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Abstract

Sensitivity analysis of Markovian models amounts to com-
puting the constants in polynomial functions of a parame-
ter under study. To handle the computational complexity
involved, we propose a method for approximate sensitivity
analysis of such models. We show that theoretical proper-
ties allow us to reason for the present time using just few
observations from the past with small loss in accuracy. The
computational requirements of our method render sensitivity
analysis practicable even for complex Markovian models. We
illustrate our method by means of a sensitivity analysis of a
real-life Markovian model in the field of infectious diseases.

Introduction
Whether estimated from data or assessed by experts, the pa-
rameters of a Markovian model tend to be inaccurate to at
least some degree, due to incompleteness of data and partial
knowledge of the domain under study. These inaccuracies
may affect the output of the model. The effects of inaccu-
racies in the parameters of a graphical model on its output,
can be investigated by subjecting the model to a sensitiv-
ity analysis (Laskey, 1995; Coupé and Van der Gaag, 2002;
Chan and Darwiche, 2002). For a Markovian model, per-
forming such an analysis amounts to stepwise varying each
parameter separately and studying the effects on the output
probability of interest. Previous work on sensitivity proper-
ties of Markovian models with a single process has shown
that the sensitivity functions are quotients of two functions
that are polynomial in a parameter under study (Charitos and
Van der Gaag, 2004). The order of these polynomial func-
tions is linear in the time scope that is taken into consid-
eration, and establishing these functions is highly demand-
ing from a computational point of view. We now generalise
these results to all types of Markovian model and present
an approximate method for sensitivity analysis that reduces
the runtime requirements involved yet incurs only a small
loss in accuracy. Our method is based on theoretical prop-
erties of Markovian models and can lead to substantial time
and space savings in the computations involved. In addition,
we present a method for approximating the functional form
of a sensitivity function to allow for further computations.
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The method is based upon least-squares approximation and
is showing promising results in our experiments. We illus-
trate our methods by means of a sensitivity analysis of a real-
life Markovian model in the field of infectious diseases.

Markovian models
Sequential statistical models for reasoning about stochas-
tic processes include hidden Markov models (HMMs) and
dynamic Bayesian networks (DBNs); in the sequel, we as-
sume that these models are Markovian in the sense that
the future state of the modelled process is assumed to be
independent of the past state given its present state. An
HMM is a statistical model H = (X,Y,A,O,Γ) that can
be looked upon as an extension of a finite homogeneous
Markov chain, including observable variables that depend
on the hidden variable. We use Xn to denote the hidden
variable at time step n, with states xni , i= 1, . . . , l, l ≥ 2;
the transition matrix for Xn is denoted as A= {ai,j} with
elements ai,j=p(Xn+1=xn+1

j | Xn=xni ), i, j = 1, . . . , l,
for all n. We denote the observable variables by Yn, with
values yj , j = 1, . . . ,m,m ≥ 2, that are generated from
the state of the hidden variable according to a time-invariant
observation matrix O = {oi,j} with oi,j = p(Yn = yj |
Xn = xni ), i = 1, . . . , l, j = 1, . . . ,m, for all n. Finally,
we denote by Γ= {γi} the initial probability vector for the
hidden variable, with γi=p(X1=x1

i ), i=1, . . . , l. A DBN
can be looked upon as an extension of an HMM, capturing
a process that involves a collection of hidden variables. A
DBN is a graphical model that encodes a joint probability
distribution on a set of stochastic variables, explicitly cap-
turing the temporal relationships between them. DBNs are
usually assumed to be time invariant, which means that the
topology and the parameters of the model per time step and
across time steps do not change.

