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Abstract 

This paper presents three new algorithms for the automatic 
construction of models from Object Oriented Probabilistic 
Relational Models.  The first two algorithms are based on 
the knowledge based model construction approach while the 
third is based on an Object Oriented Bayesian Network 
instance tree triangulation method.  We discuss the strengths 
and limitations of each of the algorithms and compare their 
performance against the knowledge based model 
construction and Structured Variable Elimination algorithms 
developed for Probabilistic Relational Models. 

1.   Introduction   

Our research focuses the use of automated reasoning 
techniques to produce battlespace situation assessments.  
These situation assessments provide dynamic decision 
suppor t  to  t a c t ical military commanders.  Situation 
Assessments are defined as “persistent representations of 
the relationships of interest between objects of interest in 
the area of interest” in the battlespace (Lambert 2003).  
Such relationships of interest can include physical, 
temporal, spatial, organizational, perceptual and functional 
relationships.  

Bayesian Networks (BNs) are a popular technique that 
have been used in many existing tactical military decision 
support systems to reason about causal and perceptual 
relationships between objects in the battlespace (e.g. Das, 
Grey and Gonslaves 2002).  However, they have been 
shown to be inadequate for reasoning about large, complex 
domains (Pfeffer 1999; Wright 2002) because of their lack of 
flexibility and inability to take full advantage of domain 
structure or reuse.  This lack of flexibility is of particular 
relevance to producing situation assessments because the 
variables relevant to reasoning about a situation are highly 
dependent on the domain and the user intentions.  Object 
Oriented Probabilistic Relational Models (OPRMs) were 
recently developed to address some of the limitations of 
BNs in modelling complex military domains (Howard and 
Stumptner 2005a/b).   This paper presents three new 
algorithms for the automatic construction of models from 
OPRMs.  Section 2 outlines OPRMs and presents a simple 
university example, which is used in the discussion 
(Section 3) and evaluation (Section 4) of the model 
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construction algorithms.  We return to our real world 
application in Section 3.3, where we discuss the advantages 
and limitations of the various model construction 
algorithms for this application. 

2.   OPRMs 

OPRMs (Howard and Stumptner 2005a) specify a 
template for the probability distribution over a knowledge 
base (KB), where a knowledge base is defined as consisting 
of a set of OPRM classes and instances, a set of inverse 
statements and a set of instance statements.   
Definition: An Object-Oriented Probabilistic Relational 
Model, X, is a pair (RC, PC) of a relational component RC 
and a probabilistic component PC.  The RC consists of: 
· A set of classes, C = {C1, C2,…, Cn}, and possibly a partial 

ordering over C that defines the class hierarchy; 
· A set of named instances, I = {I 1,  I 2,…, In}, which 

represent instantiations of the classes; 
· A set of descriptive attributes, DC = {d1, d2,…, dn}, for each 

class C in C.  Attribute dx of class C1 is denoted  C1.dx.  
Each descriptive attribute dx has a domain type 
Dom[dx]ÎC and a range type Range[dx]=Val[dx] where 
Val[dx] is a predefined finite enumerated set of values, i.e., 
Val[dx] = {Val1, Val2,…, Valn}; 

· A set of complex attributes, FC ={f1, f2,…, fn}, for each 
class C in C.   Attribute fx of class C1 is denoted C1.fx.  
Complex attributes represent functional relationships 
between instances in the knowledge base.  Each complex 
attribute fx has a domain type Dom[fx]ÎC and a range 
type Range[fx]ÎC for some class C in C.   

The PC consists of: 
· A conditional probability model for each descriptive 

attribute dx, P(dx|Pa[dx]) where Pa[dx]={Pa1, Pa2,…, Pan} is 
the set of parents of dx.  These probability models may be 
attached to particular instances or inherited from classes.  

