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Abstract

The problem of merging multiple-source uncertain informa-
tion is a crucial issue in many applications. This paper pro-
poses an analysis of possibilistic merging operators where un-
certain information is encoded by means of product-based (or
quantitative) possibilistic networks. We first show that the
product-based merging of possibilistic networks having the
same DAG structures can be easily achieved in a polynomial
time. We then propose solutions to merge possibilistic net-
works having different structures with the help of additionnal
variables.

Introduction
The problem of combining pieces of information issued
from different sources can be encountered in various fields
of applications such as databases, multi-agent systems, ex-
pert opinion pooling, etc.

Several works have been recently achieved to fuse
propositional or weighted logical knowledge bases issued
from different sources (Baral et al. 1992),(Cholvy 1998),
(Konieczny and Pérez 1998), (Lin 1996), (Lin and Mendel-
zon 1998), (Benferhat et al. 1997).

This paper addresses the problem of fusion of uncertain
pieces of information represented by possibilistic networks.

Possibilistic networks (Fonck 1992; Borgelt et al. 1998;
Gebhardt and Kruse 1997) are important tools proposed
for an efficient representation and analysis of uncertain
information. Their success is due to their simplicity and
their capacity of representing and handling independence
relationships which are important for an efficient man-
agement of uncertain pieces of information. Possibilistic
networks are directed acyclic graphs (DAG), where each
node encodes a variable and every edge represents a rela-
tionship between two variables. Uncertainties are expressed
by means of conditional possibility distributions for each
node in the context of its parents.

In possibility theory, there are two kinds of possibilistic
causal networks depending if possibilistic conditioning is
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based on the minimum or on the product operator. In the rest
of this paper, we only consider product-based conditioning.
In this case, possibilistic networks are called quatitative (or
product-based) possibilistic networks.

The rest of this paper is organised as follows. Next section
gives a brief background on possibility theory and quantita-
tive possibilistic networks. Section 3 recalls the conjunc-
tive combination mode on possibility distributions. Section
4 discusses the fusion of possibistic networks having same
graphical structures. Section 5 deals with fusion of possi-
bilistic networks having different structures but the union of
their DAGs is free of cycles. Section 6 proposes a general
approach for merging any set of possibilistic networks. Sec-
tion 7 concludes the paper.

Basics of possibility theory
Let V = {A1, A2, ..., AN} be a set of variables. We denote
by DA = {a1, .., an} the domain associated with the vari-
able A. By a we denote any instance of A. Ω = ×Ai∈V DAi

denotes the universe of discourse, which is the Cartesian
product of all variable domains in V . Each element ω ∈ Ω
is called a state of Ω. In the following, we only give a brief
recalling on possibility theory, for more details see (Dubois
and Prade 1988).

Possibility distributions and possibility measures

A possibility distribution π is a mapping from Ω to the
interval [0, 1]. It represents a state of knowledge about a set
of possible situations distinguishing what is plausible from
what is less plausible.

Given a possibility distribution π defined on the universe
of discourse Ω, we can define a mapping grading the possi-
bility measure of an event φ ⊆ Ω by Π(φ) = maxω∈φ π(ω).
A possibility distribution π is said to be normalized, if
h(π) = maxω π(ω) = 1.

In a possibilistic setting, conditioning consists in modi-
fying our initial knowledge, encoded by a possibility dis-
tribution π, by the arrival of a new sure piece of informa-
tion φ ⊆ Ω. There are different definitions of condition-
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ing. In this paper, we only use the so-called quantitative (or
product-based) conditioning defined by:

Π(ω | φ) =

{

π(φ)
Π(φ) ω |= φ

0 otherwise

Quantitative possibilistic networks
This sub-section defines quantitative possibilistic graphs. A
quantitative possibilistic graph over a set of variables V ,
denoted by N = (πN, GN), consists of:

• a graphical component, denoted by GN, which is a DAG
(Directed Acyclic Graph). Nodes represent variables and
edges encode the link between the variables. The parent
set of a node A is denoted by UA.

• a numerical component, denoted by πN, which quantifies
different links.

For every root node A (UA = ∅), uncertainty is repre-
sented by the a priori possibility degrees πN(a) of each
instance a ∈ DA, such that

maxa πN(a) = 1.

For the rest of the nodes (UA 6= ∅) uncertainty is repre-
sented by the conditional possibility degrees πN(a | uA)
of each instances a ∈ DA and uA ∈ DUA

. These con-
ditional distributions satisfy the following normalization
condition:

maxa πN(a | uA) = 1, for any uA.

The set of a priori and conditional possibility degrees in-
duces a unique joint possibility distribution defined by:

Definition 1 Let N = (πN, GN) be a quantitative possibilis-
tic network. Given the a priori and conditional possibil-
ity distribution, the joint distribution denoted by πN, is ex-
pressed by the following quantitative chain rule :

πN(A1, .., AN ) =
∏

i=1..N

Π(Ai | UAi
) (1)

Product-based Conjunctive merging
One of the important aims in merging uncertain information
is to exploit complementarities between the sources in order
to get a more complete and precise global point of view.

