
Uncertainty Reasoning in Description Logics: A Generic Approach∗

Volker Haarslev and Hsueh-Ieng Pai and Nematollaah Shiri
Concordia University

Dept. of Computer Science & Software Engineering
Montreal, Quebec, Canada

{haarslev, hsueh pa, shiri }@cse.concordia.ca

Abstract

Description Logics (DL) are gaining more popularity as the
foundation of ontology languages for the Semantic Web. As
most information in real life is imperfect, there has been an
increasing interest recently in extending the expressive power
of DLs with uncertainty, for which a number of frameworks
have been proposed. In this paper, we introduce an extension
of DL which unifies and/or generalizes a number of exist-
ing approaches for DLs with uncertainty. For this, we first
provide a classification of the components of existing frame-
works for DLs with uncertainty in a generic way. Using this
as a basis, we then discuss ways to extend these components
with uncertainty, which includes the description language, the
knowledge base, and the reasoning services.

Introduction
Uncertainty is a form of deficiency or imperfection com-
monly found in real-world information/data. A piece of
information is uncertain if its truth is not established defi-
nitely. Modeling uncertainty and reasoning with it have been
challenging issues for over two decades in database and ar-
tificial intelligence research. Uncertainty management has
attracted the attention of researchers in Description Logics
(DLs) (Baader, F.et al. 2003) in recent years. To highlight
the importance of the family of DLs, we describe its connec-
tion with ontologies and Semantic Web as follows.

Ever since Tim Berners-Lee introduced the vision of the
Semantic Web (Berners-Lee, T., Hendler, J., & Lassila, O.
2001), attempts have been made on making Web resources
more machine-interpretable by giving them a well-defined
meaning through semantic mark-ups. One way to encode
such semantic mark-ups is using ontologies. An ontology
is “an explicit specification of a conceptualization” (Gruber,
T. R. 1993). Informally, ontology consists of a set of terms
in a domain, the relationship between the terms, and a set
of constraints imposed on the way in which those terms can
be combined. Constraints such as concept conjunction, dis-
junction, negation, existential quantifier, and universal quan-
tifier can all be expressed using ontology languages. By ex-

∗This work was supported in part by Natural Sciences and En-
gineering Research Council (NSERC) of Canada, and by ENCS,
Concordia University.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

plicitly defining the relationships and constraints among the
terms, the semantics of the terms can be better defined and
understood.

Over the last few years, a number of ontology languages
have been developed, most of which have a foundation based
on DLs. The family of DLs is a subset of first-order logic
(FOL) that is considered to be attractive as it keeps a good
compromise between expressive power and computational
tractability.

Despite popularity of standard DLs, it has been realized
that they are inadequate to model uncertainty. For example,
in the medical domain, one might want to express that: “It is
very likely that an obese person would have heart disease”,
where “obese” is a vague concept that may vary across re-
gions or countries, and “likely” shows the uncertain nature
of this information. Such expressions cannot be expressed
using standard DLs.

Recently, a number of frameworks have been proposed
which extend DLs with uncertainty, some of which deal with
vagueness while others deal with probabilistic knowledge.
We do not intend to discuss which extension is better. In
fact, different applications may require different aspects to
be modelled, or in some cases, it may even be desired to
model different aspects within the same application.

Following the approach of the parametric framework
(Lakshmanan, L.V.S. & Shiri, N. 2001), in this paper, we
propose a generic DL with uncertainty as a unifying um-
brella for several existing frameworks of DLs with uncer-
tainty. This approach not only provides a uniform access
over theories that have been expressed using DL with vari-
ous kinds of uncertainty, but also allows one to study vari-
ous related problems, such as syntax, semantics, reasoning
techniques and optimization, design, and implementation of
knowledge bases in a framework-independent manner.

The rest of this paper is organized as follows. Next sec-
tion provides an overview of the standard DL framework,
and presents a classification of existing frameworks of un-
certainty in DL. After that, we present our generic frame-
work for DL with uncertainty in detail, and illustrate how
it can represent uncertainty and reasoning services in the
frameworks considered. Concluding remarks and future di-
rections are presented in the last section.