Applying a Markovian model usually amounts to comput-
ing marginal probability distributions for the hidden vari-
ables at different times. In this paper, we focus on mon-
itoring, which is the task of computing these distributions
for some time step n given the observations that are avail-
able up to and including that time step. For HMMs, the
forward-backward algorithm is available for this task (Ra-
biner, 1989). For DBNs, Murphy (2002) introduced the in-
terface algorithm as an extension of the junction-tree algo-
rithm for probabilistic inference in graphical models in gen-
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Figure 1: The dVAP model for the diagnosis of VAP for
two consecutive time steps; clear nodes are hidden, shaded
nodes are observable. The dashed boxes indicate the hidden
processes of the model.

eral. The interface algorithm efficiently exploits the concept
of forward interface, which is the set of variables at time step
n that affect some variables at time step n+1 directly; in the
sequel, we use FI to denote this forward interface. Based
on this concept, the interface algorithm requires two steps:
a construction step and a numerical step. In the construc-
tion step, a junction tree is created for two consecutive time
steps excluding all non-forward interface nodes and their in-
cident arcs from the first time step . In the numerical step,
the clique that contains the forward interface serves as the
root node for the computations. The computational com-
plexity of the algorithm is exponential in the number of hid-
den variables and for large models can be prohibitive.

Throughout the paper we will use the dVAP network for
illustration purposes. This network is a real-life Marko-
vian model for diagnosing ventilator-associated pneumonia
(VAP) in patients in an intensive care unit (ICU) and is des-
tined for use in clinical practice (Charitos et al., 2005). The
model has been developed and refined with the help of a
single infectious disease specialist and has been evaluated
for a period of 10 days on 20 patients from the ICU of the
University Medical Centre Utrecht in the Netherlands; 5 of
these patients were diagnosed with VAP. The network in-
cludes two interacting hidden processes (colonisation and
pneumonia), three input processes (summarised in immuno-
logical status), three input observable variables (hospitalisa-
tion, mechanical ventilation, and previous antibiotics) and
one hidden input variable (aspiration), and seven output
observable variables (summarised in symptoms-signs). Per
time step, representing a single day, the model includes 30
variables. Each of the interacting processes consists of seven
subprocesses that are a-priori independent. The transition
matrices of these processes are only moderately stochastic.
Figure 1 shows the dVAP network in a compact way.

Sensitivity analysis revisited
Sensitivity analysis has been studied in the last decade in
the context of Bayesian networks (BNs) (Laskey, 1995;
Van der Gaag and Renooij, 2001; Coupé and Van der Gaag,
2002). It amounts to establishing, for each of the network’s
parameters, a function that expresses a given output proba-

bility of interest in terms of a parameter under study. We
take the posterior probability p(b | e) for our probability of
interest, where b is a specific value of the variable B and e
denotes the available evidence; we further let θ = p(hi | π)
be our parameter under study, where hi is a value of the
variable H and π is a specific combination of values for the
parents of H . Sensitivity analysis now amounts to establish-
ing the sensitivity function that describes p(b | e) in terms of
θ; we write p(b | e)(θ) for the function, thereby expressing
the (algebraic) dependency of p(b | e) upon θ. If we assume
that the other parameters p(hj | π), hj 6= hi, specified for
H are co-varied proportionally according to

p(hj | π)(θ) =

{
θ if j = i
p(hj | π) ·

1−θ
1−p(hi|π) otherwise

for p(hi | π) < 1, then the sensitivity function is a quotient
of two linear functions in θ, that is,

p(b | e)(θ) =
p(b, e)(θ)

p(e)(θ)
=

c1 · θ + c0
d1 · θ + d0

where c1, c0, d1 and d0 are constants with respect to θ
(Coupé and Van der Gaag, 2002). Under the assumption of
proportional co-variation, therefore, any sensitivity function
is characterised by at most three constants. Note that for pa-
rameters of which the probability of interest is algebraically
independent, the sensitivity function simply equals the pos-
terior probability p(b | e); any computations can therefore
be restricted to the sensitivity set for the variable of inter-
est. The most efficient scheme for sensitivity analysis to date
(Kjaerulff and Van der Gaag, 2000) is based on the junction-
tree algorithm. This scheme requires an inward propagation
for processing evidence and a single outward propagation in
the junction tree for establishing the constants of the sen-
sitivity functions for all parameters per output probability.
It builds on the idea that the expressions for p(b, e)(θ) and
p(e)(θ) can be derived from the potential of a clique contain-
ing both the variable and the parents to which the parameter
θ pertains.