In possibility theory, given a set of possibility distribu-
tions π′

is, the basic combination mode is the conjunction
(i.e., the minimum) of possibility distributions. Namely (For
more details on the semantic fusion of possibility distribu-
tions see (Dubois and Prade 1994)):

∀ω, π⊕(ω) = mini=1,nπi(ω).

The conjunctive aggregation makes sense if all the
sources are regarded as equally and fully reliable since all

values that are considered as impossible by one source but
possible by the others are rejected.

The min-based combination mode has no reinforcement
effect. Namely, if expert 1 assigns possibility π1(ω) < 1
to a situation ω, and expert 2 assigns possibility π2(ω)
to this situation then overall, in the min-based mode,
π⊕(ω) = π1(ω) if π1(ω) < π2(ω), regardless of the value
of π2(ω). However since both experts consider ω as rather
impossible, and if these opinions are independent, it may
sound reasonable to consider ω as less possible than what
each of the experts claims.

More generally, if a pool of independent experts is divided
into two unequal groups that disagree, we may want to fa-
vor the opinion of the biggest group. This type of combina-
tion cannot be modelled by the minimum operation. What is
needed is a reinforcement effect. A reinforcement effect can
be obtained using a product-based combination mode:

∀ω, π⊕(ω) =
∏

i=1,n

πi(ω).

Let N1 and N2 be two possibilistic networks. Our aim is
to directly construct from N1 and N2 a new possibilistic net-
work, denoted by N⊕. The new possibilistic network should
be such that:

∀ω, πN⊕(ω) = πN1(ω) ∗ πN2(ω).

We assume that the two networks are defined on the
same set of variables. This is not a limitation, since any
possibilistic network can be extended with additional
variables, as it is shown by the following proposition:

Proposition 1 Let N = (πN, GN) be a possibilitic network
defined on a set variables V . Let A be a new variable. Let
N1 = (πN1, GN1) be a new possibilistic networks such that
:

• GN1 is equal to GN plus a root node A, and
• πN1 is identical to πN for variables in V , and is equal

to a uniform possibility distribution on the root node A
(namely, ∀a ∈ DA, πN1(a)=1).

Then, we have :

∀ω ∈ ×Ai∈V DAi
, πN(ω) = maxa∈DA

πN1(aω),

where πN and πN1 are respectively the possibility distri-
butions associated with N and N1 using Definition 1.

Fusion of the same-structure networks
This section presents the procedure of merging causal net-
works having a same DAG structures. For sake of simplicity
and without loss of generality, we restrict ourselves to the
case of the fusion of two causal networks.

The two possibilistic networks to merge, denoted N1
and N2 only differ on conditionnal possibility distributions
assigned to variables.
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The following definition and proposition show that
the result merging of networks having same structure is
immediate.

Definition 2 Let N1 = (πN1, GN1) and N2 = (πN2, GN2)
be two possibilistic networks such that GN1 = GN2. The
result of merging N1 and N2 is a possibilistic network
denoted by N⊕ = (πN⊕, GN⊕), where :

• GN⊕ = GN1 = GN2 and
• πN⊕ are defined by:
∀A, πN⊕(A|UA)=πN1(A|UA) ∗ πN2(A|UA),

where A is a variable and U is the set of parents of A.

Proposition 2 Let N1 = (πN1, GN1) and N2 = (πN2, GN2)
be two possibilistic networks having exactly the same
associated DAG. Let N⊕ = (πN⊕, GN⊕) be the result of
merging N1 and N2 using the above definition. Then, we
have :

∀ω ∈ Ω, πN⊕(ω) = πN1(ω) ∗ πN2(ω),

where πN⊕, πN1, πN2 are respectively the possibility dis-
tributions associated with N⊕, N1, N2 using Definition 1.

Example 1 Let N1 and N2 be two possibilistic networks.
Let GN be the DAG associated with N1 and N2 and
represented by figure1.

The possiblity distributions associated to N1 and N2 are
given respectively by table1 and table2.

��
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��
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�
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Figure 1: Example of similar networks

Then fused possibilistic networks N⊕ is such that its
associated graph is also the DAG of figure 1 and its
conditional possibility distribution is given by table 3.

It can be checked that :
∀ω ∈ Ω, πN⊕(ω) = πN1(ω) ∗ πN2(ω).