818

Background and Related Work
This section first gives an overview of the classical DL
framework. Then, a classification of existing frameworks
of uncertainty in DL is presented.

Overview of Classical DL Framework
The classical DL framework consists of three components:

1. Description Language:All description languages have
elementary descriptions which include atomic concepts
(unary predicates) and atomic roles (binary predicates).
Complex descriptions can then be built inductively from
concept constructors. In this paper, we focus on the de-
scription languageALC (Baader, F.et al. 2003). LetC
andD be concept descriptions.ALC includes the atomic
conceptsA, atomic rolesR, top/universal concept>, bot-
tom concept⊥, concept negation¬C, concept conjunc-
tion C uD, concept disjunctionC tD, role value re-
striction ∀R.C (meaning∀y : R(x, y) → C(y) for x in
the domain), and role exists restriction∃R.C (meaning
∃y : R(x, y) ∧ C(y) for x in the domain).

2. Knowledge Base:The knowledge base is composed of
both intensional knowledge and extensional knowledge
(see Fig. 1). The intensional knowledge includes the Ter-
minological Box (TBox) consisting of a set of terminolog-
ical axioms that could be concept subsumptionsC v D
and/or concept definitionsC ≡ D (whereC andD are
concepts), and the Role Box (RBox) consisting of a set
of role axioms that could be role subsumptionsR v S
and/or role definitionsR ≡ S (whereR andS are roles).
On the other hand, the extensional knowledge includes
the Assertional Box (ABox) consisting of a set of concept
assertionsa : C (wherea is an individual/instance andC
is a concept) and/or role assertions(a, b) : R (wherea, b
are individuals andR is a role).

3. Reasoning Component:A DL framework is equipped
with reasoning services that enables one to derive implicit
knowledge.

Approaches to DL with Uncertainty
On the basis of their mathematical foundation and the type
of uncertainty modeled, we can classify existing proposals
of DLs with uncertainty into three approaches: fuzzy, prob-
abilistic, and possibilistic approach.

The fuzzy approach, based on fuzzy set theory, deals with
the vagueness in the knowledge, where a proposition is true
only to some degree. For example, the statement “Jason
is obese with degree 0.4” indicates Jason is slightly obese.
Here, the value 0.4 is the degree of membership that Jason
is in concept obese.

The probabilistic approach, based on the classical proba-
bility theory, deals with the uncertainty due to lack of knowl-
edge, where a proposition is either true or false, but one does
not know for sure which one is the case. Hence, the certainty
value refers to the probability that the proposition is true.
For example, one could state that: “The probability that Ja-
son would have heart disease given that he is obese lies in
the range[0.8, 1].”

Finally, the possibilistic approach, based on possibility
theory (Zadeh, L. A. 1978), allows both certainty (necessity
measure) and possibility (possibility measure) be handled in
the same formalism. For example, by knowing that “Jason’s
weight is above 80 kg”, the proposition “Jason’s weight is
80 kg” is necessarily true with certainty 1, while “Jason’s
weight is 90 kg” is possibly true with certainty 0.5.

Our Generic Framework
To support uncertainty, each component of the DL frame-
work needs to be extended (see Fig. 1). To be more specific,
the generic framework consists of:

1. Description Language with Uncertainty

2. Knowledge Bases with Uncertainty

3. Reasoning with Uncertainty

Knowledge Base

with Uncertainty

Description

Language

with Uncertainty

Reasoning

with Uncertainty

Intensional Knowledge

TBox with

Uncertainty

RBox with

Uncertainty

ABox with

Uncertainty

Extensional Knowledge

Figure 1: DL Framework with Uncertainty

In what follows, we discuss each of these three compo-
nents in detail, along with illustrating examples. Note that
this paper extends our previous work (Haarslev, V., Pai, H.-
I., & Shiri, N. 2005) by presenting uncertainty inference
rules for the reasoning component of the framework.

Description Language with Uncertainty
To develop a generic description language with uncertainty,
we first need to represent certainty values, and then assign
semantics to elements in the extended language.

