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Abstract

Current implementations of spatial databases are not capable
of handling data that is intrinsically indeterminate or vague.
The goal of theVague Spatial Algebra (VASA) project is to
define concepts and implementations that will address this
problem. In this paper we further develop work on topologi-
cal predicates between vague spatial objects. The new devel-
opments make use of spatial reasoning techniques that pro-
vide the necessary tools for the definition of a mechanism to
identify a complete set of vague topological predicates. These
predicates work on a definition of vague spatial data types de-
fined previously as part of VASA and that are based on well
known definitions of crisp spatial data types.

Introduction
The widespread use of spatial databases and specifically GIS
has triggered an increase in research efforts on spatial rea-
soning within a database context. Much of this research
is geared towards the optimization of queries by inferring
implicit information about the relationships between spa-
tial objects stored in the database. The types of relation-
ships include direction, distance and topological relation-
ships among others. Topological relationships likeoverlap,
disjoint andinside characterize the relative position of spa-
tial objects and remain unchanged under continuous trans-
formations like translation, rotation and scaling. These re-
lationships are purely qualitative and have proven impor-
tant for many applications of spatial reasoning and spatial
databases in general and so have been widely studied in the
literature.

Our work currently focuses on the design of aVague Spa-
tial Algebra (VASA). The goal of VASA is to allow for un-
certainty handling in spatial databases and involves the for-
malization ofvague topological predicates that define topo-
logical relationships betweenvague spatial objects. The
vague data types, their operations and predicates defined as
part of VASA will provide the conceptual foundation for the
implementation of a software library that will extend current
database management systems to allow such types of data to
be manipulated. During the definition of vague topological
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predicates several issues have been resolved thanks to the
application of topological reasoning. This marks a new kind
of objective for which topological reasoning proves useful.

The goal of this paper is to refine our mechanism that
identifies vague topological predicates by including a topo-
logical reasoning method that ensures completeness of the
set of predicates generated. The application of such a
method represents the last step that is required to formalize
our concept of vague topological predicates.

In order to fully understand the mechanism presented
here, it is necessary to cover the context in which it was
developed. This paper starts by exploring the necessary re-
lated work and then continues by introducingvague spatial
data types. The original mechanism for identifying vague
topological predicates is described before we describe ma-
jor developments to the mechanism that allow to resolve the
completeness issue stated above. The results of identifying
vague topological predicates are shown before conclusions
are drawn and the direction of future work is discussed in
the last section.

Related Work
The contextual background necessary for the definition of
vague spatial data types and vague topological predicates is
defined in this section.

Spatial Data Types
We concentrate in the definitions ofsimple spatial data types
andcomplex spatial data types. The types of the first kind
have a simple structure as illustrated in Figure 1. Asim-
ple point describes an element of the Euclidean planeR

2.
A simple line is a one-dimensional, continuous geometric
structure embedded inR2 with two end points. Asimple re-
gion is a two-dimensional point set inR2 and topologically
equivalent to a closed disk.

( a ) ( c )( b )

Figure 1: Examples of a simple point object (a), a simple
line object (b), and a simple region object (c).
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Lack of closure properties of the simple spatial data types
as well as stronger application requirements have resultedin
the definition of the more generalcomplex spatial data types
illustrated in Figure 2 (see (Schneider 1997) for a survey).

( a ) ( c )( b )

Figure 2: Examples of a complex point object (a), a complex
line object (b), and a complex region object (c).

A complex point is a finite point collection (e.g., ATM
locations in the city of Cartago). Acomplex line is an arbi-
trary, finite collection of one-dimensional curves, i.e., aspa-
tially embedded network possibly consisting of several dis-
joint connected components (e.g., the roads in The Hague).
A complex region permits multiple areal components, called
faces, and holes in faces (e.g., Italy with its mainland and
offshore islands as components and with the Vatican as a
hole). The original simple spatial data types turn out to rep-
resent special cases of their complex counterparts. Thus the
complex spatial data type specification is sufficient to cover
all cases also covered by simple spatial data types. This
formal and complete definition of complex points, complex
lines and complex regions can be found in (Schneider &
Behr 2006).

