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Abstract

Autonomous robots, such as automatic vacuum cleaners, toy
robot dogs, and autonomous vehicles for the military, are
rapidly becoming a part of everyday life. As a result the need
for effective algorithms to control these agents is becoming
increasingly important. Conventional path finding techniques
rely on a representation of the world that can be analysed
mathematically to find the best path. However, when an agent
is placed into the real world in a place it has not seen be-
fore, conventional techniques frequently fail and a fundamen-
tally different approach to path finding is required. The agent
must rely on its senses, such as the input from a mounted
camera, using this information to get around. We are espe-
cially interested in algorithms for use in highly interactive
virtual environments such as computer games. In this paper
we devise and analyse a technique which enables autonomous
agents to navigate their way around a virtual city by using
only what they see from their point of view. Since the scenes
are computer generated we can use for the player’s view and
the agent’s view representations with different visual com-
plexity and hence improve the efficiency and effectiveness of
the neural network. We show that by using neural networks
agents can learn how to avoid obstacles, to follow the road,
and we demonstrate that this method might even be useful for
integration in path finding algorithm.

Introduction
The control of agents in a complex environment is a diffi-
cult problem that has been approached in a variety of ways,
which can be classified into map-based navigation, map-
building-based navigation and map-less navigation (DeS-
ouza & Kak 2002). In the last class of algorithms the agent
has no explicit representation of the world and must rely
on visual and other sensors in order to navigate through
the environment. In this case traditional navigation and
path finding techniques do not work and instead object
recognition, tracking and learning algorithms must be em-
ployed. This is achieved by identifying, extracting and ob-
serving relevant elements in the environment such as trees,
walls and roads. Popular methods include optical flow,
which makes use of motion parallax in binocular vision
(Santos-Victoret al. 1995); appearance-based matching,
which is based on “memorising” patterns in the environ-
ment and associating behaviour with it (Pomerleau 1995;
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Weng & Chen 1998); and object recognition which is based
on identifying simple features (road outlines, trees) and as-
sociating controls with them (Turket al. 1988; Kim & Neva-
tia 1998).

The goal of this project is to investigate the use of neu-
ral networks to analyse the visual input of an agent in or-
der to control its navigation. The use of neural networks
was inspired by the difficulty in hand coding algorithms
to control obstacle avoidance in an arbitrary environment,
and the success of the ALVINN system (Pomerleau 1995)
which successfully controlled the steering of a vehicle on
real roads by analysing the visual input. We are especially
interested in algorithms for use in highly interactive vir-
tual environments such as computer games (Take-Two In-
teractive Software 2005). In the past such virtual environ-
ments were usually quite limited in space and it was pos-
sible to define agent behaviour by simple scripts. How-
ever, nowadays many games allow users to create their
own worlds and research on randomly generated semi-
infinite cities and worlds is emerging (Parish & Müller 2001;
Greuteret al. 2003). Consequently we need simple and
fast algorithms, which allow autonomous agents to navigate
through such worlds in a realistic way.

In order to test our algorithms we created a virtual city
that agents can navigate around. The agents are given no
information about the city other than what they see. The
goals of our research were to train an agent to follow the
road in much the same way as the ALVINN system, train an
agent to avoid obstacles, train an agent to obey traffic lights,
and explore the use of neural networks for path finding.

Our paper demonstrates for which functions a neural net-
work can be used when controlling an agent based on its
visual perception. We also introduce a novel modification
of neural networks which we call “commandeering”. Our
results are especially useful for highly interactive virtual
reality applications where agents are frequently controlled
by scripts and rule-based systems (Laird & van Lent 2000;
Rabin 2004) which often require a long time to develop and
can lead to unrealistic, predictable and repetitive behaviour.
Such behaviours are undesirable in computer games.

Design

This section gives a high-level overview of our system, start-
ing with an overview of the virtual city, and followed by a
description of our neural network and the methods we use
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for training it. We also mention several design features for
enhancing the performance of the neural network.

A Virtual City for Testing of Autonomous Agents
The simulation takes place in a virtual city shown in Fig-
ure 1. The city is 1200 x 1200 metres large and was de-
signed to be simple, yet at the same time provide a variety
of situations for the agent.

Figure 1: An overview of the city.