Representation of Certainty Values. To represent the
certainty values, we take alattice-based approach, follow-
ing the parametric framework (Lakshmanan, L.V.S. & Shiri,
N. 2001). That is, we assume that certainty values form a
complete lattice shown asL = 〈V,¹〉, whereV is the cer-
tainty domain, and¹ is the partial order defined onV. We
also useb to denote the bottom or least element inV, and
uset to denote the top or greatest value inV. The least up-
per bound operator (the join operator) inL is denoted by⊕,
its greatest lower bound (the meet operator) is denoted by⊗,
and its negation operator is denoted by∼.

The certainty lattice can be used to model bothqualitative
andquantitativecertainty values. An example for the former
is classical logic which uses the binary values{0, 1}. For the
latter, an example would be a family of multi-valued logics
such as fuzzy logic which uses[0, 1] as the certainty domain.

819

Assignment of Semantics to Description Language.The
generic framework treats each type of uncertainty formalism
as a special case. Hence, it would be restrictive to consider
any specific function to describe the semantics of the de-
scription language constructors (e.g., fixingminas the func-
tion to determine the certainty of concept conjunction). An
alternative is proposed in our generic framework to allow a
user to specify the functions that are appropriate to define
the semantics of the description language element at axiom
or assertion level. We elaborate more on this later in section
”Knowledge Bass with Uncertainty.”

To ensure that the combination functions specified by a
user make sense, we assume the following properties for
various certainty functions to be reasonable. Most of these
properties were recalled from (Lakshmanan, L.V.S. & Shiri,
N. 2001), and are reasonable and justified when we verify
them against existing extensions of DL with uncertainty. To
present these properties, we consider the description lan-
guage constructors inALC. We assume that the reader has
a basic knowledge aboutALC.

Let I = (∆I , ·I) be an interpretation, where∆I is the
domain and·I is an interpretation function that maps de-
scription language elements to some certainty value inV.

Atomic Concept. The interpretation of an atomic con-
cept A is a certainty value in the certainty domain, i.e.,
AI(a) ∈ V, for all individualsa ∈ ∆I . For example, in the
fuzzy approach, the interpretation of an atomic conceptA is
defined asAI(a) ∈ [0, 1], that is, the interpretation function
assigns to every individuala in the domain, a value in the
unit interval that indicates its membership toA.

Atomic Role. Similar to atomic concepts, the interpreta-
tion of an atomic roleR is a certainty value in the certainty
domain, i.e.,RI(a, b) ∈ V, for all individualsa, b ∈ ∆I .

Top/Universal Concept. The interpretation of the top
or universal concept> is the greatest value inV, that is,
>I = t. For instance,> corresponds to 1 (true) in standard
logic with truth values{0, 1}, as well as in any one of its
extensions to certainty domain[0, 1].

Bottom Concept. The interpretation of the concept bot-
tom⊥ is the least value in the certainty domainV, that is,
⊥I = b. This corresponds to false in standard logic with
V = {0, 1}, or corresponds to 0 whenV = [0, 1].

Concept Negation.Given a conceptC, the interpretation
of concept negation¬C is defined by the negation function
∼: V → V, which satisfies the following properties:

• Boundary Conditions:∼b = t and∼ t = b.

• Double Negation:∼(∼α) = α, for all α ∈ V.

In our work, we consider the negation operator∼ in the cer-
tainty lattice as the default negation function. Other prop-
erties, such as monotonicity (i.e.,∀α, β ∈ V, ∼α º∼β,
wheneverα ¹ β) may be imposed if desired. A common
interpretation of¬C is 1− CI(a), for all a ∈ C.

Before introducing the properties of combination func-
tions which are appropriate to describe the semantics of con-
cept conjunction and disjunction, we first identify a set of
desired properties which an allowablecombination function
f should satisfy. These functions are used to combine a col-
lection of certainty values into one value. We then identify a

subset of these properties suitable for describing the seman-
tics of logical formulas on the basis of concept conjunction
and disjunction. Note that, sincef is used to combine a col-
lection of certainty values into one, we describef as a binary
function fromV × V to V. This view is clearly without loss
of generality and, at the same time, useful for implementing
functions in general.

