xpi, (1 ≤ i ≤ N) and the M desired output values are tpk (1 ≤ 
k ≤ M). Example training algorithms are Levenberg 
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Marquart (Fun & Hagan 1996), backpropagation, Output 
Weight Optimization – Hidden Weight Optimization (Yu 
et.al., 2005), and Genetic Algorithms (Arena et al. 1992).  

Growing Approach 
In growing methods, which we denote as Design 
Methodology 1 (DM-1), we successively train larger 
networks. A pioneering example is the cascade correlation 
approach of Fahlman and Lebierre, 1990. In DM-1 
algorithms, the final training MSE versus Nh curve, 
Ef(Nh), along with the validation error versus Nh curve 
Eval(Nh), should help us find the required network.  

 
Figure 1: Two layer MLP 

 
MLP training is strongly dependent on the initial weights, 
so proper initialization is critical. To define the problem 
being considered, assume that a set of MLPs of different 
sizes (i.e., different number of hidden units, Nh) is to be 
designed for a given training data set. 
Axiom 1: If Ef(Nh) > Ef(Nh - 1), then training has failed 
for the network having Nh hidden units, since the larger, 
more complex network has a larger training error. 
Monotonic Ef(Nh) curves make smoothly varying Eval(Nh) 
curves more likely, which makes structural risk 
minimization easier to perform. Three distinct types of 
network initialization are considered. 

Randomly Initialized Networks 
When a set of MLPs are Randomly Initialized (RI), they 
have no initial weights or thresholds in common. These 
networks are useful when the goal is to quickly design 
one or more networks of the same or different sizes whose 
weights are statistically independent of each other. 
Growing of RI networks can be designated as DM-1a. 
Theorem 1: If two initial RI networks (1) are the same 
size, (2) have the same training data set and (3) the 
training data set has more than one unique input vector, 

then the hidden unit basis functions are different for the 
two networks. 
   A problem with RI networks is that Ef(Nh) is 
nonmonotonic. That is, for well-trained MLPs, Ef(Nh) 
does not always decrease as Nh increases since the initial 
hidden unit basis functions are different. Let Ei(Nh) 
denote the final training error for an RI network having 
Nh hidden units, which has been initialized using the ith 
random number seed based on Ns total seeds. Let Eav(Nh) 
denote the average Ei(Nh), that is 

∑
=

=
sN

i
hi

s
hav NE

N
NE

1
)(1)(                     (4) 

Using the Chebyshev inequality, a bound has been 
developed on the probability that the average error for Nh 
hidden units, Eav(Nh) is increasing (Delashmit 2003) and 
that the network with Nh + 1 hidden units is useless. 
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Here var() represents the variance and mav(Nh) represent 
the average MSE for Nh hidden units. 

Common Starting Point Initialized Networks 
When a set of MLPs are Common Starting Point 
Initialized with Structured Weight Initialization (CSPI-
SWI), the initialization of the weights and thresholds is 
ordered such that every hidden unit of the smaller 
network has the same weights as the corresponding 
hidden unit of the larger network. Input to output weights 
are also identical. These networks are more likely than RI 
networks to have monotonic Ef(Nh) curves. Growing with 
CSPI-SWI networks can be designated as DM-1b. 
Theorem 2: If two initial CSPI-SWI networks (1) are the 
same size and (2) use the same algorithm for processing 
random numbers into weights, then they are identical. 
Theorem 3: If two CSPI-SWI networks are designed, the 
common subsets of the initial hidden unit basis functions 
are identical. 
   The above theorems have been proved by Delashmit 
(2003). Unfortunately, DM-1b, although better than DM-
1a, does not guarantee a monotonic Ef(Nh) curve. 

Dependently Initialized Networks 
Growing with dependently initialized (DI) networks is 
designated as DM-1c. In DM-1c, a linear network is first 
trained. Then we successively add Na hidden units and 
retrain the network using the method of Yu et. al. (2005), 
which is a greedy algorithm. This is continued till the 
number of hidden units equals a user-chosen number. 
Properties of DI networks: Let Eint(Nh) denote the initial 
value of error during the training of an MLP with Nh 
hidden units and let Nhp denote the number of hidden 
units in the previous network, so Na = Nh - Nhp. Then: 
1. Eint(Nh) < Eint(Nhp) 
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2. Ef(Nh) ≤ Ef(Nhp) 
3. Eint(Nh) = Ef(Nhp) 
As seen in property 2, DM-1c, produces a monotonically 
decreasing Ef(Nh) versus Nh curve.  