2.1  The University Domain Example 
Our OPRM model is designed to evaluate the promotion 
prospects of university academics based upon their 
teaching skills, brilliance, productivity and the impact of 
their publications; the latter is affected by the standard and 
prestige of the conferences and is summarized by the node 
Aggregate(Papers).  An aggregate attribute is a descriptive 
attribute that summarizes a property of a set of related 
instances (Howard and Stumptner 2005a).  The model 
contains three classes, C= {Lecturer, Paper, Conference}, 
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shown in Figure 1.  The set of descriptive attributes for the 
Lecturer class, for example, is DLecturer={Productivity, Tired, 
Brilliance, Teaching Skills, Aggregate(Papers), 
WillGetPromoted} while the set of complex attributes is  
FLecturer={Papers}.   
 
 
 
 
 
 
 
Figure 1. The classes and attributes of the university OPRM.  These 

classes will be exactly the same in the equivalent PRM. 
The model is the simplest form of OPRM, where the 

complete relational structure is known.  This means that the 
set of objects and the set of potential relationships between 
them are known and there is no uncertainty about the 
structure of the model.  Given this relational structure, the 
OPRM specifies a probability distribution over the 
attributes of the instances of the model.  The unique names 
assumption is employed which means that each object in 
the knowledge base is assumed to have a unique identifier 
(i.e. there is no uncertainty about the identity of the 
objects). 
2.2  OPRMs versus PRMs 
OPRMs follow the principles of Probabilistic Relational 
Models (PRMs), first developed by (Koller and Pfeffer 
1998) and later refined by (Getoor 2002; Pasula 2003).  Both 
PRMs and OPRMs integrate probabilistic information with 
a frame-based representation system.  In both languages, 
inference is performed by dynamically constructing the 
‘equivalent’ Object Oriented Bayesian Networks (OOBNs) 
from the probabilistic information contained in the frames.  
For example, Figure 2 shows the BOOBN structure 
generated for the Paper class.  An OOBN is defined as a BN 
fragment containing output, input,  a n d  encapsulated 
nodes.  The input and output variables form the interface 
of the class.  The interface encapsulates the internal 
variables of the class, d-separating them from the rest of the 
network (Bangsø 2004).   

The key difference between PRMs and OPRMs is the 
type of OOBN constructed from the probabilistic 
information. PRM algorithms construct a Koller/Pfeffer 
OOBN (KPOOBN) (Koller and Pfeffer 1997) while OPRM 
algorithms construct a Bangsø OOBN (BOOBN) (Bangsø 
2004).   

The main difference between the two OOBN frameworks 
is that BOOBNs introduce the use of reference nodes and 
reference links to overcome the problem that no node 
inside a class can have parents outside the class.  A 
reference node is a special type of node that points to a 
node in another scope (called the referenced node).  A 
reference node is bound to its referenced node by a 
reference link.  In the BOOBN framework, all input nodes 
are reference nodes. 

 

 
   
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.  The BOOBN structure generated for the Paper class. 
These reference nodes provide several important 

benefits.  Firstly, the use of reference nodes means that the 
interface of an OPRM class is fully specified once the class 
is defined.  The interface for a class C, kC, is the set of input 
attributes, aC, and the set of output attributes, bC, 
kC=aCÈbC.  In the universi ty example,  kPaper= 
{Brilliance,Standard,Prestige,Impact}.  Since KPOOBNs do 
not use reference nodes, a PRM class does not have a 
single, clearly defined interface.  The interface depends on 
how other objects refer to it in the particular query under 
consideration.  For example, the Imports facet of the Papers 
attribute in the Lecturer class defines the Paper attributes 
the Lecturer class has access to, namely Paper.Impact.  
However, from within Lecturer, it is not known how Paper 
depends on the Lecturer (or any other) class.  This 
information is available only within the Paper class.  Figs 3 
and 4 illustrate this difference between OPRMs and PRMs. 

 
 
 
 
 
 

 
Figure 3.  The university OPRM class model showing the 
probabilistic (solid) and reference (dashed) relationships.  Gray 
dashed nodes are output nodes, dashed nodes are input nodes. 