1. Monotonicity: f(α1, α2) ¹ f(β1, β2), whenever
αi ¹βi, for i = 1, 2.

2. Bounded Above:f(α1, α2) ¹ αi, for i = 1, 2.

3. Bounded Below:f(α1, α2) º αi, for i = 1, 2.

4. Boundary Condition (Above):∀α ∈ V, f(α, b) = α and
f(α, t) = t.

5. Boundary Condition (Below):∀α ∈ V, f(α, t) = α and
f(α, b) = b.

6. Commutativity:∀α, β ∈ V, f(α, β) = f(β, α).
7. Associativity:∀α, β, δ∈ V, f(α,f(β, δ))= f(f(α, β), δ).

Concept Conjunction. Given conceptsC andD, the in-
terpretation of concept conjunctionC uD is defined by the
conjunction functionfc that should satisfy properties 1, 2, 5,
6, and 7. The monotonicity property is required so that the
reasoning is monotone, i.e., whatever that has been proven
so far will remain true for the rest of the reasoning process.
The bounded value property is included so that the interpre-
tation of the certainty values makes sense. Note that this
property also implies the boundary condition (property 5).
The commutativity property supports reordering of the argu-
ments of the conjunction operator, and associativity ensures
that a different evaluation order of a conjunction of con-
cepts does not change the result. These properties are useful
during the runtime evaluation used by the reasoning proce-
dure. Examples of conjunctions include the usual product
× and min functions, and bounded difference defined as
bDiff (α, β) = max(0, α + β − 1).

Concept Disjunction. Given conceptsC andD, the in-
terpretation of concept disjunctionC tD is defined by the
disjunction functionfd that should satisfy properties 1, 3, 4,
6, and 7. The monotonicity, boundedness, boundary con-
dition, commutativity, and associativity properties are re-
quired for similar reasons described in the conjunction case.
Some common disjunction functions are: the standardmax
function, the probability independent function defined as
ind(α, β) = α + β − αβ, and the bounded sum function
defined asbSum(α, β) = min(1, α + β).

Role Value Restriction. Given a roleR and a role filler
C, the interpretation of the “role value” restriction∀R.C is
defined as follows:
∀a ∈ ∆I , (∀R.C)I(a)=⊗b∈∆I{fd(∼RI(a, b), CI(b))}

The intuition behind this definition is to view∀R.C as
the open first order formula∀b. R(a, b) → C(b), where
R(a, b) → C(b) is equivalent to¬R(a, b) ∨ C(b), and∀ is
viewed as a conjunction over certainty values associated
with R(a, b) → C(b). To be more specific, the semantics
of ¬R(a, b) is captured using the negation function∼ as
∼RI(a, b), the semantics of¬R(a, b) ∨ C(b) is captured
using the disjunction function asfd(∼RI(a, b), CI(b)),

820

and ∀b is captured using the meet operator in the lattice
⊗b∈∆I .

Role Exists Restriction. Given a roleR and a role filler
C, the interpretation of the “role exists” restriction∃R.C is
defined as follows:
∀a ∈ ∆I , (∃R.C)I(a) = ⊕b∈∆I{fc(RI(a, b), CI(b))}

The intuition here is that we view∃R.C as the open first
order formula∃b. R(a, b) ∧ C(b), where∃ is viewed as a
disjunction over the elements of the domain. To be more
specific, the semantics ofR(a, b) ∧ C(b) is captured using
the conjunction function asfc(RI(a, b), CI(b)), and∃b is
captured using the join operator in the lattice⊕b∈∆I .

Additional Inter-Constructor Properties. In addition
to the aforementioned properties, we further assume that the
following inter-constructor properties hold:

• De Morgan’s Rule:¬(C tD) ≡ ¬C u ¬D and
¬(CuD) ≡ ¬C t ¬D.

• Pushing Negation In:¬ ∃R.C ≡ ∀R.¬C and
¬ ∀R.C ≡ ∃R.¬C.

The above two rules are needed to convert a concept descrip-
tion intonegation normal form(NNF), i.e., the negation op-
erator appears only in front of a concept name. Note that
these properties restrict the type of negation, conjunction,
and disjunction functions allowed in existing frameworks,
and hence in our work.

Knowledge Bases with Uncertainty
As in the classical counterpart, aknowledge baseΣ in the
generic framework is a triple〈T ,R,A〉, whereT is a TBox,
R is an RBox, andA is an ABox. To develop a generic ex-
tension to the knowledge base, we present syntactical and
semantical extensions to both the intensional (TBox and
RBox) and extensional knowledge (ABox).