A major simplification in our design is that the agent
moves on a plane, i.e., there are no hills, steps or slopes etc.
While this constraint also makes the implementation easier,
the main reason for it is that it facilitates the agent’s learn-
ing process. For example, a staircase or a hill in front of the
agent may appear to look the same as a wall or an obstacle,
so it would take considerable longer for the agent to learn
how to distinguish these scene components. We will inves-
tigate methods to overcome this limitation in future work.

In contrast to real-world object recognition systems our
application uses a computer generated virtual environment.
This allows us to use different representations for the
player’s view and the agent’s view. While the player’s view
would usually use visually rich complex shapes (rendered
using texture mapping and displacement mapping), the ren-
der pass for the agent’s view can use simple objects with
easily differentiable colours and patterns. Furthermore some
objects which do not influence the agent’s behaviour, such as
small bushes, can be removed from the agent’s view. The re-
sulting simplified scene is faster to render and helps the neu-
ral network to recognize and distinguish different objects.
Note that using two different representations does not rep-
resent a major overhead since most virtual environment use
already multiple level-of-detail representations and bound-
ing boxes for objects in order to increase efficiency.

In our application we only create a simplified scene as re-
quired for the agent’s view. For example, the scene in figure
1 when used in a real game in the player’s view might con-
tain visually richer texture maps (including detail features

such as dirt and oil stains) , billboards for small vegetation
(grass, bushes), and more realistic water rendered using dis-
placement mapping.

An important aspect of our implementation is the use of
perspective and basic lighting (ambient and diffuse). The
motivation for this is that perspective and illumination are
important depth cues in human vision and we hope that the
neural network also learns to make use of these. It is im-
portant to note that the agent only knows what it sees, i.e., it
has no a priori information about the city, such as a map, po-
sition and shape of objects and distances between different
objects.

Figure 1 shows several features of the city. The roads are
dark-coloured and include fixed size, white coloured road
markings, which help the agent identify where roads are,
and to follow the roads. Surrounding the road are footpaths,
which are light grey. There are also working traffic lights
that agents should obey. The figure also shows the river and
the grassy areas on its side along with bridges. These exist
solely to give more variety to the city so that, for example,
an agent will learn to follow the road regardless of whatever
is surrounding the road. The existence of skyscrapers fur-
ther challenges the neural network due to their size: distant
skyscraper may have the same size and shape as small, close
objects, so the network must learn to distinguish between
these two scene components. Finally, there is the waterfront,
which again exists to provide more variety in the world.

Training of the Neural Network
Training the neural network is composed of two parts: gath-
ering training data, and applying back propagation, which is
using the gathered training data to modify the weights of the
neural network.

Gathering Training Data
Gathering training data is simply a matter of controlling the
agent with the cursor keys. If the goal is to keep the agent
in the centre of the road, then the human trainer must steer
the agent around the city, ensuring that it stays in the mid-
dle of the road. Every 10 frames a screen shot is taken from
the agent’s point of view, which together with the steering
amount and some other information creates a training in-
stance and is saved into a text file.

The following issues are important when gathering train-
ing data for the type of system described by us.

• The screen shot taken is very small compared to the image
shown on the computer screen. If the neural network sim-
ulation would utilise the full640 × 480 ≈ 480, 000 pix-
els of the display window, the application would become
very slow and memory intensive. However, we found that
this high level of detail is not needed when controlling the
agent and32 × 24 = 768 pixels were sufficient.

• The agent sees the world in grey scale, i.e., the red, green,
and blue pixel values in the frame buffer are converted
into grey scale values between zero and one. Due to the
three-dimensional nature of colour (i.e., hue, luminance
and saturation), colour vision would increase the size of
the neural network three-fold. This seemed unnecessary
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since for tasks such as obstacle avoidance and path finding
the actual colour of objects is not as important as seeing
that they are there. Since most coloured objects map into
different gray scale values the agent will be able to distin-
guish between them. Alternatively the agent’s view could
be immediate represented using gray scales only.

• It is sufficient to record every10
th frame since from one

frame to the next, neither the scene nor the amount steer-
ing will change dramatically. As a result we not only re-
duce the number of similar training instances but we also
speed up the back propagation stage of training.