Sensitivity properties of Markovian models
In a sensitivity analysis of a Markovian model, the probabil-
ity of interest typically is the probability of a specific state
of some hidden variable at time step n > 1. The parame-
ter can be any parameter of the model, such as a transition
probability or an observation probability. The main differ-
ence with sensitivity analysis of BNs is that a parameter oc-
curs multiple times in a Markovian model. Previous work
on sensitivity analysis of HMMs showed that the functions
involved again are polynomials or quotients of polynomials,
yet now of higher order (Charitos and Van der Gaag, 2004).
In the sequel, we briefly review these results and generalise
them to DBNs.

We begin by considering a Markovian model for which no
evidence has been entered as yet. For an HMM, the proba-
bility of interest is the prior probability p(xnr ) of some state
xr of the hidden variable Xn. Let θa = ai,j ∈ A be a tran-
sition parameter in the model. Then,

p(xnr )(θa) = cn−1
n,r · θ

n−1
a + . . .+ c1n,r · θa + c0n,r
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where cn−1
n,r , . . . , c0n,r are constants with respect to θa depen-

dent on time n. We thus have that the sensitivity function
that expresses the prior probability p(xnr ) at time step n in
terms of the transition parameter θa is a polynomial of order
n−1 in this parameter. For an initial parameter θγ = γi ∈ Γ,
the function is linear :

p(xnr )(θγ) = c1n,r · θγ + c0n,r

where c1n,r and c0n,r are constants with respect to θγ . With-
out any evidence, the probability of interest is algebraically
independent of any observation probability.

We now assume that some evidence has been entered into
the model; we use en to denote the combined evidence up
to and including time step n. We consider again the proba-
bility of interest p(xnr | en). Let θa = ai,j ∈ A again be a
transition parameter in the model. Then,

p(xnr , en)(θa)

p(en)(θa)
=
cn−1
n,r ·θ

n−1
a + . . .+ c1n,r · θa + c0n,r

dn−1
n,r ·θ

n−1
a + . . .+ d1

n,r ·θa + d0
n,r

where cn−1
n,r , . . . , c0n,r, dn−1

n,r , . . . , d0
n,r are constants with re-

spect to θa. We thus have that the sensitivity function that
expresses the posterior probability p(xnr | en) in terms of
the transition parameter θa is a quotient of two polynomials
in θa of order n−1. For an observation parameter θo = oi,j ,
the sensitivity function becomes

p(xnr , en)(θo)

p(en)(θo)
=
cbn,r ·θ

b
o + . . .+ c1n,r · θo + c0n,r

dnn,r ·θ
n
o + . . .+ d1

n,r ·θo + d0
n,r

where b = n if r = i and b = n−1 otherwise; cbn,r, . . . , c
0
n,r,

dnn,r, . . . , d
0
n,r are constants with respect to the parameter

θo. The order of the polynomials involved thus grows lin-
early with n. For an initial parameter θγ we have that the
sensitivity function is a quotient of two linear functions in
this parameter. For probabilities of interest belonging to any
possible time step no < n or no > n, similar results hold
(Charitos and Van der Gaag, 2004).

The previous results are readily generalised to DBNs.
Upon doing so, we will explicitly take into account the sen-
sitivity set for the variable of interest Bn given the evidence
en, denoted as Sens(Bn, en). Note that the concept of sen-
sitivity set was used implicitly for HMMs, where we argued
for example that the sensitivity function for an observation
parameter is a constant function as long as no evidence had
been entered. In a DBN, we consider the posterior probabil-
ity of interest p(bnr | en) of the state br of the hidden variable
Bn given the (possibly empty) evidence en. Then,

• for any variable Hn∈Sens(Bn, en), the sensitivity func-
tion expressing p(bnr | en) in θ = p(hni | π) is a quotient
of two polynomials of order n−1 if Hn∈FI , or of order
n otherwise;

• for any variable Hn /∈Sens(Bn, en), the sensitivity func-
tion expressing p(bnr | eno) in θ= p(hnoi | π), no <n, is a
quotient of a polynomial of order n−no in the numerator
and a polynomial of order no in the denominator.