A TBox T consists of a set of terminological ax-
ioms expressed in the form〈CvD,α〉〈fc, fd〉 or 〈C
≡ D, α〉〈fc, fd〉, whereC andD are concepts,α ∈ V is the
certainty that the axiom holds,fc is the conjunction func-
tion used as the semantics of concept conjunction and part
of the role exists restriction, andfd is the disjunction func-
tion used as the semantics of concept disjunction and part
of the role value restriction. As usual, the concept defini-
tion 〈C ≡ D, α〉〈fc, fd〉 is defined as〈CvD,α〉 〈fc,fd〉 and
〈DvC,α〉〈fc, fd〉.

In order to transform the axiom of the form〈CvD, α〉
〈fc,fd〉 into its normal form,〈> v ¬C tD, α〉〈fc, fd〉, we
restrict the semantics of the concept subsumption to be
fd(∼CI(a), DI(a)), where∼CI(a) captures the seman-
tics of¬C, andfd captures the semantics oft in ¬C tD.
We say an interpretationI satisfies〈CvD, α〉〈fc,fd〉 iff for
all individuals a ∈ ∆I , (fd(∼CI(a), DI(a))) ∈ α. This
definition of concept subsumption guarantees some basic
properties to hold, such as the De Morgan’s and Pushing
Negation In rules described above.

The RBoxR of a knowledge baseΣ is similar to the TBox
except that we have role axioms instead of terminological
axioms. In addition, no conjunction or disjunction functions

are specified. Since existing DL frameworks with uncer-
tainty do not allow role conjunction or role disjunction, we
do not consider them in the generic framework either. We
also remark that since this generic framework supports only
ALC, no role hierarchy is allowed. However, we include the
definition of a RBox here for completeness.

An ABox A of Σ consists of a set of assertions of
the form 〈a : C,α〉〈fc, fd〉 or 〈(a, b) : R, α〉〈−,−〉, where
a and b are individuals,C is a concept,R is a role,
α ∈ V, fc is the conjunction function,fd is the disjunc-
tion function, and− denotes that the corresponding com-
bination function is not applicable. An interpretationI
satisfies〈a : C, α〉〈fc, fd〉 (resp. 〈(a, b) : R, α〉〈−,−〉) iff
CI(a) ∈ α (resp.RI(a, b) ∈ α).

An interpretationI satisfiesa knowledge baseΣ, denoted
I |= Σ, iff it satisfies each component ofΣ. We say thatΣ is
satisfiable, denotedΣ 6|= ⊥, iff there exists an interpretation
I such thatI |= Σ. Similarly, Σ is unsatisfiable, denotedΣ
|= ⊥), iff I 6|= Σ, for all interpretationsI.

Reasoning with Uncertainty
In this section, we describe the reasoning procedure for the
generic framework proposed here. Let〈T ,A〉 be a knowl-
edge base, whereT is an acyclic TBox andA is an ABox.

Satisfiability Problem: To check if a knowledge base
〈T ,A〉 is satisfiable, first apply the pre-processing steps (de-
scribed below) to remove the TBox,T . Then, initialize the
extended ABox,AE0 , with the resulting ABox (i.e., the one
after pre-processing steps are performed), and initialize the
constraint set,C0, to the empty set{}. After that, apply the
completion rules (described below) to transform the ABox
into a “simpler” and satisfiability preserving one. The com-
pletion rules are applied in arbitrary order as long as possi-
ble, until eitherAEi contains a clash or no further rule could
be applied toAEi . If AEi contains a clash, the knowledge
base is unsatisfiable. Otherwise, an optimization method
is applied to solve the system of inequations inCj . If the
system of inequations is unsolvable, the knowledge base is
unsatisfiable. Otherwise, the knowledge base is satisfiable.

Entailment Problem: To determine to what degree is an
assertionX true, given a knowledge base〈T ,A〉, we are in-
terested in finding the tightest bound for whichX is true. To
do so, we follow the same procedure as the one for check-
ing satisfiability. However, instead of checking whether the
system of inequations is solvable, we apply the optimization
method to find the tightest bound for whichX is true.