• Controlling the agent in the simulation is much like con-
trolling a character in a first person shooter game using
the keyboard. However, in most games of that type the
character turns at a constant velocity until a key is re-
leased, upon which the character stops turning immedi-
ately. Using such a simplistic input makes it difficult for
the neural network to learn when to turn gently (e.g. when
there is an obstacle in the distance) and when to make a
hard turn (e.g. when the obstacle is right in front of the
agent). Therefore the agent has an angular velocity at-
tribute which is increased and decreased depending on the
trainer’s input. Using an analogue input device such as a
steering wheel would remove this requirement.

• Using neural networks of this type has the disadvantage
that agents do not remember previous inputs even if they
occurred in the last training instance. If the agent is head-
ing straight for a wall, it may decide to turn left, but one
frame later the inputs may have changed slightly such that
it then decides to turn right. We found that such a zig-zag
motion, like the ones novice human car drivers sometimes
exhibit, was indeed a common problem in our simulation.
The problem was solved by inputting (“remembering”)
the previous steering value into the neural network in or-
der to “influence” its decision. Hence if in the example
above the agent decided to turn left, this would would help
to persuade the agent to continue turning left in the next
frame. The forward velocity was also input, just in case
this had an influence on the steering.

• While neural networks can tolerate some noisy data, it is
beneficial to minimise the amount of such training data.
For this reason we create a new file for each training in-
stance which can be deleted if the trainer makes a mistake.

Figure 2 shows an example of what the human trainer sees
(left) compared to what the neural network “sees” (right).
The human trainer’s window includes at the top of the screen
an arrow pointing to the destination, a large red marker
showing the destination in the scene (in this case on the left)
and a visual representation of the current steering value at
the bottom of the screen. The red square at the bottom left of
the screen indicates that training is in progress, and a small
window at the top left-hand corner of the screen shows what
the agent is seeing. As explained previously the agent’s view
uses grey scales and is of a much lower resolution than the
trainer’s window. It is also without the auxiliary graphical
components described above. However the neural network
is given the numerical values of the angle and distance to the

destination along with the linear and angular velocities.

Neural Network Structure and Back-propagation
There is no known algorithm for determining the best neural
network topology for any given problem. Therefore, exper-
imentation is needed to find a good network topology. The
input layer of our neural network has 776 nodes:32 × 24

pixels, the angle and distance to the destination, and three
values each for the linear and angular velocities specifying
the velocity in each axis1. We use just the one output layer.
Having just one hidden layer with five nodes was sufficient
to allow an agent to successfully avoid obstacles or follow
the road.

We apply a standard back-propagation algorithm (Bishop
1995) to train the neural network. A separate program,
called the “Learner”, is used for performing the training of
the neural network at the back-propagation stage. The pro-
gram allows the trainer to steer the agent through the virtual
city. Training instances are recorded and invalid instances
can be deleted.

Commandeering
When providing training data for a neural network there are
several aspects to consider. One of these is the amount of
training data to provide, which in most cases is unknown
until training has been completed and the network can be
tested. Another is the need to provide a distribution of train-
ing examples which is not biased and which approximates
what the neural network will see when used with new data.
For example, if the training data contains significantly more
left turns than right turns, then in the simulation the neural
network is more inclined to turn left even when it should
turn right. Without a variety of data the neural network will
not learn to generalise and to distinguish between important
and less important features.

For example, we found that if the training sets all use a
road surrounded by gray foot paths, then the agent will per-
form well in unseen regions of the city as long as the roads
are surrounded by such foot paths. However, when the road
went through the section of the city surrounded by green
grass the agent got confused, turning wildly to the left and
then to the right. While the best strategy for the agent would
have been to concentrate on the white lines in the middle
of the road, the neural network learned to use the colour of
the regions along the road as a guide. It is hence important
to use a large variety of different situations as input for the
training data set.

For these reasons we introduce commandeering which
improves and speeds up training of the neural network. After
the initial training of the neural network, the agent is allowed
to run in the environment using its neural network to decide
how to react. If the training data is biased, for example to
always turn to the left, the human trainer can “commandeer”

1This allows information such as how fast the object is moving
forward, sideways and vertically, along with the rotations in three
directions. However, currently only the forward velocity and angu-
lar velocity around theY axis are used, so all remaining velocities
were set to 0.0 which means that the neural network ignores them.
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Figure 2: A screen shot from the human trainer’s window (left) and the (enlarged) view the agent gets for the same scene (right).

the agent to the right, and then relinquish control to the neu-
ral network once again. During the time the trainer is con-
trolling the agent, the agent adds this new data to its training
set. In this way, the training set becomes less biased, and any
unforeseen difficulties or situations that the agent encounters
will become covered in the training set.