As an example, Figure 2 depicts the effect of varying the
parameter θ = p(leucocytosis = yes | pneumonia = yes)
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Figure 2: The sensitivity functions expressing the proba-
bilities of pneumonia given e10 in terms of the parameter
θ=p(leucocytosis=yes |pneumonia=yes).

on the probability distribution for pneumonia at day 10 given
evidence e10 for a specific patient in the dVAP network. The
depicted sensitivity function is a quotient of two polynomi-
als of order 10 each.

To compute the constants in the sensitivity functions for
a probability of interest in a DBN, we combine the inter-
face algorithm with the scheme for sensitivity analysis from
Kjaerulff and Van der Gaag (2000). Further details of this
scheme are out of the scope of this paper.

Decreasing the computational requirements
The number of constants in the sensitivity functions of a
DBN and the complexity of the propagations required to
compute these constants grows linearly with n. For a large
time scope, therefore, sensitivity analysis can become quite
hard. We now propose to reduce the order of the polyno-
mials and thereby the runtime requirements for their com-
putation. We present an approximate technique for sen-
sitivity analysis that builds on the concept of mixing rate
of a Markov process. This concept has also been success-
fully used for approximate inference in large DBNs (Boyen,
2002). Informally speaking, when two different probability
distributions are processed through a stochastic matrix, they
become closer to one another. Based on this observation, we
reduce the number of time steps for which perform inference
upon computing the sensitivity functions.

Contraction of a single process
We consider two probability distributions µ and µ′ over the
same variable W . Conditioning on a set of observations is
known to never increase the relative entropy of these distri-
butions. Denoting the conditioning on a given set of obser-
vations by o(·), we thus have that

D[o(µ)‖o(µ′)] ≤ D[µ‖µ′] (1)

where D stands for the relative entropy. Now, consider the
extreme case where µ and µ′ have their probability mass
on two different states wi and wk respectively. We denote
by A(·) the distribution that results from processing through
the transition matrix A. Even though µ and µ′ do not agree
on any state, processing through the transition matrix will
cause them to place some mass on some state wj . They then
agree for a mass of min

[
A(µ(wj ;wi)), A(µ

′(wj ;wk))
]

on
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that state wj . Based on this property, the minimal mixing
rate of the matrix A is defined as (Boyen, 2002):

δA = min
i,k

∑

j

min
[
A(µ(wj ;wi)), A(µ

′(wj ;wk))
]

Given the minimal mixing rate of a transition matrix A, the
following theorem now holds (Boyen, 2002):

D[A(µ)‖A(µ′)] ≤ (1− δA) ·D[µ‖µ′]

We say that the stochastic process with transition matrix A
contracts with probability δA. Combining equation (1) with
the previous theorem we conclude that

D[A(o(µ))‖A(o(µ′))] ≤ (1− δA) ·D[µ‖µ′]

Performing conditioning on two different distributions and
transitioning them, will therefore result in two new distribu-
tions whose distance in terms of relative entropy is reduced
by a factor smaller than one. Now, if we perform condi-
tioning and transitioning on the resulting distributions and
continue in this way, we are guaranteed that after some time
steps there will be no longer any difference. The distance be-
tween the distributions in fact decreases exponentially with
rate (1− δA).