Pre-processing Steps:Before performing any inference
procedure on the knowledge base, we do the following pre-
processing steps.

1. Replace each axiom of the form〈C ≡ D, α〉〈fc, fd〉
with the following two equivalent axioms:〈C v D,α〉
〈fc, fd〉 and〈D v C, α〉 〈fc, fd〉.

2. Transform every axiom in the TBoxT into normal
form. That is, replace each axiom of the form
〈C v D,α〉〈fc, fd〉 with 〈> v ¬C tD, α〉 〈fc, fd〉.

3. Transform every concept (including the ones in TBox and
ABox) into negation normal form.

821

4. For each individuala in the ABox A and each ax-
iom 〈> v ¬C tD,α〉 〈fc, fd〉 in the TBox T , add
〈a : ¬C tD, α〉 〈fc, fd〉 toA.

5. Apply the clash trigger (described below) to check if the
initial knowledge base is inconsistent.

Completion Rules: As in the classical DL, completion
rules are a set of consistency preserving transformation rules
that allows us to infer implicit knowledge from the explicit
one (i.e., the one specified in the original set of assertions
specified in the ABox). In our generic framework, we have
specified the following completion rules: clash triggers, con-
cept assertion rule, role assertion rule, negation rule, con-
junction rule, disjunction rule, role exists restriction rule,
and role value restriction rule. Due to the limited space,
we describe only some of the rules used in our illustrating
example. The concept assertion and role assertion rules are
omitted here since they simply add the certainty value of
each atomic assertion to the constraint setCj .

Let α, β be certainty values in the certainty domain. Also
let xX be the variable denoting the certainty of assertion
X, andΓ be either a certainty value in the certainty domain
or an expression over certainty variables and values. The
completion rules are defined as follows.

Clash Triggers:
〈a : ⊥, t〉〈−,−〉 ∈ AEi
〈a : >, b〉〈−,−〉 ∈ AEi
{〈a : A,α〉〈−,−〉, 〈a : A, β〉〈−,−〉} ⊆ AEi ,

with ⊗(α, β) = ∅
The purpose of these clash triggers is to detect any

possible contractions in the knowledge base. Note that we
use⊥ as a synonym forA u ¬A, and> as a synonym for
A t ¬A. The last trigger detects the contradiction in terms
of the certainty values specified for the same assertion.
To be more specific, in case there is no intersection in the
certainty values specified for the same assertion, we have
conflicting assertions, hence a contradiction is detected.

Negation Rule:
if 1. 〈a : ¬A, Γ〉〈−,−〉 ∈AEi , and

2. 〈a : A,∼Γ〉〈−,−〉 /∈AEi
then AEi+1 = AEi ∪ { 〈a : A,∼Γ〉〈−,−〉}
The intuition behind the negation rule is that, if we know

an assertion has certainty valueΓ, then the certainty of its
negation can be obtained by applying the negation operator
in the lattice toΓ.

Disjunction Rule:
if 〈a : C tD, Γ〉〈fc, fd〉 ∈ AEi
then for eachΨ ∈ {C, D}

if 1. Ψ is atomic,and
2. 〈a : Ψ, xa:Ψ〉 〈−,−〉 /∈AEi

then AEi+1 = AEi ∪ {〈a : Ψ, xa:Ψ〉〈−,−〉}
else if 1. Ψ is not atomic,and

2. 〈a : Ψ, xa:Ψ〉 〈fc, fd〉 /∈AEi
then AEi+1 = AEi ∪ {〈a : Ψ, xa:Ψ〉〈fc, fd〉}

if (fd(xa:C , xa:D) = Γ) /∈ Cj ,

then Cj+1 = Cj ∪ {(fd(xa:C , xa:D) = Γ)}
if (fd(xa:C , xa:D) º xa:Ψ) /∈ Cj ,
then Cj+1 = Cj ∪ { fd(xa:C , xa:D) º xa:Ψ}

The intuition behind this rule is that, if we know an
individual is in C tD, then we know it is in eitherC,
D, or in both. In addition, according the semantics of
the description language, we know that the semantics of
a : C tD is defined by applying the disjunction function to
the interpretation ofa : C and the interpretation ofa : D.
Finally, the last part of the rule re-enforces the “bounded
below” property of the disjunction function.