A potential drawback of this method is that a biased neural
network will become biased in the opposite direction if too
much commandeering is performed. The human trainers are
relied upon to use their judgement to know when to stop
training.

Alternative methods have been suggested to improve
training data sets. For example, Pomerleau et al. (Pomer-
leau 1995) bound the size of the training set. If the training
set is full and a new instance is added, then an old instance is
removed so that the average steering direction stays neutral.

Results

As was stated in the introduction, four areas were being
looked at when trying to train the neural network: obsta-
cle avoidance, following the road, obeying the traffic lights,
and path finding.

Obstacle avoidance

The first goal was to make sure the neural network could
control an agent by analysing the pixel values. Therefore,
a very simple world was created, which consisted of four
enclosing walls with different sized obstacles distributed
within them. There was neither a floor nor a ceiling, and the

walls and obstacles were all the same dark colour. Figure 3
shows an overview of the world created for this test.

Figure 3: A simple world to test obstacle avoidance and the
agent’s path obtained using our simulation (see insert).

The results from this test were very promising. After only
a few minutes of training the neural network was able to
steer the agent around the enclosed area, successfully avoid-
ing all obstacles. Furthermore when placed into a new en-
vironment the agent successfully avoided obstacles without
any further training. The neural network learnt to ignore ob-
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jects that were far away or to the sides of it. It learned that
when an obstacle is close, the agent must turn left or right,
depending on what is to the left or right of it. Because the
neural network has no information about the objects other
than what the agent sees, the results indicate that the neural
network has learnt to categorise objects as being near or far.

This type of obstacle avoidance is fundamentally differ-
ent from traditionally route finding algorithms using search
trees, where the agent has knowledge of the position and size
of objects. In those systems, the path taken by the agent is ar-
rived upon by mathematically analysing the situation, which
can give optimal solutions when the world follows certain
assumptions. However, such algorithms ignore human rea-
soning such as if there is a gap between two obstacles, can
the agent fit through it? This not only requires calculating
the distance between obstacles, but also it requires reasoning
about the shape and size of the agent. Hand coding a func-
tion to take care of all the possible contingencies would be
extremely difficult, so training the agent by example seems
ideal for obstacle avoidance in complex unstructured envi-
ronments.

Road following
The next goal was to test the neural network’s ability to fol-
low the road, which was similar to the goal in (Pomerleau
1995). The agent was trained to drive down the centre of
the road, so it was presumed that the neural network would
identify the white lines of the road, and steer the agent so
that the white lines were centred in the middle of the road.
It would need to pass straight through intersections ignoring
the road and its white lines perpendicular to it. It would need
to turn corners, and if it approached a T-intersection and had
to choose between steering left and right, then it should turn
in the direction that was easier (e.g. if it was already steering
slightly to the left, then it should turn left).

During training, it was important to train the agent in both
directions (so that there were plenty of examples of turning
both left and right), and it was also important to train the
agent how to recover when it was not centred in the middle
of the road by temporarily turning off the training, steering
the agent away from the middle, turning training back on
and then recovering. Commandeering was also needed to
improve the accuracy. Figure 4 shows an example of the
agent successfully navigating itself around the roads.

While the agent performed reasonably well, at times it
did deviate from the centre of the road which is in general
not a realistic behaviour for an agent in a virtual world (un-
less we want to simulate a drunken driver). In cases where
the agent has a representation of the roads in its knowledge
base, it may be better to use this representation to calcu-
late the agent’s position rather than using a neural network.
Nevertheless, the research in (Pomerleau 1995) proves that
with sufficient and high-quality training, a neural network
can learn to steer safely on real-world roads.

Obeying Traffic Lights
For this step, the neural network was used to control the lin-
ear acceleration of the agent, with steering being human-
controlled. It was hoped that the agent would learn to stop

Figure 4: An example of an agent following the road. The
agent was travelling in the counter clockwise direction, only
turning when it needed to.

for red lights and go for green lights. The behaviour for or-
ange lights should depend on the current velocity. Further-
more, traffic lights in the distance should be ignored, and the
agent should stop only when it gets a certain distance away
from the intersection.