For instance, we have :
πN1(a2b2c1) = πN1(a2) ∗ πN1(b2) ∗ πN1(c1 | a2b2) =
.2 ∗ .5 ∗ 1 = .1

πN2(a2b2c1) = πN2(a2) ∗ πN2(b2) ∗ πN2(c1 | a2b2) =
.3 ∗ .2 ∗ 1 = .06

πN⊕(a2b2c1) = πN⊕(a2) ∗ πN⊕(b2) ∗ πN⊕(c1 | a2b2) =
.06 ∗ .1 ∗ 1 = .006.

Table 1: initial possibility distributions associated with N1
a π(a) b π(b) a b c π(c | a ∧ b)
a1 1 b1 1 a1 b1 c1 1
a2 .2 b2 .5 a1 b1 c2 .3

a1 b2 c1 .1
a1 b2 c2 1
a2 b1 c1 .1
a2 b1 c2 1
a2 b2 c1 1
a2 b2 c2 0

Table 2: initial possibility distributions associated with N2
a π(a) b π(b) a b c π(c | a ∧ b)
a1 1 b1 1 a1 b1 c1 1
a2 .3 b2 .2 a1 b1 c2 0

a1 b2 c1 .7
a1 b2 c2 1
a2 b1 c1 0
a2 b1 c2 1
a2 b2 c1 1
a2 b2 c2 .4

Table 3: initial possibility distributions associated with N⊕
a π(a) b π(b) a b c π(c | a ∧ b)
a1 1 b1 .1 a1 b1 c1 1
a2 .06 b2 .1 a1 b1 c2 0

a1 b2 c1 .07
a1 b2 c2 1
a2 b1 c1 0
a2 b1 c2 1
a2 b2 c1 1
a2 b2 c2 0

Fusion of U-acyclic networks
The above section has shown that the fusion of possibilistic
networks can be easily achieved if they share the same DAG
structure.

This section considers the case where the networks have
not the same structure. However we assume that their union
does not contain a cycle.

A union of two DAGs (G1,G2) is a graph where :

• its set of variables is the union of variables in G1 and G2

and

• for each variable A, its parents are those in G1 and G2.

If the union of G1 and G2 does not contain cycles,
we say that G1 and G2 are U-acyclic networks. In this
case the fusion can be easily obtained. We first provides
a proposition which shows how to add links to a possi-
bilistic network without changing its possibility distribution.

802



Proposition 3 Let N = (πN, GN) be a possibilistic net-
work. Let A be a variable, and let Par(A) be parents of
A in GN. Let B /∈ Par(A). Let N1 = (πN1, GN1) be a
new possibilistic network obtained from N = (πN, GN) by
adding a link from B to A. The new conditionnal possibility
associated with A is:

∀a ∈ DA,∀b ∈ DB ,∀u ∈ DPar(A),
πN1(a | ub) = πN(a | u).

Then, we have :

∀ω, πN(ω) = πN1(ω) .

Given this proposition the fusion of two U-acyclic
networks N1 and N2 is immediate. Let GN⊕ be the union
of GN1 and GN2. Then the fusion of N1 and N2 can be
obtained using the following two steps:

Step 1 Using Proposition 3, expand N1 and N2 such that
GN1 = GN2 = GN⊕.

Step 2 Use Proposition 2 on the possibilistic networks ob-
tained from Step 1 (since the two networks have now the
same structure).

Example 2 Let us consider two causal networks, where
their DAG are given by figure2. These two DAG have a
different strucure.
The conditionnal possibility distributions associated with
above networks are given by tables 4 and 5.
We see clearly, from figure 2, that the union of two DAGs is
free of cycle. Figure 3 provides the DAG of GN⊕ which is
simply the union of the two graphs of Figure 2.
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Figure 2: G1 G2 : Example of U-acyclic networks

Table 4: initial conditionnal possibility distributions πN1

b π1(b) a b π1(a | b) a c π1(c | a)
b1 1 a1 b1 .3 a1 c1 1
b2 .2 a1 b2 1 a1 c2 .5

a2 b1 1 a2 c1 0
a2 b2 0 a2 c2 1

Now we transform both of GN1 and GN2 to the common
graph GN⊕ by adding the required variables and links for

Table 5: initial conditionnal possibility distributions πN2

d π2(d) a d π2(a | d) b d π2(b | d)
d1 1 a1 d1 1 b1 d1 1
d2 0 a1 d2 1 b1 d2 .8

a2 d1 1 b2 d1 .7
a2 d2 0 b2 d2 1
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Figure 3: the DAG GN⊕

each graph. In this case we apply the following steps:

• For GN1 we :

– add a new variable D with a uniform conditional
possibility distributions, namely:
∀d ∈ DD, πN1(d) = 1,

– add a link from this variable D to B in the graph,
and the new local conditional possibility on node B
become:
∀d ∈ DD,∀b ∈ DB , πN1(b|d) = πN1(b).

– add a link from this variable D to A in the graph,
and the new local conditional possibility on node A
become:
∀d ∈ DD,∀b ∈ DB ,∀a ∈ DA, πN1(a|b, d) =
πN1(a|b).