Role Exists Restriction Rule:
if 〈a : ∃R.C, Γ〉〈fc, fd〉 ∈ AEi
then if there exists no individualb such that

(fc(x(a,b):R, xb:C) = xa:∃R.C)∈ Cj

then AEi+1 = AEi ∪ {〈(a, b) : R, x(a,b):R〉〈−,−〉}
if C is atomic
then AEi+1 = AEi ∪ {〈b : C, xb:C〉〈−,−〉}
else AEi+1 = AEi ∪ {〈b : C, xb:C〉〈fc, fd〉}
whereb is a new individual
Cj+1 = Cj ∪

{(fc(x(a,b):R, xb:C) = xa:∃R.C)}
if Γ is not the variablexa:∃R.C

then if (xa:∃R.C = Γ′) ∈ Cj

then if 1. Γ 6= Γ′, and
2. Γ is not an element inΓ′

then (xa:∃R.C = Γ′)← (xa:∃R.C =
⊕(Γ, Γ′))

where⊕ is the join operator of
the lattice and← means
whatever is on the LHS is
replaced by the RHS

else Cj+1 = Cj ∪ {(xa:∃R.C = Γ)}
The intuition behind this rule is that we view∃R.C as

the open first order formula∃b. R(a, b) ∧ C(b), where∃ is
viewed as a disjunction over the elements of the domain. To
be more specific, the semantics ofR(a, b) ∧ C(b) is cap-
tured using the conjunction function asfc(RI(a, b), CI(b)),
and ∃b is captured using the join operator in the lattice
⊕b∈∆I .

Example
The fuzzyALC proposed in (Tresp, C. & Molitor, R. 1998;
Sánchez, D. & Tettamanzi, A. G. B. 2004; Straccia, U. 1998;
2001) can be represented in the generic framework by set-
ting the certainty lattice asL = 〈V,≤〉, whereV = C[0, 1]
is the set of closed subintervals[α, β] in [0, 1] such that
α ¹ β. The negation operator is defined as∼([α, β])
= [1− β, 1− α], the conjunction function ismin, and
the disjunction function ismax. In (Tresp, C. & Moli-
tor, R. 1998; Śanchez, D. & Tettamanzi, A. G. B. 2004;
Straccia, U. 2001), the meet operator isinf (infimum), and
the join operator issup (supremum). On the other hand,
(Straccia, U. 1998) usesmin as the meet operator, andmax
as the join operator. As an example, suppose we have the
following fuzzy knowledge base:

822

T ={〈∃owns.Porsche v Rich t CarFanatic, [0.8, 1]〉
〈min,max〉,
〈Rich v Golfer , [0.7, 1]〉〈−, max〉}

A={〈Tom : ∃owns.Porsche, [0.9, 1]〉〈min,−〉,
〈Tom : ¬CarFanatic, [0.6, 1]〉〈−,−〉}

Then, we could first remove all the axioms inT , add the
corresponding assertions to the ABoxA, and initialize the
extended ABox to be:
AE0 = {〈Tom : ∃owns.Porsche, [0.9, 1]〉〈min,−〉,

〈Tom : ¬CarFanatic, [0.6, 1]〉〈−,−〉,
〈Tom : (∀owns.¬Porsche) t (Rich t

CarFanatic), [0.8, 1]〉〈min,max〉,
〈Tom : ¬Rich tGolfer , [0.7, 1]〉〈−,max〉}

andC0 = {}. Now, we are ready to apply the completion
rules to construct the model. Due to the limited space, we
show only how to apply Role Exists Restriction Rule to the
first assertion. According to this assertion,Tom must own
at least onePorsche, with certainty more than 0.9. Indeed,
when we apply the Role Exists Restriction Rule to this as-
sertion, we get:
AE1 = AE0∪ {〈(Tom, p1) :owns, x(Tom,p1):owns〉〈−,−〉,

〈p1 : Porsche, xp1:Porsche〉〈−,−〉}
wherep1 is a new individual

C1 = C0 ∪ {(min(x(Tom,p1):owns, xp1:Porsche) =
xTom:∃owns.Porsche)}

C2 = C1 ∪ {(xTom:∃owns.Porsche = [0.9, 1])}
Note that in case we have the same assertion in the knowl-
edge base but with a different certainty value, say,
〈Tom : ∃owns.Porsche, [1, 1]〉〈min,−〉

Then, we are not going to add yet more constraints toCj .
Instead, we replace the constraint inC2, xTom:∃owns.Porsche

= [0.9, 1] with xTom:∃owns.Porsche = sup([1, 1], [0.9, 1]),
wheresup is the join operator of the latticeL.