It was found that the agent was not able to learn this be-
haviour at all. One reason might be that the different colours
of the lights were difficult to distinguish after conversionto
grey scales.

Path finding

The final goal of the project was to use the neural network
for path finding, which was implemented by telling the agent
to move to a random destination, and when this destina-
tion was reached a new random destination was given. This
task is more complex than the previous ones because the
agent must head towards a destination while at the same time
avoiding obstacles. To make the task easier we removed the
requirement that the agent had to stay on the road and had to
use bridges to cross the river.

The results were promising but far from perfect. While
most of the time the agent was able to avoid obstacles and
head in the general direction of the destination, its move-
ments were sometimes erratic. It didn’t take the shortest
path, and it would sometimes head in the complete opposite
direction to the destination.

Conclusions
We have investigated the use of neural networks to simulate
vision guided navigation of autonomous agents. The agents
were given no information about the layout of the world and
objects within it. Instead they render the scene from their
points of view and use the pixel values as input to a trained
neural network which controls the movement of the agent.
In order to test our application we implemented a virtual city.
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In our tests we use the same representation for the player’s
and the agent’s view.

The agents were separately trained to avoid obstacles, fol-
low the road, obey traffic lights, and path find. Training con-
sisted of a human instructor controlling the agents as in a
video game. At each time step a log of the rendered scene
and the action of the human controller was taken. The neural
network was trained using the data from these log files.

The results of this project were mixed, with very good
performance in obstacle avoidance and path following, but
poor performance in obeying traffic lights. The path find-
ing, which involves both obstacle avoidance and travelling
towards a goal destination, showed much promise. We be-
lieve that with more training an improved performance can
be obtained. Similarly a careful design of the agent’s view
using easily differentiable gray scale values and patternsis
likely to improve object recognition.

In summary neural networks are a promising tool for con-
trolling autonomous agents in complex, dynamic and noisy
environments. A trained neural network can learn realistic
behaviour based on complex scene features in a way which
would be difficult to achieve by designing scripts and rule-
based systems.

Future work
In order to make the simulation more realistic, especially
with respect to traffic lights, the next step is to have the
agents controlling the acceleration of their movement. This
might require two neural networks: one for the steering and
one for the acceleration, both working independently. It may
be that a third neural network is required that classifies the
colour of the lights, which would need to ignore the lights in
the distance, and perhaps even the lights in front of it until
the agent is close enough.

While it may be possible to combine this with some kind
of rule-based system (e.g. “if (lights = red) then stop”) an-
other approach is to feed the result of this network into the
acceleration network. This is because acceleration depends
on more than just the traffic lights; it depends on whether
there are corners, obstacles etc, which would make it dif-
ficult or impossible to combine with rules. It may be that
more networks need to be chained together in this fashion to
achieve optimal performance. Having specialised networks
chained together has the advantage of allowing each part of
the chain to be trained independently. For example, once the
network has learnt to classify the traffic light colours cor-
rectly, there would be no danger of “untraining” it when
training it to do something else. Also we hypothesise that
it is easier to learn several separate simple concepts than one
complicated concept.

Reynolds (Reynolds 1987) identified three rules that can
be followed in order to simulate flocking behaviour seen in
animals such as birds. These rules are “separation” (i.e.,
moving to avoid collisions with others), “alignment” (i.e.,
moving in approximately the same direction as the others
who are close), and “cohesion” (i.e., staying close to the
others). It would be interesting to see whether flocking can
be implemented in the system by having the trainer follow
those three rules rather than explicitly programming them.

To achieve this, the set-up of the agent’s point of view would
have to be looked at carefully as animals that flock, such as
birds, have their eyes located at the sides of their head to
give a larger field of vision, compared to the relative tunnel
vision that is currently used in the simulation.

There are many other possibilities that can be explored.
For example, can a car learn to indicate before it starts turn-
ing? This would require the network to know when it will
turn. Or, can one car learn to follow another? This prob-
lem may further expose the drawback that neural networks
do not remember previous actions.

Possibly the most important future work is to determine
which class of AI algorithms is most suitable for which types
of problems encountered in highly-interactive virtual worlds
such as computer games.
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