 
 
 
 
 

 
Figure 4.  The equivalent PRM for the university domain.  This 
diagram is drawn from the point of view of the Lecturer class and as 
such, it is not known how other classes depend on attributes from 
the Lecturer class. 

The fact that a PRM class does not have a single, clearly 
defined interface means that  the model construction 
algorithms used with PRM knowledge bases need to 
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determine the interfaces of the classes and instances on the 
fly (Pfeffer 1999; Pfeffer et al 1999).   

Secondly, the use of reference nodes enables the 
BOOBN framework to have a more intuitive definition of 
inheritance for the modeling domain.  The KPOOBN 
inheritance definition corresponds to contravariance while 
the BOOBN definition corresponds to covariance. 

3.   OPRM Model Construction Algorithms 

We will first describe Model Construction using the following 
conventions.  The general format of an attribute name is I.g.d, 
where I is the instance, g i s a possibly empty slot chain that 
consists of complex attributes, and d is the descriptive attribute at 
the end of the slot chain.  The elements of a slot chain will be 
members of F C.  For descriptive attributes, g =  Æ  and for 
complex attributes, g ¹ Æ .  Take as an example an instance 
Paper[1] of the Paper class in Figure 2.   Using this notation, the 
descriptive attribute Paper[1].Accepted of this instance breaks 
down into I = Paper[1], g=Æ  and d=Accepted, while the complex 
attribute Paper[1].Author.Brilliance breaks down into I = 
Paper[1], g=Author and d=Brilliance.  In the case where we know 
the attribute to be a complex attribute, we replace the I.g.d, 
notation with I.f.d.  Finally, the range of the attribute I.g.d is 
denoted by VT[I.g.d] 
In the following, we denote the set of encapsulated attributes by 
x=F -k={x1, x2,…, xn}, the set of aggregate attributes by e={e1, 
e2,…, en}, and the set of indirect attributes by v={v1, v2,…, 
vn}. The selector attribute for a given indirect attribute Ix.f is 
denoted by  Ix.sel(f), and the number attribute over a multi-valued 
Ix.fx by Ix.num(Ix.fx).  An instance statement in the KB about 
attribute f of instance I is denoted by SI(I.f), and the set of 
instance statements for instance I is denoted by S(I).   
3.1  The Knowledge Based Model Construction Algorithms 
3.1.1  Query Dependant KBMC Algorithm 
At design time, the dependency model for each class is 
specified.  In general terms, at run time, starting with the list 
of query variables, the KBMC algorithm uses the 
knowledgebase to backward-chain along the dependency 
relationships to construct a flat Bayesian Network on which 
it performs inference using a junction tree algorithm.  More 
specifically, the algorithm maintains a list of nodes to be 
processed (nodes), which initially contains the set of query 
variables s ={s1, s2,…, sn}.  During each iteration, the 
algorithm removes the first node, n, from nodes (1) and 
adds this node to the list of nodes for the complete model, 
nodesN.  The algorithm then creates a node, nPa, for each 
parent pa of n (2).  When a node is created, its range, its 
parents and its CPD must be specified.  If nPa i s  a  
descriptive attribute, it is simply added to nodes (10).  If nPa 

is a complex attribute (i.e. of the form Ix.f.d), the knowledge 
base instance statements are searched to find any instance 
statements relating to attribute Ix.f.  If Ix.f is assigned a 
named instance Iy  in the instance statements, (for example, 
in the university model, Paper[1].Author=Gump), Iy is 
assigned to Iz (3).  If there is no named instance in the KB, a 
generic, unnamed instance, Ig, is created and added to the 