Topological Predicates

Topological relationships between spatial objects have been
a focus of interdisciplinary research and have also been
widely studied in the spatial database related literature.This
type of relationships is purely qualitative and describes the
relative position of spatial objects towards each other. Topo-
logical relationships remain unchanged under continuous
transformations like translation, rotation and scaling. Such
relationships are provided as so-called topological predi-
cates that are commonly used as part of querying systems
to test whether a topological relationship holds between a
given pair of spatial objects. Due to its suitability for our
purposes, we concentrate on the topological predicates de-
fined through the9-intersection model. This model has been
defined for simple region objects in (Egenhofer 1989) and
later extended to simple regions with holes in (Egenhofer,
Clementini, & Di Felice 1994). The complete set of topo-
logical relationships for all type combinations of complex
spatial objects is defined in (Schneider & Behr 2006) on the
basis of the 9-intersection model.

The 9-intersection model characterizes a topological re-
lationship between two spatial objectsA andB by explor-
ing the emptiness of the point sets resulting from the 9 in-
tersections between all the combinations of theinterior (◦),
boundary (∂) andexterior (−) from both objects. Each topo-
logical relationship can be represented by a9-intersection
matrix whose values are determined as shown here:





A◦ ∩ B◦ 6= ∅ A◦ ∩ ∂B 6= ∅ A◦ ∩ B− 6= ∅
∂A ∩ B◦ 6= ∅ ∂A ∩ ∂B 6= ∅ ∂A ∩ B− 6= ∅
A− ∩ B◦ 6= ∅ A− ∩ ∂B 6= ∅ A− ∩ B− 6= ∅





Each valid 9-intersection matrix uniquely represents a single
topological relationship. Following this model, the resulting
relationships turn out to be mutually exclusive (i.e. one and
only one topological relationship holds between each pair of
spatial objects). The eight well known and commonly used
predicates originally defined for simple regions includedis-
joint, overlap, meet, equal, cover, contain, inside andcov-
eredBy. The number of predicates defined in (Schneider &
Behr 2006) for all complex type combinations is larger (e.g.,
33 between two complex regions, 82 between two complex
lines). Hence naming of each predicate is not considered a
good option. Instead, an alternative method of clustering is
used to provide better usability of the predicates identified.

Vague Spatial Data Types
Naturally occurring phenomena in space often (if not al-
ways) cannot be precisely defined because of the intrinsic
uncertainty of their features. The location of animal refuges
might not be precisely known, and the path of rivers might
be uncertain due to water volume fluctuations and changing
land characteristics. The extension of lakes can also change
and thus have uncertain areas. All these are examples of so-
called vague spatial objects. The animal refuge locations
can be modeled as avague point object where the precisely
known locations are called thekernel point object and the as-
sumed locations are denoted as theconjecture point object.
The river paths can be modeled asvague line objects. Some
segments or parts of the path, calledkernel line objects, can
be definitely identified since they are always part of the river.
Other paths can only be assumed, and these are denoted as
conjecture line objects. Knowledge about the extension of
lakes can be modeled similarly withvague regions formed
by kernel andconjecture parts. Figure 3 gives some illustra-
tions. Grey shaded areas, straight lines, and grey points in-
dicate kernel parts; areas with white interiors, dashed lines,
and white points refer to conjecture parts.

( c )( a ) ( b )

Figure 3: Examples of a (complex) vague point object (a),
a (complex) vague line object (b), and a (complex) vague
region object (c). Each collection of components forms a
single vague object.

For the definition of vague points, vague lines, and vague
regions we leverage the well known data typespoint for
crisp points,line for crisp lines, andregion for crisp regions
(Schneider & Behr 2006). These types are closed under the
geometric set operationsunion, intersection , difference, and
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complement. The use of an exact model for constructing
vague spatial data types leads to the benefit that existing def-
initions, techniques, data structures and algorithms neednot
be redeveloped but can simply be used or in the worst case
slightly modified or extended as necessary.