Our approximate method for sensitivity analysis now
builds on the contraction property reviewed above. Suppose
that we are interested in the probability of some state of the
hidden variable Xn at time step n. After entering the avail-
able evidence en into the model, we can compute the exact
posterior distribution p(Xn | en). Building on the contrac-
tion property, however, we can also compute an approximate
distribution p̃(Xn | en) starting from time step nφ, with
1 < nφ < n, without losing too much accuracy. We now
define the backward acceptable window ωφn,εfor time step n
with a specified level of accuracy ε, to be the number of time
steps we need to use from the past to compute the probabil-
ity distribution of the hidden variable at time step n within
an accuracy of ε. The following schematic figure illustrates
our concept of the backward acceptable window:

{1, . . . , nφ, . . . , n}︸ ︷︷ ︸
total time scope n

−→ {nφ, . . . , n}︸ ︷︷ ︸
ω
φ
n,ε

We now propose to perform sensitivity analysis for time step
n considering only the backward acceptable window ωφn,ε.
Note that the resulting functions then include polynomials
of order O(n − nφ) rather than of order O(n) compared to
the true functions.

For a given level of accuracy ε, we can determine the max-
imum value of nφ for which

D[p(Xn |en)‖p̃(Xn |en)] ≤

(1− δA)
n−nφ ·D[p(Xnφ |enφ)‖p(X1)]≤ε

where p̃(Xn | en) denotes the approximate distribution of
Xn that is computed using ωφn,ε. Solving for nφ, we find
that

nφ ≤ n−

⌊
log
(
ε/D[p(Xnφ |enφ)‖p(X1)]

)

log(1− δA)

⌋
(2)

where b·c stands for the integer part. Starting from nφ = n
and decreasing the value of nφ one step at a time, we can
readily establish the value of nφ that first satisfies equation
(2). To this end, the interface algorithm needs to have com-
puted and stored the exact posterior distributions p(Xno |
eno) for all no≤n, given evidence eno .

In view of sensitivity analysis, we observe that the value
of nφ that is established as outlined above, is based on the
original values of all parameters of the model under study.
We further observe that the minimal mixing rate δA used
in the computation of nφ is algebraically dependent only of
the model’s transition parameters. Using ωφn,ε based upon
nφ for sensitivity analysis, therefore, is guaranteed to result
in approximate sensitivity functions within accuracy of ε for
any non-transition parameter. For transition parameters, this
guarantee does not hold in general. We note, however, that
for the original value of a transition parameter, the differ-
ence between the true probability of interest and the approx-
imate one is certain to be smaller than ε. Since the value
nφ changes with δA in a stepwise manner only, this property
holds for a range of values for the parameter. Our experi-
mental results using the backward acceptable window with
sensitivity analysis of the dVAP model in fact show that for
all possible values of the transition parameters good approx-
imations are found; we return to this observation presently.

The procedure to compute the optimal value nφ requires
at most n computations of equation (2) and thus is not very
demanding from a computational point of view. We recall,
however, that for the computation of nφ, the interface al-
gorithm needs to have established the exact posterior distri-
butions given the available evidence. Now in a full sensi-
tivity analysis, the effects of parameter variation are being
studied for a number of evidence profiles. The above pro-
cedure may then become rather demanding since for every
such profile a full propagation with the interface algorithm is
required. An alternative way would be then to approximate
nφ given ε from the start and perform the entire analysis
with the backward acceptable window ωφn,ε. If we assume
that D[p(Xnφ)‖p(X1)] is bounded from above by a known
constant M , we find that an approximate value for nφ would
satisfy

nφ ≈ n−

⌊
log(ε/M)

log(1− δA)

⌋

Note that for given ε and δA, the higher the value of M , the
smaller the value of nφ and hence the larger the backward
acceptable window. Knowledge of the domain under study
can help in determining a suitable value for M . In a med-
ical setting for example, M can be determined by inserting
worst-case scenario observations for the first time step and
computing for that time the posterior probability distribution
for the hidden variable from which M can be readily estab-
lished. The complexity that our method now entails is just
the complexity of computingM which is similar to perform-
ing a single propagation for a single time step. Note that this
computational burden is considerably less than the burden
of performing nφ time steps of exact inference, which we
thereby forestall in the sensitivity analysis. Note that for
some patients the computation of nφ based upon this value
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Ω = [bc, b̄c, bc̄, b̄c̄]