KB.  This generic instance is assigned to Iz (4).  A node is 
created for Iz.d and added to nodes (5).  In cases where nPa is 
an indirect or aggregate attribute, nPa is added to nodes (7,9) 
after a complete list of parents has been generated (6,8).  
How this parent list is generated depends on the type of 
nPa. 
Algorithm KBMC(s,KB) 
 Initialize nodes¬s  
 while nodes¹Æ  do 
(1) n=first(nodes)   
  nodesN¬nodesNÈn  /*node list for complete model */ 
  nodes¬nodes–n   
  forall PaÎPa[n] do  /* for all parents of n */ 
   if PaÏ(nodesÈnodesN ) then 
(2)   create node nPa  for Pa, denoted Ix.g.d 
    if g¹Æ  and Ix.fÏv  then 
     if $SI(Ix.f) in KB | Ix.f¬Iy  in SI(Ix.f) then 
(3)     Iz¬Iy  
     else  
      create Ig, where VT[Ig]=VT[Ix.f] 
      add Ig to KB 
(4)     Iz¬Ig  end if 
     if  Iz.dÏnodes and Iz.dÏnodesN then 
      create node nz for Iz.d 
(5)     nodes¬nodesÈnz end if 
    else if g¹Æ  and Ix.fÎv  then 
     Val[I.sel(f)]=VT[I.sel(f)] 
(6)    /* generate Pa[nPa]  */ 
     forall ValÎVal[I.sel(f)] do      
     if ValÎI then  
       let Iy denote Val 
       Pa[nPa]¬Pa[nPa]ÈIy .d end if 
      if ValÎC then 
       let C denote Val 
       create Ig and add Ig to KB  
        Pa[nPa]¬Pa[nPa]ÈIg.d end if 
     end forall 
(7)    nodes¬nodesÈnPa 
    else if g=Æ  and Ix.dÎe then 
     Ix.d is an aggregate attribute over Ix.fx  
     if $ number uncertainty then 
      nmax=max(VT[Ix.num(Ix.fx)]) end if 
(8)    /* generate Pa[nPa]   */ 
     if $SI(Pa[nPa]) in KB then 
      let Iy denote the instances |  
      Pa[nPa]¬Iy  in SI(Pa[nPa]) 
      nactual  = |Iy| 
      forall IyÎIy do 
       Pa[nPa]¬Pa[nPa]ÈIy .d end forall 

    if $number uncertaintyÚnmax>nactual then 
       for i =m+1 to n do 
        create instance Ig 
        where VT[Ig]=VT[Ix.f] 
        add Ig to KB 
        Pa[nPa]¬Pa[nPa]ÈIg.d end for 
      end if end if 
(9)    nodes¬nodesÈnPa  
    else if  (g=Æand Ix.dÏe) then 
(10)    nodes¬nodesÈnPa end if 
  end if end forall end while 
 Create Bayesian Network B from nodesN 
end KBMC 

Algorithm 1: OPRM KBMC algorithm. 
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As expected, this algorithm is very similar to the PRM 
KBMC algorithm. However, there are two important 
differences.  Firstly, this algorithm is query specific while 
the PRM KBMC algorithm is not.  The second difference 
involves the way that complex attributes are handled.  In 
the PRM KBMC algorithm, when a complex attribute Ix.f.d is 
encountered, a node Iz.d is created and added to the 
Bayesian network as a parent of the complex attribute Ix.f.d 
and the CPD of Ix.f.d is set to reflect this relationship.  Iz is 
either a named instance Iy (if there exists an instance 
statement in KB for such that Ix.f is assigned the value Iy) 
or a generic instance Ig where VT[Ig]=VT[Ix.f].  In the 
BOOBN framework however, reference nodes by definition 
cannot have parents.  Therefore in the OPRM KBMC 
algorithm, a node is created for Iz.d and this node is added 
to the network and the Ix.f.d node is not.  Figure 5 provides 
an example of the resulting network.  As will be seen in 
Figure 7, this technique results in fewer nodes in the model. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  An example of part of the network produced by the (a) 
PRM KBMC algorithm and (b) OPRM KBMC algorithm where 
FLAIRS is the conference to which Paper[1] is submitted and Gump 
is the author of the paper. 
3.1.2  Query Independent KBMC Algorithm 