A vague spatial object is defined by a pair of twodis-
joint or meeting crisp complex spatial objects. Hence, the
same generic definition is applicable to all vague spatial data
types. That is, the extension of a crisp spatial data type to a
corresponding vague type is given by a type constructorv as
follows:

v(α) = α × α ∀α ∈ {point, line, region}

This means that forα = region we obtainv(region) =
region × region, which we also namevregion. Accordingly,
the data typesvline and vpoint are defined. For a vague
spatial objectA = (Ak, Ac) ∈ v(α), the first crisp spatial
objectAk, called thekernel part, describes the determinate
component ofA, that is, the component that definitely and
always belongs to the vague object. The second crisp spatial
objectAc, called theconjecture part, describes the vague
component ofA, that is, the component from which we can-
not say with any certainty whether it or subparts of it belong
to the vague object or not.Maybe the conjecture part or sub-
parts of it belong to the vague object,maybe this is not the
case. Since the kernel part and the conjecture part of the
same vague spatial object may not share interior points, we
define:

∀α ∈ {point, line, region}
∀A = (Ak, Ac) ∈ v(α) : A◦

k ∩ A◦

c = ∅

More details, in particular about the semantics of vague
spatial data types as well as the definition of vague spatial
operations, can be found in (Pauly & Schneider 2004).

A Method for Identifying Vague Topological
Predicates

Topological predicates between vague spatial objects (or
vague topological predicates) can be used to identify the
topological relationships between two vague spatial objects
and should take into account the objects’ vague properties
(provided in our definition by theconjecture part). For ex-
ample, it is interesting to known whether two lakes repre-
sented by vague regions overlap, and more so, to known
whether this overlap includes conjecture parts or not. A
primary goal of the definition ofvague spatial data types
has been the leveraging of well defined notions ofcrisp
spatial data types. We follow the same idea and define
vague topological predicates on the basis of well defined no-
tions of topological predicates betweencrisp spatial objects.
The mechanism originally presented in (Pauly & Schneider
2005b) is illustrated in Figure 4.

Vague topological predicates are characterized by way
of the crisp topological predicates that hold between the
pairs(Ak, Bk), (Ak, Bk ⊕Bc)

1, (Ak ⊕Ac, Bk) and(Ak ⊕
Ac, Bk ⊕ Bc). The four pairs, which are composed of crisp

1⊕ denotes the spatial union operation as defined in (Schneider
1997)

engine
inference

Clustering
of Vague
Topological
Predicates

Constructor
VSDT

pre−existing model
of crisp topological

predicates

pre−existing model
of crisp topological

predicates

topological predicates
general mechanism for identifying vague

clustered vague
topological
predicates

vague
topological
predicates

{vpoint,
vline,
vregion}

{point,
line,
region}

clustering rules
cancellation

rules

Figure 4: Overview of the derivation of vague topological
predicates

spatial objects, are precisely those that are used to describe
the kernel and conjecture components of vague spatial ob-
jects. In other words, we can say that the vague topolog-
ical predicate between two vague spatial objects is repre-
sented by a 4-tuple of crisp topological predicates between
crisp spatial component objects. The main task of the iden-
tification mechanism is to find the 4-tuples that represent
valid vague topological predicates. Note that not all 4-
tuple permutations of crisp topological predicates resultin
valid vague topological predicates. If one element in the
tuple directly contradicts any other element in the tuple,
it makes the tupletopologically inconsistent and thus in-
valid. Take for example a 4-tuple for vague regionsA and
B: (overlap(Ak, Bk), disjoint(Ak, Bk ⊕Bc), disjoint(Ak ⊕
Ac, Bk), disjoint(Ak ⊕ Ac, Bk ⊕ Bc)). In this example
overlap(Ak, Bk) ⇒ A◦

k ∩ B◦

k 6= ∅ anddisjoint(Ak, Bk ⊕
Bc) ⇒ A◦

k ∩ (Bk ⊕ Bc)
◦ = ∅. These two implica-

tions clearly contradict one another because according to
the definition of the spatial union operation it holds that
B◦

k ⊆ (Bk ⊕Bc)
◦ and by the transitivity of set containment

it is implied thatA◦

k ∩ (Bk ⊕ Bc)
◦ 6= ∅. This directly con-

tradictsdisjoint(Ak, Bk ⊕ Bc). The elimination of invalid
tuples is done by an invalidation process and represents the
first step in the mechanism that identifies all vague topolog-
ical predicates. After this step, each remaining tuple will(or
should) represent a unique vague topological predicate. The
invalidation of inconsistent 4-tuples is done by an inference
mechanism that works on the basis of so-calledcancellation
rules. The cancellation rules must be manually defined for
all different combinations of vague spatial data types (Pauly
& Schneider 2005b).