Ordered Pruning 
Pruning of a large network, which we denote as Design 
Methodology 2 (DM-2), is a second common approach to 
producing a monotonic Ef(Nh) curve. The output of the 
network in equation 3, can be rewritten as 
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where xk = Op,(k-N-1) for N + 2 ≤ k ≤ Nu, where Nu is the 
total number of units equal to N + Nh + 1. In equation (6), 
the signals xk are the raw basis functions for producing yi. 
The purpose of pruning is to eliminate less useful hidden 
units, that have no information relevant for estimating 
outputs or that are linearly dependent on inputs or hidden 
units that have already been orthonormalized. 
   Here, we use the Schmidt procedure (Dettman, 1962) to 
order and remove less useful basis functions, following 
the approach of Maldonado et.al.(2003). Let j(m) be an 
integer valued function that specifies the order in which 
raw basis functions xk are processed into orthonormal 
basis functions x’k. Then x’m is to be calculated from xj(m), 
xj(m-1) and so on. This function also defines the structure 
of the new hidden layer where 1 ≤ m ≤ Nu and 1 ≤ j(m) ≤ 
Nu. If j(m) = k then the mth unit of the new structure 
comes from the kth unit of the original structure. Given the 
function j(m), and generalizing the Schmidt procedure, 
the mth orthonormal basis function is described as 
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Initially, x’1 is found as a11 . xj(1) where 
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Here r(i,j) is the auto-correlation between the ith and jth 
basis functions. For 2 ≤ m ≤ Nu, we first perform 
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Second, we set bm = 1 and get 
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Lastly, we get coefficients amk as 
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Then weights in the orthonormal system are found as 
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where c(i,j) is the cross-correlation between the jth basis 
function and the ith desired output. Now, our goal is to 
find the function j(m), which defines the structure of the 
hidden layer. Here it is assumed that the original basis 
functions are linearly independent i.e., the denominator of 
equation (11) is not zero.  
   Since we want the effects of inputs and the constant “1” 
to be removed from orthonormal basis functions, the first 
N+1 basis functions are picked as, 

mmj =)( , for 1 ≤ m ≤ N+1              (13) 
The selection process will be applied to the hidden units 
of the network. We now define notation that helps us 
specify the set of candidate basis function to choose in a 
given iteration. First, define S(m) as the set of indices of 
chosen basis functions where m is the number of units in 
the current network (i.e., the one that the algorithm is of 
processing). Then S(m) is given by 
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Starting with an initial linear network having 0 hidden 
units, where m is equal to N + 1, the set of candidate basis 
functions is Sc{m} = {1, 2, 3, …, Nu} – S(m), which is  
{N + 2, N + 3, …, Nu}. For N + 2 ≤ m ≤ Nu, we obtain 
Sc{m – 1}. For each trial value of j(m) ∈ Sc{m – 1}, we 
perform operations in equations (9-12). Then P(m) is 
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The trial value of j(m) that maximizes P(m) is found. 
Assuming that P(m) is maximum when testing the ith 
element, then j(m) = i. S(m) is updated as 

)}({)1()( mjmSmS U−=              (16) 
Then for the general case the candidate basis functions 
are, Sc(m - 1) = {1, 2, 3, …, Nu} – {j(1),  j(2), …, j(m - 
1)} with Nu - m + 1 candidate basis function. By using 
equation (15), after testing all the candidate basis 
function, j(m) takes its value and S(m) is updated 
according to equation (16). After the j(m) function is 
complete, both the original basis functions and the 
orthonormal ones are ordered. For any given desired 
number of hidden units Nhd , the orthonormal weights are 
mapped to normal weights according to:  
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Theorem 4: After performing ordered pruning, the order 
of the hidden units is stepwise optimal. For any given kth 
hidden unit, the (k+1)th unit is the one, out of the 
remaining units, which reduces the MSE the most.  

Validation 
Given the matrix A and the MLP network with ordered 
hidden units, we wish to generate the validation error 
versus Nh curve Eval(Nh) from the validation data set 
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vN
ppp 1)},{( =tx . For each pattern, we augment the input 

vector as in the previous sections. So the augmented input 
vector is xp ← [xT

p, 1, OT
p ]T . Then the augmented vector 

is converted into orthonormal basis functions by the 
transformation 
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In order to get the validation error for all size networks in 
a single pass through the data, we use the following 
strategy. Let ypi(m) represent the ith output of the network 
having m hidden units for the pth pattern, let Eval(m) 
represent the mean square error of the network for 
validation with m hidden units. First, the linear network 
output is obtained and the corresponding error is 
calculated as follows: 
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Then for 1 ≤ m ≤ Nh, the following two steps are 
performed: 
• For 1 ≤ i ≤ M 
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Apply equations (18-21) for 1 ≤ p ≤ Nv and get the total 
validation error over all the patterns for each size 
network. Then these error values should be normalized as 

v
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Thus we generate the validation error versus the network 
size curve in one pass through the validation data set. 