The objective driving the modeling process during our 
real world application of deriving situation assessment is to 
determine which of the relationships of interest to the user 
hold at any given time given the observations and a priori 
data.  The overall task of producing situation assessments 
is relatively constant, but the set of concepts relevant to 
performing this task varies dynamically.  The information in 
the knowledgebase flows directly from the observations.  
That is, for our application, most of the information we need 
to represent and reason about will be in the form of 
instances in the KB.  Therefore we require that the model 
construction algorithms must operate over the KB to 
dynamically construct a situation specific model based on 
the observations.  A query driven construction process is 
clearly not appropriate for this application. 

The OPRM KBMC algorithm can be made query 
independent by changing the initial value of nodes to be 
the set of all descriptive attributes from all instances in the 
KB i .e .  DKB={D I1,D I2,…D In}.  Using this initial list, the 
algorithm produces a situation rather than query specific 
model.   

 

3.2 The Junction Tree Construction Algorithm 
At design time, the dependency model for each class is 
specified and a BOOBN is created for each class.  This 
network is then translated directly into a ‘local’ junction 
tree.  An interface clique is created, which consists of all 
nodes in the class’s interface,k.  This interface clique is 
connected into the local junction tree and any loops 
created during this process are removed.  Thus at design 
time, each class is ‘precompiled’ into a local junction tree 
and these local junction trees are stored in a cache.  At run 
time, whenever an instance of a class is created, the 
appropriate local junction tree is instantiated.  The KB is 
searched for any instance statements applicable to the 
instance under consideration and any required corrections 
to the local junction tree are made.  A root clique for the 
model is created which contains all the nodes in all the 
instances interfaces.  Each local instance junction tree is 
then connected to the root clique to create the ‘global 
junction tree’.  Inference can then be performed using this 
global junction tree.   

We denote the unrooted junction tree for class C by 
JTUC, the rooted junction tree for class C by JTRC,  the set of 
cliques for the class C by W C={w1, w2,…, wn}, and 
correspondingly use W UC for the set of cliques in the JTUC, 
W RC for the set of cliques in the JTRC and W KB={W C1, 
W C1,…, W Cn} for the set of cliques in the KB.  The interface 
clique for the class is denoted by wk and the root clique for 
the KB by wR. 
Algorithm JC(s,KB) 
Design Time  
forall CÎC do 
 nodesC¬DCÈk C  
 Create Bayesian Network BC from nodesC 
 Create JTUC from BC; Create JTRC from JTUC 
 W RC¬W UC and JTRC¬JTUC 
 wk={n|nÎk} 
 W RC¬W RCÈwk 
 Calculate dij | dij=1 Û node j occurs in clique i 
 forall wxÎW RC | wx¹wk  and (d(wx,:)Çd(wk,:))¹Æ  do 
  /* where d(wx,:) denotes all nodes in clique wx */ 

 JTRC(wk ,wx)=1and JTRC(wx,wk)=1 end forall 
 Compute separator matrix y for JTRC where  
   yxy=d(wx,:)Çd(wy ,:)  
 if Øacyclic(JTRC) then remove loops end if 
end forall 
Runtime  
forall IÎI do 
 nodesI¬nodesC where C=VT[I], JTRI=JTRC and W I=W C 
 if SI(I)¹Æ  then 
  forall SÎS I(I) where S=SI(I.f) do 
   if $SI(I.f) in KB then 
    let Iy={Iy1,Iy2, … Iyn} denote the instances | 
    I.f¬Iy  in SI(I.f) 
    forall IyÎIy | I.f.dÎ nodesI and Iy .dÏnodesI  do 
     create node for Iy .d 

     nodesNN¬nodesNNÈIy .d  
      forall wÎW I | I.fÎw,  
      forall yxyÎy  | I.fÎyxy, 
      forall xÎnodesI | I.f.dÎPa[x] do 
      replace I.f.d with nodesNN end forall 
     nodesI¬nodesI-I.f 

 (a) 

(b) 
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     nodesI¬nodesIÈnodesNN 
    end forall end if end forall end if 
 nodesKB¬nodesKBÈnodesI 
 W KB¬W KBÈ(W I -wk) 
 wR¬ wRÈk I 
end forall 
W KB¬(W KBÈwR) 
Create yKB from y I 

end JC 
Algorithm 2: OPRM Junction Tree Construction algorithm. 