Even though many (in most cases the majority) of the tu-
ples are invalidated, the number of valid tuples representing
vague topological predicates can remain rather large and dif-
ficult to handle. For this reason the mechanism from (Pauly
& Schneider 2005a; 2005b) introduces the notion ofcluster-
ing in which tuples can be clustered into sets so that only
a small number of (clustered) vague topological predicates
needs to be handled. These clusters can be predefined or
customized by the user depending on her needs. Due to
the uncertainty that is handled through the conjecture parts
of the spatial objects involved, the clusters are defined as
predicates in a three-valued logic (true,false,maybe). Each
clustered vague topological predicate results intrue when
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the predicate definitely holds,false when it definitely does
not hold, andmaybe when the inclusion of the conjecture
part makes it impossible to determine whether the predicate
holds or not.

An example set of clustered vague topological predicates
is defined in (Pauly & Schneider 2005b). The clusters in
this set are namedDisjoint, Overlap, Meet, Contains, In-
side, Covers, CoveredBy andEqual and can be regarded as
the vague counterparts of the eight original topological pred-
icates between crisp simple regions. The semantics defini-
tion of the clustered vague predicates is based on point set
topological concepts. In order to use the clustered vague
topological predicates for querying in databases, the refer-
ence shows a transformation from the three-value logic to
boolean logic. Sample queries illustrate all concepts.

Completeness of Vague Topological Predicates
Completeness is an important issue with the original defini-
tion of the mechanism that employs cancellation rules. How
can we be sure that all tuples that need to be invalidated are
covered by the current set of cancellation rules? Proving
correctness of each rule can be done as shown in (Pauly &
Schneider 2005b); hence it is known that tuples were cor-
rectly invalidated. But this only proves the correctness of
the mechanism and does not say anything about complete-
ness. In this section we show how the cancellation rules
can be replaced with a more general inference engine. The
engine combines concepts from topological reasoning and
binary constraint networks in order to invalidate tuples and
generates the complete set of vague topological predicates.
We proceed by introducing these concepts and then applying
them to our problem.

Topological Reasoning
Spatial reasoning in general is important in a variety of ar-
eas due to the fact that it provides new spatial information
that is currently not explicitly stored and available to the
user. We refer to topological reasoning as the specific type
of spatial reasoning that generates information solely from
the topological relations that are currently known. In spa-
tial databases topological relationships are accessed through
topological predicates like those reviewed in theRelated
Work section. A common method for topological reasoning
involves the derivation of the composition of two (or more)
topological relationships. A valid composition as noted in
(Egenhofer 1994; Abdelmoty & El-Geresy 1995) is formally
defined for general relations in (Tarski 1941). Given a (topo-
logical) relationshipP1 between (spatial) objectsA andB
and a (topological) relationshipP2 between (spatial) objects
B andC, the compositionP1; P2 (at least partially) provides
the (topological) relationshipP3 that holds betweenA and
C. It is said thatP3 is only partially defined if it is impos-
sible to derive complete information from the given pair of
relationships. In such cases,P3 is considered a disjunction
of relationships which in the worst case (when nothing ofP3

can be inferred) covers the complete set of relationships de-
fined between the object types ofA andC. As an example of
this extreme case we derive the topological relationship be-
tween simple regionsA andC. Assume that it is known that

overlap(A, B) andoverlap(B, C) hold. The only determi-
nation that the compositionoverlap(A, B); overlap(B, C)
can achieve is that the topological predicate betweenA and
C can be any of the 8 predicates defined between simple re-
gions (i.e., the derivation cannot infer any unique values for
the derived 9-intersection matrix):

overlap; overlap ={overlap, disjoint, meet, contains,

inside, covers, coveredBy, equal}

Based on ideas of set inclusion and containment of point
sets, (Egenhofer 1994) gives a set of detailed rules that can
be applied to 9-intersection matrices (for crisp topologi-
cal predicates). The result of this composition is a new
9-intersection matrix that represents the derived predicate
(or set of predicates). The composition results in a partial
derivation if not all 9 values of the matrix can be certainly
inferred. The authors in (Abdelmoty & El-Geresy 1995) de-
fine a very similar but more general set of rules and apply
them to a topological predicate model that is similar to the
9-intersection. They also cover issues regarding composi-
tion of topological predicates between objects of different
types and issues involving their own definition of complex
spatial objects which highly differs from that shown in the
Related Work section. Figure 5 provides a sample composi-
tion of predicates between simple regions from (Egenhofer
1994). The desired result of both papers is in the form of
composition tables that provide all results for all possible
combinations of two topological predicates with one object
in common.