After applying Role Exists Restriction Rule to the first as-
sertion, we can continue applying other completion rules to
the rest of assertions in the extended ABox until either we
get a clash or no further rule could be applied. If a clash is
obtained, the knowledge base is inconsistent. Otherwise, an
optimization method is applied to check if the system of in-
equations is solvable, or to find the tightest bound for which
an assertion is true.

Now, suppose we want to reason about the same
knowledge base using basic probability instead of fuzzy
logic. Then, we may replace the conjunction func-
tion in the knowledge base with the algebraic product
(×(α, β) = αβ), and the disjunction function with
the independent function (ind(α, β) = α + β − αβ)
if desired. For example, the terminological axiom:
〈∃owns.Porsche v Rich t CarFanatic, [0.8, 1]〉〈×, ind〉
asserts that the probability that someone owns Porsche is
Rich or CarFanatic is at least 0.8. Once the knowledge
base is defined and the pre-processing steps are followed,
the appropriate completion rules can be applied to perform
the desired inference. Note that, since reasoning with
probability requires extra information/knowledge about the
events and facts in the world (Σ), we are investigating ways
to model knowledge base with more general probability
theory, such as positive/negative correlation, ignorance, and
conditional independence.

It is important to note that, unlike other proposals which
support only one form of uncertainty for the entire knowl-
edge base, our framework allows the user to specify different
combination functions (fc, fd) for each of the axioms and
assertions in the knowledge base. For example, for a given
knowledge base, an axiom may use〈min, max〉 as the com-
bination functions, while another axiom may use〈×, ind〉.
This is in addition to the fact that our generic framework
can simulate the computation of many DLs with uncertainty,
each having a different underlying certainty formalism.

Conclusions and Future Work
We introduced a generic framework which allows us to rep-
resent several existing extensions of DLs with uncertainty
in a uniformed manner. In particular, we abstracted away
the underlying notion of uncertainty (fuzzy logic, probabil-
ity, possibilistic logic), the way in which the constructors of
the description language are interpreted (by flexibly defin-
ing the conjunction and disjunction functions), and the way
in which the inference procedure proceeds. An implemen-
tation of the proposed generic framework is underway. As
future works, we plan to study the complexity of the pro-
posed reasoning procedure, extend the generic framework
to a more expressive portion of DL (e.g.,SHOIN), and
also study optimization techniques for extended framework.

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003.The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web.Scientific American284(5).
Gruber, T. R. 1993. A translation approach to portable
ontology specifications.Knowledge Acquisition5(2):199–
220.
Haarslev, V.; Pai, H.-I.; and Shiri, N. 2005. A generic
framework for description logics with uncertainty. InPro-
ceedings of URSW, 77–86.
Lakshmanan, L.V.S., and Shiri, N. 2001. A parametric
approach to deductive databases with uncertainty.IEEE
TKDE 13(4):554–570.
Sánchez, D., and Tettamanzi, A. G. B. 2004. Generalizing
quantification in fuzzy description logics. InProceedings
of Fuzzy Days-04. Springer-Verlag.
Straccia, U. 1998. A fuzzy description logic. InProceed-
ings of AAAI-98, 594–599. Menlo Park, CA, USA: AAAI
Press.
Straccia, U. 2001. Reasoning within fuzzy description
logics. Journal of Artificial Intelligence Research14:137–
166.
Tresp, C., and Molitor, R. 1998. A description logic for
vague knowledge. InProceedings of ECAI-98, 361–365.
Brighton, UK: John Wiley and Sons.
Zadeh, L. A. 1978. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems1(1):3–28.

823