 
3.3 Real-World Application and Discussion 
There are two facets to the structure provided by the 
OPRM language that model construction algorithms should 
exploit.  They should exploit the structure of the domain by 
exploiting the fact that the internal state of the 
classes/instances are encapsulated from the remainder of 
the network via their interface.  Algorithms should also 
facilitate reuse where possible. 

The first limitation of the OPRM KBMC algorithm is that 
while the OPR models take advantage of the structure of 
the domain, the KBMC algorithm does not, nor does it 
facilitate reuse. All structure gained by using OPRMs to 
represent observations and prior knowledge is lost as soon 
as this information is translated into a flat BN. 

The second limitation is that the algorithm is query 
driven. If the set of query variables changes, the entire 
model construction process must  b e  run again and a 
different model will result. While this may not b e  
detrimental to the current university example, it can be a 
critical problem for our real world application domain o f  
deriving situation assessments from observations.  This 
application is data driven. 

As discussed in Section 3.1.2, the OPRM KBMC 
algorithm can be made query independent.  However, as 
shown in Figure 6, depending on the model and the query, 
the query specific algorithm can significantly outperform 
the non-query specific algorithm. 
To solve a query on class C, using the KB, the PRM 
Structured Variable Elimination (SVE) algorithm constructs 
a local BN for C consisting of a node for each attribute of C 
in addition to special output and projection nodes.  When 
the algorithm comes across a complex attribute in C (of type 
C¢), it eliminates it by performing a recursive call that 
generates a temporary local flat BN for the class C¢ and 
applies standard variable elimination techniques to 
compute the factor over the query variables of class C¢, 
given the input variables.  This factor is then used in the 
BN representing class C. 

By taking this structured approach to the elimination of 
complex attributes in classes, SVE takes advantage of the 
structure of the domain.  However, when dealing with 
instances, Pfeffer et al reason that there may be situations 
where the instance interfaces no longer encapsulate the 
protected attributes from the rest of the network, which 
means that the recursive technique cannot be used.  For all 
instances, SVE copies the instance information into a top 
level object T in the knowledgebase and uses this object to 

construct one flat BN containing all attributes of all the 
instances using a backward chaining algorithm.  Inference 
is then performed using this flat BN.  By copying this 
information into a flat structure, SVE fails to take advantage 
of the structure of the domain for instances.  And while 
there is a cache to help reuse of computations for classes, 
there is no mechanism for reuse for instances. 
SVE produces a query specific network and as such the 
model construction time is dependant on the query asked 
(simpler queries result in shorter model construction times) 
and because of its recursive nature, a complete model of the 
situation never exists. 

For our application domain, the OPRM JC algorithm has 
several advantages.  Firstly it produces a situation rather 
than query specific model.  Secondly, unlike SVE, even 
when constructing models involving mainly instances, the 
algorithm exploits the structure of the domain and facilitates 
reuse of the class models.  The main disadvantage of the 
ORPM JTC algorithm, as seen in Fig 9b, is that its model 
construction times are longer than SVEs for the same 
number of nodes in the network. 