Ω′ = [b, b̄]

S=




b|bc b̄|bc
b|b̄c b̄|b̄c
b|bc̄ b̄|bc̄
b|b̄c̄ b̄|b̄c̄




Figure 3: The stochastic process Bn depends on the vari-
able Cn. The minimal mixing rate for Bn depends on the
stochastic matrix A′. The state spaces before and after the
transition are Ω and Ω′ respectively.

M will lead to a larger backward acceptable window than
the one computed directly from equation (2).

Contraction of multiple subprocesses
In general, a Markovian model with multiple interacting
subprocesses can be represented as a single-process stochas-
tic model with a global transition matrix AG by enumerating
all combinations of values for the subprocesses. In principle,
therefore, we can compute the minimal mixing rate δAG for
the global matrix and determine an acceptable window as
outlined above. Such a procedure, however, is highly time
consuming, if not intractable, for models of realistic size.
We now show that we can compute a lower bound on δAG
from knowledge of the contraction rates of the individual
subprocesses of the model.

The definition of minimal mixing rate can be generalised
to models in which a stochastic subprocess depends not just
on its previous state but on the values of some other vari-
ables as well. The state space Ω = {w1, . . . , wν} before the
stochastic transition and the state space Ω = {w′1, . . . , w

′
ν′}

after the transition then are not necessarily the same, and
there is an ν× ν ′ stochastic matrix S rather than a transition
matrix A; Figure 3 illustrates the basic idea. Boyen (2002,
Theorem 5.11) assumed that a Markovian model could be
approximated by conditionally independent sets of subpro-
cesses and that a minimal mixing rate could be computed
based on this independence assumption. We now follow a
similar approach in establishing a lower bound on δAG for
any Markovian model.

Theorem Let Q be a Markovian model that consists of L
subprocesses with stochastic matrices S1, . . . , SL, such that
each subprocess ` depends on at most κ other processes and
influences at most q other processes. For each subprocess `,
let δS` be its minimal mixing rate. Then, a lower bound on
the minimal mixing rate δAG of the model is

δAG ≥

(
min(δS1

, . . . , δSL)

κ

)q
·min(δS1

, . . . , δSL)
q

Proof (sketch): The proof is based on splitting the transi-
tion of each subprocess into two consecutive phases, where
the first one chooses whether or not to contract, and the sec-
ond one concludes the transition in a way that depends on
whether the subprocess has contracted. Since the two phases
form a Markov chain, the mixing rate of Q is at least that of
the first phase alone (Boyen, 2002, Theorem 5.11). A lower
bound on the mixing rate for the first phase of a subprocess `

that depends on κ other subprocesses now is
min(δS1

,...,δSL )

κ
.
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Figure 4: The relationship between nφ and the error ε for a
specific patient in the dVAP model.

Since the influence of ` on another subprocess involves the
construction of an intermediate variable for the first phase
which contracts independently with rate at least equal to
min(δS1

, . . . , δSL), the result in the theorem follows. ¤

For a Markovian model composed of several sparsely in-
teracting subprocesses each of which is fairly stochastic, we
expect a reasonable bound on the overall mixing rate δAG .
We recall that the larger the mixing rate, the larger the nφ
and the smaller the backward window that we can accept-
ably use for the sensitivity analysis. For the dVAP model,
Figure 4 shows, as an example the relationship between the
error ε and the size of a backward acceptable window for
a specific patient. We observe that there is negligible error
between the true probability distribution at time step 10 and
the one obtained using a value for nφ as high as 7. For all
patients in fact, we found that instead of using the obser-
vations for all 10 days in the ICU upon performing a sen-
sitivity analysis for the probability of VAP, we can use the
observations from day 5 with an average error smaller than
ε = 0.003. This result is quite very promising for practi-
cal reasons since it shows that even if the dynamic processes
of a Markovian model are not highly stochastic, the back-
ward acceptable window can still be small enough to allow
for good approximations of the sensitivity functions in little
time.