1  0  0
1  0  0
1  1  1( )0  0  1

0  1  1
1  1  1
meet inside

;

( ) (1  ?  ?
1  ?  ?
1  1  1)

inside, coveredBy, overlap

Figure 5: Sample composition resulting in partial derivation

Binary Constraint Networks
Binary constraint networks (BCN) (Ladkin & Maddux
1994) are well known structures used to represent the
widely studied binary constraint problems. A BCN is a
labeled digraph where each node represents a variable and
each ordered pair of nodes is connected by a directed edge
labeled with the relations between the variables. LetM be
the adjacency matrix (also calledconstraint matrix2) rep-
resentation of a BCN withn variables. The edge between
two variablesQ andR is annotated by a set of relationships
{r1, r2, ..., rz} such that:

(r1(Q, R)) ∨ r2(Q, R)) ∨ ... ∨ rz(Q, R)) = true

2A constraint matrix must have identity relations on the main
diagonal. ClearlyMii = Mik; Mki
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M is said to bepath-consistent if Mij ⊆ Mik; Mkj for
all i, j, k < n. Path-consistency refers to consistency that
not only holds directly for every individual triple of vertices
and their edges in the graph but also holds in general for any
cycle path in the BCN. Generally,M is path-consistent if,
and only if, for every finite set of indicesk1, k2, ..., km < n
and alli, j < n it holds that:

Mij ⊆ Mik1
; Mk1k2

; Mk2k3
; ...; Mkm−1km

; Mkmj

Given a BCN ofn vertices in which some relationships
are well known while others are only partially defined, the
path-consistency concept can be applied to derive specific
information about the partially defined relationships. Itera-
tive verification of path-consistency for allMij wherei, j <
n can remove any relationships that arepath-inconsistent
until no inconsistent edges exist in the BCN. In a single
iteration the consistency of all directly related variables is
assured. Any inconsistent relation is removed and another
iteration must take place to ensure that anything that was
consistent by the removal of the inconsistent relationship,
remains consistent.

In (Smith & Park 1992), the theory of BCN and path-
consistency is applied to spatial knowledge and used as a
reasoning system that besides inferring new information is
able to check for consistency of the existing spatial knowl-
edge. Abinary spatial constraint network (BSCN) is a BCN
in which the variables are spatial objects and the edges re-
fer to the topological relationships between the objects. It
is important to observe that given three spatial objectsA,
B andC and the topological relationships between(A, B)
and (B, C) we can represent this as a triangle BSCN and
the path-consistency can be applied to infer the relationships
(A, C). Similarly, if all three relationships were given, the
path-consistency method can be used to determine whether
all three relationships are consistent.

Solving the Completeness Issue
Recall that the invalidation of a 4-tuple occurs only when
there is a contradiction between two elements of a tuple. Be-
cause such a contradiction amounts to topological inconsis-
tency we can easily apply the concept of path-consistency to
the invalidation of 4-tuples. Each 4-tuple can be represented
as a BSCN from (Smith & Park 1992) and the compositions
required to verify the path-consistency of a tuple can be de-
rived using the rules from (Egenhofer 1994).

The first step needed to verify each 4-tuple is to construct
the BSCN which we illustrate in Figure 6. Four crisp spatial
objects are represented as vertices and labeledAk, Bk, A for
Ak ⊕Ac andB for Bk⊕Bc. The 4-tuple directly provides 8
edges (the 4 given predicates and their converses). We label
these edges astkk for the predicate betweenAk andBk, tkB

for the predicate betweenAk andBk ⊕Bc, tAk for the pred-
icate betweenAk ⊕ Ac andBk, andtAB for the predicate
betweenAk ⊕ Ac andBk ⊕ Bc The converse for a predi-
cate (or set of predicates)p is denoted asp. Given a vague
spatial objectQ, we definePQ as the set of crisp topologi-
cal predicates that operate between two objects of the same
type as the crisp components ofQ. The identity relationship
of PQ is defined asI(PQ) (e.g. theequal predicate in the

case of simple regions). The rest of the edges in the BSCN
can be inferred from the fact thatQ◦

k ⊆ (Qk ⊕Qc)
◦ for any

vague spatial objectQ. We denote the relationship between
Qk andQk ⊕Qc asin(PQ) such that for two spatial objects
E andF holds:

∀q ∈ in(PQ) : q(E, F ) ⇒ E◦ ⊆ F ◦

Notice thatin(PQ) can possibly refer to more than one topo-
logical predicate (i.e., a set of topological relationships. For
example: {inside, coveredBy, equal} in the simple region
case). Once the BSCN is constructed, the path-consistency
procedure that is detailed in (Smith & Park 1992) can be ap-
plied to determine if there is an inconsistency in the 4-tuple.