4.   Experimental Results 

The OPRM presented in Section 3 and the equivalent PRM 
were used to evaluate the performance of the query specific 
and non-query specific OPRM KBMC algorithms and the 
OPRM JC algorithm against each other and the PRM 
KBMC and SVE algorithms (Figures 6-9).  The 
knowledgebase consisted of one Lecturer instance: 
Lecturer Gump and a varying number of Paper and 
Conference instances.  The query variable used in most 
comparisons was Gump.WillGetPromoted.  However in the 
comparison of the query specific and non-query specific 
OPRM KBMC algorithms the Paper[1].Impact query was 
used.  Because the Gump.WillGetPromoted query involves 
nearly all the attributes in the university OPRM, the 
difference in performance of the two algorithms for this 
query was minimal.  However, for the Paper[1].Impact 
query, regardless of the number of instances in the 
knowledge base, the query specific algorithm produced a 
BN with only six nodes (Gump.Brilliance, FLAIRS.Standard, 
FLAIRS.Prestige, Paper[1].Quality, Paper[1].Accepted, 
Paper[1].Impact) while the number of nodes in model 
produced by the non-query specific algorithm depended on 
the number of instances in the KB. 

For all algorithms, the model construction time measured 
the time taken for the algorithm to complete its model 
construction process and did not include the time taken to 
perform inferencing.  For example, the SVE algorithm, which 
is  divided into the initialization, factor construction and 
variable elimination phases, was timed from the beginning 
of the initialization phase to the end of the factor 
construction phase. 

The first plot in Figure 8 shows the number of instances 
versus the number of nodes (SVE x;OPRM +) and number 
of factors (o) produced by the algorithms.  While SVE 
produces a node for every attribute of the class or instance, 
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it calculates factors only for those attributes of direct 
relevance to the query, so in order to compare its 
performance against the OPRM algorithms, we have plotted 
Model Construction Time versus the number of Factors, 
rather than the number of nodes.  The number of factors 
produced by the SVE algorithm is the same as the number 
of nodes produced by the OPRM JTC and OPRM KBMC 
algorithms.   

 
 

 
 
 
 
 
 
 
  Figure 6.  Comparison of the query specific (circles) and non-query 
specific (crosses) OPRM KBMC algorithms. 
 
 
 
 
 
 
 
 
 
Figure 7.  Comparison of the query specific OPRM KBMC algorithm 
(circles) with the PRM KBMC algorithm (crosses). 
 
 
 

 

 
 
 
Figure 8.  Comparison of the query specific OPRM KBMC algorithm 
(circles) with the PRM SVE algorithm (crosses). 
 

 

 

 
 
 
Figure 9.  Comparison of the OPRM JC algorithm (circles) with the 
(a) query specific OPRM KBMC algorithm (crosses) and (b) PRM 
SVE algorithm (crosses).   

All algorithms were implemented in MATLAB a n d  
executed using a Pentium III, 1.2GHz.  To illustrate the 

differences between a query specific and situation specific 
approach, consider running the following group of queries: 
s={Paper[1].Impact}, s={Paper[2].Impact} up to 
s={Paper[100].Impact} in succession on a knowledgebase 
consisting of one Lecturer instance and 100 Paper and 
Conference instances.  The time taken for the OPRM JC 
algorithm to construct a model on which it can perform 
these queries is 122.48 seconds, while the time taken for the 
SVE algorithm to construct its models to answer the same 
queries (as the query variable changes each time, the SVE 
algorithm will construct a different model for each query) is 
8705 seconds. 

5.   Conclusions 

Based on our OPRM language that extends prior work on 
OOBNs, we have presented three model construction algorithms 
for OPRMs and compared their performance with the model 
construction algorithms developed for PRMs.  While the SVE 
algorithm outperforms the OPRM JC algorithm for individual 
larger models, the JC algorithm has several advantages over SVE 
for our application domain, in particular the production of a 
model that is reusable for multiple queries, and OO style reuse of 
class models.  As the most expensive part of the SVE algorithm is 
in the variable elimination phase, which was not part of the model 
construction time measurements, we aim to measure the time 
taken to perform inference for both the algorithms in future 
experiments. We also aim to examine a number of extensions such 
as the use of approximate algorithms for very large models. 
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