• For GN2 we proceed similarly, namely we:

– add a new variable C, and a link from A to C, with a
uniform conditional possibility distributions, namely:
∀c ∈ DC , ,∀a ∈ DA, πN2(c | a) = 1.

– add a link from B to A, and the new local conditional
possibility on node A become:
∀d ∈ DD,∀b ∈ DB ,∀a ∈ DA, πN2(a|b, d) =
πN2(a|d).

Table 6 gives conditionnal possibility distributions
associated with the DAG of figure 3.
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Table 6: Merged conditionnal distributions πN⊕

d π(d) a c π(c | a) b d π(b | d)
d1 1 a1 c1 1 b1 d1 1
d2 0 a1 c2 .5 b1 d2 .8

a2 c1 0 b2 d1 .14
a2 c2 1 b2 d2 .2
a b d π(a | b ∧ d)
a1 b1 d1 .3
a1 b1 d2 .3
a1 b2 d1 1
a1 b2 d2 1
a2 b1 d1 1
a2 b1 d2 0
a2 b2 d1 0
a2 b2 d2 0

From these different tables of conditionnal distributions,
we can easily show that the joint possibility of πN⊕ com-
puted by chain rule, is equal to the product of πN1 and πN2.
For instance, let ω=a1b1c1d1 be a possible situation. Using
chain rule We have:
πN1(a1b1c1d1) = .3.
πN2(a1b1c1d1) = 1.
πN⊕(a1b1c1d1) = πN⊕(c1 | a1)∗πN⊕(a1 | b1d1)∗πN⊕(b1 |
d1) ∗ πN⊕(d1) = .3.

Fusion of U-cyclic networks

The previous section has proposed an approach to fuse U-
cyclic networks, by expanding each network to a common
network (the union of networks to fuse). This approach
cannot be applied if this common structure contains cycles.

This section proposes an alternative approach which
can be applied for fusing any set of possibilistic networks.
This approach is based on introducing new variables. Let
N1 = (πN1, GN1) and N2 = (πN2, GN2) be two possibilistic
networks.

The following algorithm gives the construction of GN⊕)

Algorithm 1: Construction of GN⊕

Data: GN1 and GN2

Result: GN⊕

begin
- Initialize GN⊕ with GN2

- Rename each variable Ai in GN⊕ by a new variable
that we denote A′

i. Each instance ai of Ai will be
renamed by a new instance denoted a′

i. We denote by
V ′ the set of new variables.

- Add GN1 to GN⊕

- For each variable A, add a link from A to its
associated variable A′

i.

end

Namely, the fused graph GN⊕ is obtained by first consid-
ering GN1, renaming variables of GN2 and linking variables
of Ai and A′

i.
The Construction of πN⊕ from πN1 and πN2 is obtained as

follow:

• For each variable A, define its associated possibility dis-
tribution in N⊕ to be identical to the one in N1, namely
:
πN⊕(A | UA) = πN1(A | UA)

• For variables A′
i, note first that parents of A′

i in GN⊕ are
those of GN2 plus the variable Ai. The conditional possi-
bility distribution associated with each variable A′ is de-
fined as follows:

πN⊕(a′

i | ajU
′

A) =

{

πN2(ai | UA) if i = j
0 otherwise (2)

From the construction of πN⊕, we can check that :
∀ω ∈ ×A∈V DA:

ΠN⊕(ω) = πN1(ω) ∗ πN2(ω).

Example 3 Consider the following DAG’s :

��
��

A ��
��

B

G1: G2:
?

��
��

B

?

��
��

A

Figure 4: Example of U-cyclic networks

For lack of space, we will only illustrate the construction
of the fused graph.

We remark that union of the DAG’s of figure4 contains a
cycle. Then the fused graph and the possibility distributions
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are computed as follow:

• Move all the variables of GN1 to GN⊕.

The possibility distributions of GN⊕ is identical to the
one in πN1.

For instance:
∀a ∈ DA πN⊕(a) = πN1(a)
and ∀b ∈ DB πN⊕(b|UB) = πN2(b|UB)

• Rename variables of GN2.
A - A’ and B - B’

Add the new variables of GN2 to those of GN⊕.

• Create a link from A to A’ and another link from B to B’.
Compute the new conditionnal possibility distributions of
the fused graph as defined above.
The result graph is illustrated by Figure 5.

��
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Figure 5: Example of fused graph GN⊕

Conclusions
This paper has proposed a syntactic fusion of possibilistic
networks. We first showed that when the possibilistic net-
works have the same structure or when the union of their
DAGs is free of cycles, then the fusion can be achieved ef-
ficently. When the union of DAGs contain cycles, then the
fusion is still possible with additional variables. A future
work is to analyse the problem of subnormalization that may
appear when merging possibilistic networks.
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