Least-square approximation
In general, the aim of performing a sensitivity analysis is to
select the parameter probabilities that upon variation show a
large effect on the output of the model under study. For this
purpose, several concepts have been proposed, such as the
concepts of sensitivity value (Laskey, 1995) and admissible
deviation (Van der Gaag and Renooij, 2001); a sensitivity
function can be further used to identify changes in the pa-
rameter under study that serve to satisfy a query constraint
on the output probability (Chan and Darwiche, 2002). These
concepts build directly upon the sensitivity functions result-
ing from the analysis and share that they require further ma-
nipulation of these functions.

In (Charitos and Van der Gaag, 2004) we proposed a
method to approximate any sensitivity function by a single
polynomial of restricted complexity using a least-squares
approximation. For this purpose, a large number of data
points are generated from the established sensitivity func-
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tion. Using these data points, estimates are obtained for the
coefficients of a polynomial f with a desired order that sat-
isfies the least-squares fit criterion, where the objective is to
minimise

Error(f) =
1

2

∑

k

[hk − f(k)]2

where k and hk correspond to a point in the interval [0, 1]
and its associated value in the true sensitivity function, re-
spectively. The resulting polynomial then is taken as an ap-
proximation of the true sensitivity function and used for fur-
ther manipulation. The order of the approximate function is
determined by a threshold value for Error(f) which can be
established experimentally.

The least-squares approximation technique can be applied
not only to exact sensitivity functions, but to the functions
obtained using the backward acceptable window as well,
thereby providing a two-stage approximation of the true sen-
sitivity functions. In this way, we obtain in little time, and
without too much loss in accuracy, a single polynomial of
relatively low order that describes the influence of the pa-
rameter under study on the posterior probability of interest.

As an example, we consider the effect of varying the pa-
rameter θ= p(rad.signs= yes | pneumonia= yes) in the
dVAP network on the probability of pneumonia = yes at
day 10 given the evidence e10 for a specific patient. The true
sensitivity function is a quotient of two polynomials of order
10. Using the backward acceptable window, the resulting
approximate sensitivity function is a quotient of polynomi-
als of order 6 each. To simplify this function, we constructed
a simpler polynomial as described above. Using 1000 data
points generated from the approximate function, we com-
puted a polynomial of order 4. The resulting approximate
sensitivity function with respect to θ equals

f(θ) = −6.287·θ4 +9.724·θ3− 5.08·θ2 +0.837·θ+0.936

Figure 5 shows the difference between the exact and the
approximate sensitivity functions with or without the least-
squares approximation. Note that the two-stage approxima-
tion of the true sensitivity function still shows a close fit to
the true sensitivity function.

Conclusions
In this paper, we made a number of contributions to reducing
the runtime complexity of sensitivity analysis of Markovian
models. We detailed an approximate method for sensitivity
analysis that has less runtime requirements than the exact
method and yet has a small loss in accuracy. To provide for
further computations based upon the approximate sensitivity
functions, we presented a method for an additional approx-
imation of their functional form. We illustrated our results
using a real-life Markovian model for diagnosing ventilator-
associated pneumonia. Our experiments indicate that the
sensitivity functions for our model can be computed effi-
ciently with just minor fluctuations from their exact values.
In the future, we plan to perform additional experiments to
support our current results and also to study the joint influ-
ence of two parameters on the output probability of interest.
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Figure 5: Comparison of the exact and approximate sensitiv-
ity functions expressing the probabilities p(pneumonia =
yes) (upper set of plots) and p(pneumonia = no) (bot-
tom set of plots) given e10 in terms of the parameter θ =
p(rad.signs=yes |pneumonia=yes).
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