AAk

B

I(P )BI(P )B

)Ain(P

)Ain(P

Bin(P )

)Bin(P

I(P )A

t
kk

t
kk

t
AB

I(P )A

AB
t

t
kBt

Ak

t
Akt

kB

Bk

Figure 6: BSCN for 4-tuple consistency check

To identify all vague topological predicates we create an
inference engine that replaces the cancellation rules and is
based on the algorithm in Figure 7. This algorithm itera-
tively generates the tuples for given vague spatial data types
and determines whether each tuple is valid or not. All valid
4-tuples represent vague topological predicates that are later
handled by the clustering mechanism.

Besides the obvious advantage of proven completeness by
this method, we also remove the problem of manually gener-
ating the sets of cancellation rules. Such sets were data type
combination dependent and had to be defined for every sin-
gle data type combination. By using path-consistency as the
basis of the inference engine we just need the composition
tables which can be generated for all simple and complex
spatial data types (from theRelated Work section) by using
the derivation mechanism provided in (Egenhofer 1994).

The Complete Set of Vague Topological
Predicates

With all the pieces in place, we have been able to imple-
ment a program we callComposer that derives the com-
position of topological predicates between complex spatial
objects. This implementation uses the complex spatial data
types and their topological predicates as defined in (Schnei-
der & Behr 2006). The composition tables are generated
using the inference rules from (Egenhofer 1994) and are fed
into another program that implements the path-consistency
procedure from (Smith & Park 1992) and the algorithm from
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Algorithm IdentifyVTP
input:

(i) Vague spatial data typesv(α) andv(β),
(ii) complete setPαα of crisp topological
predicates between two objects of typeα
(iii) complete setPββ of crisp topological
predicates between two objects of typeβ
(iv) complete setPαβ of crisp topological
predicates between two objects of typesα andβ
respectively. Ifα = β then inputs (ii), (iii) and (iv)
represent the same set of predicates.

output:
Complete set of vague topological predicates

begin
for each predicatetkk ∈ Pαβ do

for each predicatetkB ∈ Pαβ do
for each predicatetAk ∈ Pαβ do

for each predicatetAB ∈ Pαβ do
M = Generate BSCN with 4-tuple

(tkk, tkB , tAk, tAB) and sets
in(Pαα), in(Pββ), I(Pαα), I(Pββ)

if (M is path-consistent)
add(tkk, tkB , tAk, tAB) to output

endfor;
endfor;

endfor;
endfor;

end IdentifyVTP

Figure 7: Algorithm for identifying the complete set
of vague topological predicates for type combination
(v(α), v(β))

Figure 7. The program is successful in invalidating all neces-
sary 4-tuples and resulting in the complete set of vague topo-
logical predicates. The number of predicates for each vague
data type combination ofv(point), v(line) andv(region) is
rather large (as seen in Table 1). Thus the clustering mecha-
nism from (Pauly & Schneider 2005b) still proves useful in
generating an accessible set of predicates for the user.

v(point) v(line) v(region)
v(point) 51 974 166
v(line) 974 471650 74916

v(region) 166 74916 55880

Table 1: Number of identified vague topological predicates
on the basis of complex spatial data types.

Conclusion
In this paper a mechanism for the complete definition of
vague topological predicates is provided. To achieve this
definition, we have modified a previously presented mecha-
nism that identified vague topological predicates but lacked
the critical property of completeness. The modifications in-
clude concepts from several topics in topological reasoning

and binary constraint networks. Besides solving the issue
of completeness that existed in the previous version of the
mechanism, the new version represents a more robust mech-
anism in which the identification of vague topological predi-
cates is data type independent. The new ideas presented also
provide an example of the application of binary constraint
networks and topological reasoning.

Future work involving VASA includes the implementa-
tion of a software library that integrates the concepts es-
tablished here and in previous papers into a fully usable
database extender. This implementation will be the last step
in developing the Vague Spatial Algebra.
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