Pruning a Grown Network 
The SRM principle requires that Ef(Nh) be as small as 
possible for each value of Nh. The DM-1c growing 
approach generates monotonic Ef(Nh) curves. However, 
hidden units added earlier in the process tend to reduce 
the MSE more than those added later. Unfortunately, 
there is no guarantee that an Ef(Nh) sample represents a 
global minimum., there is no guarantee that the hidden 
units are ordered properly, and useless hidden units can 
occur even for small values of Nh. In Design 
Methodology 3 (DM-3), we attempt to solve these 
problems by  
(1) Performing growing as in DM-1c, and  
(2) Performing ordered pruning of the final network.  
This forces the grown hidden units to be stepwise 
optimally ordered. Our method is denoted the “pruning a 
grown network” approach.  

Numerical Results 
   Three Design Methodologies are compared here for 
generating sequences of different size networks. In DM-
1c, the maximum value of Nh is 20. In DM-2, a single 
large network with 20 hidden units is trained and then 
ordered pruning is applied. For DM-3, two methods are 
used. These are pruning a grown network from the 
previous section, and the MRAN RBF design approach 
described in Huang et.al. 2005. Since MRAN does not 
produce a final network or an Ef(Nh) curve, its results are 
stated separately, and not plotted. All three methodologies 
were evaluated using four different data sets.. The plots 
shown are average MSE versus number of hidden units. 
   The first data set is for the inversion of surface 
permittivity. This data has 16 inputs and 3 outputs. The 
inputs represent the simulated back scattering coefficient 
measured at 10, 30, 50 and 70 degrees at both vertical and 
horizontal polarization. The remaining 8 are various 
combinations of ratios of the original eight values.  In 
figures 2 and 3, training and validation error plots are 
shown respectively for pruning and growing approaches 
for inversion of surface permittivity data set. From the 
figures, it is clear that pruning a grown network is best. 
The MRAN approach adaptively chose networks with 
around seventeen hidden units, and gave a validation error 
of 29.4486, which is much worse than the other methods’ 
results. 

 
Figure 2: Training error for Surface Permittivity Inversion  
 
   The second data set is for inversion of radar scattering 
from bare soil surfaces. It has 20 inputs and 3 outputs. 
The training set contains VV and HH polarization at L 30, 
40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 degrees 
along with the corresponding unknowns rms surface 
height, surface correlation length, and volumetric soil 
moisture content in g/cubic cm. From figures 4 and 5, 
growing is better than pruning, and pruning a grown 
network is also very effective. The MRAN approach 
adaptively chose networks with around five hidden units, 
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and resulted in training and validation MSEs of 7.3346 
and 9.8037 respectively, which is much worse. 
 

 
Figure 3: Validation error for Surface Permittivity 
Inversion 

 
Figure 4: Training error for Inversion of Radar Scattering. 

 
Figure 5: Validation error for Radar Scattering Inversion  
 

   The third data set is prognostics data for onboard flight 
load synthesis (FLS) in helicopters, where we estimate 
mechanical loads on critical parts, using measurements 
available in the cockpit. There are 17 inputs and 9 
outputs. From figures 6 and 7, pruning is again worse than 
growing, and pruning a grown network is best.  MRAN 
adaptively chose networks with twenty one hidden units, 
and resulted in training and validation MSEs of 1.4233 x 
107 and 2.2803 x 109 respectively, which is much worse. 

 
             Figure 6: Training error for Prognostics data. 

 
Figure 7: Validation error plots for Prognostics data. 
 
   The fourth data set for estimating phoneme likelihood 
functions in speech, has 39 inputs and 117 outputs. The 
speech samples are first pre-emphasized and converted 
into the frequency domain via the DFT. The data is 
passed through Mel filter banks and the inverse DFT is 
applied on the output to get Mel-Frequency Cepstrum 
Coefficients (MFCC). Each of MFCC(n), MFCC(n)-
MFCC(n - 1) and MFCC(n)-MFCC(n - 2) would have 13 
features, which results in a total of 39 features. The 
desired outputs are likelihoods for the beginning, middle, 
and ends of 39 phonemes. From figures 8 and 9, pruning 
is again worse than growing, and pruning a grown 
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network is best.  MRAN adaptively chose networks with 
twenty hidden units, and resulted in training and 
validation MSEs of 4.05 x 104 and 3.801 x 104  
respectively, which is much worse. 
 

 
                Figure 8: Training error for Speech data. 

 
               Figure 9: Validation error for Speech data. 

Conclusions 
In this paper, we explore three approaches for producing 
sequences of trained and validated feedforward networks. 
In the growing approach, dependently initialized networks 
result in monotonically decreasing Ef (Nh) curves. A 
pruning method is shown that requires one pass through 
the data. A method is also described for simultaneously 
validating many different size networks simultaneously, 
using a single data pass. In the third, combined approach, 
ordered pruning is applied to grown networks. As seen in 
the simulations, this approach usually produces smaller 
training error values than either growing or pruning alone. 
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