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Abstract

Diagnosing multiple faults for a complex system is of-
ten very difficult. It requires not only a model which
adequately represents the diagnostic aspect of a com-
plex system, but also an efficient diagnostic algorithm
that can generate effective test and repair recommen-
dations. One way of developing such an efficient and
effective diagnostic algorithm is to focus the compu-
tational resource on disambiguating a set of the most
likely potential faults, called focus faults. In this pa-
per, we apply decision theory to analyze strategies for
selecting focus faults. We propose a decision-theoretic
focusing strategy which is based on users’ risk toler-
ances. The proposed focusing strategy has been applied
to a large diagnostic model for locomotives, which has
been deployed in the field. Our diagnostic experts found
decision-theoretic focusing strategy useful and informa-
tive.

Introduction
A model-based diagnosis system requires a diagnostic
model, which adequately represents the diagnostic aspect
of a system, and an inference algorithm, which can gener-
ate a ranked list of suspect faults, as well as test and repair
recommendations. Because of its succinct representation,
Bayesian networks (BN) have become a popular choice for
such diagnostic models (Darwiche 2000). Constructing ad-
equate diagnostic BN models for complex systems is often
laborious and time consuming. It is not until recently that
researchers proposed effective methodologies for construct-
ing diagnostic BNs with thousands of nodes. Since both ex-
act and approximate inferences for belief updating in BN
are NP-hard (Cooper 1990; Dagum & Luby 1993), it is ex-
pected that complex BN models will present computational
challenges to existing BN inference algorithms. Neverthe-
less, by exploiting various network structure and node types,
inference algorithms can handle most complex BN models
efficiently.

When using Bayesian networks for multiple fault diagno-
sis, one usually generates test recommendations based on
some form of value of information computation (Hecker-
man, Breese, & Rommelse 1995). Computing either utility
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or quasi-utility based value of information (VOI) for multi-
ple fault diagnosis requires multiple belief updating, which
implies that VOI computation is even harder than belief
updating. In order to avoid the computational complexity
and to support a more focused diagnosis, some diagnostic
BN development environments, such as GeNIe (University
of Pittsburgh) and WIN-DX (Knowledge Industries, Inc.),
present to users a ranked list of faults, according to their
posterior marginal probabilities given the evidence, and al-
low users to select a subset of faults to pursue in computation
of recommended tests using VOI. We refer to the subset of
pursued faults asfocus faultsand to the strategy used to de-
termine the selection as afocusing strategy. VOI computa-
tion will provide a ranked list of tests based on their abilities
to disambiguate the focus faults. Although manual selection
of focus faults provides certain flexibility, it relies on human
judgments regarding which faults are important. This leads
to two main disadvantages: (1) manual fault selections is not
feasible for autonomous diagnosis systems and (2) no deci-
sion support is provided to users to select the focus faults.

In this paper, we propose to apply decision theory to
support the selection of focus faults. During system trou-
bleshooting process the potential faults can be classified into
four categories: (1)committed faults, which users are com-
mitted to fix, (2)focus faults, which users need to pursue,
(3) depleted faults, which are of interest but are not promi-
nent enough to be pursued, (4)discarded faults, which fall
beyond users’ interest. The decision of classifying a poten-
tial fault into one of these four categories can influence the
quality and time needed for troubleshooting. For the clas-
sification, we could use utilities as suggested by decision
theory; instead we are proposing to use zero-one loss func-
tion, which is less demanding in elicitation and computa-
tion. We develop a decision-theoretic focusing strategy to
assist users in classifying a fault and report the probability
of errors for each iteration of fault selections. We implement
our focusing strategy in our inference engine and deploy it
with a diagnostic system for diesel locomotives, in which a
diagnostic Bayesian network consisting of 2,147 nodes and
3,650 arcs with custom layered structure and custom node
type is used to represent the problem (Lu & Przytula 2005).
Our diagnostic experts found not only our decision-theoretic
focusing strategy useful but also the report on the probability
of errors informative.
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Diagnostic Bayesian Networks
Fault diagnosis is basically a process of identifyingcauses
of system defects by observing the manifestedeffects. Dif-
ferent from single fault diagnosis, which assumes that only
one fault is presented in a defective system, multiple faultdi-
agnosis admits the possibility that more than one fault could
occur when a system is defective. Many different knowledge
representations have been used to support multiple fault di-
agnosis (de Kleer & Williams 1987; de Kleer 1991). In this
paper, we represent our diagnostic knowledge in Bayesian
networks; however, the focusing strategies presented in this
paper are not limited to a particular knowledge representa-
tion.

A Bayesian network (BN ) describes a joint probability
distribution over a set of nodes (random variables) in a di-
rected acyclic graph. To represent diagnostic knowledge in
BN, we classify each node into one of following categories:
target, observation, and auxiliary. A target node usually rep-
resents a diagnostic interest (e.g., the health status of a fuel
injector). A target node has at least one target state, repre-
senting a failure mode (fault) of a component (e.g., a state
”plugged” as a failure mode of a fuel injector), and at least
one non-target state, representing a normal operational mode
of a component (e.g., a state ”ok” for an operational fuel in-
jector). An observation node usually represents a symptom
(e.g., observing an excessive smoking in engine exhaust),
an built-in error message (e.g., the status of a power sup-
ply which is monitored by a feedback signal), or a test (e.g.,
measuring the voltage of a battery). An error message based
observation is normally recorded in an archive when it ob-
tains an abnormal state (e.g. power supply status is failed).
When an error message, which is continuously monitored by
a signal, is not recorded in an archive, one could assume that
the error message is in itsdefaultok state. This is to account
for unreported observations (Peot & Shachter 1998). A node
which is neither a target nor an observation is classified as an
auxiliary node, which is usually used to represent intermedi-
ate relations between targets and observations. An observa-
tion node is further annotated with a Boolean flag,ranked,
to specify whether a node will be ranked in the VOI compu-
tation. We normally annotate a test, but not an error message
or a symptom, asranked, since the states of symptoms and
error messages are usually available before a diagnostic ses-
sion is started and do not need to be recommended. We call
such an annotated Bayesian network a diagnostic Bayesian
network (dBN).

Troubleshooting Procedure
Figure 1 illustrates steps involved in a troubleshooting pro-
cedure, which include selection of faults to focus on and se-
lection of next test to perform:

1. Instantiate the initial set of observations, such as error
messages or reported symptoms;

2. Compute posterior probabilities of faults and generate a
ranked list of faults based on their posterior probabilities;

3. Check if available diagnostic information is sufficient to
perform repairs; if yes, stop to repair; otherwise, continue;

Figure 1: A procedure for multiple faults diagnosis with a
diagnostic Bayesian network.

4. Select a set of focus faults; ’

5. Check if there are available focus faults, if yes, continue;
otherwise, stop.

6. Check if there are still unperformed tests, if yes, continue;
otherwise, stop.

7. Compute the VOI for all unperformed tests relative to the
selected focus faults and generate a ranked list of tests
based on their VOI;

8. Perform one of the recommended tests and instantiate its
test result;

9. Go to Step 2.

Notice that observation instantiations in Step 1 and 8 con-
stitute on input to our diagnostic system, which could be ei-
ther provided manually by users or automatically loaded by
other programs. Step 2 produces a ranked list of faults based
on the posterior probabilities of faults computed by standard
belief updating in BN.

In the following section, we will first outline the value of
information computation for multiple faults, which is used
in Step 7 to generate a ranked list of tests. We will then
present our focusing strategies on providing decision sup-
port for selecting the set of focus faults in Step 4.

Value of Information
The value of information is a measure for quantifying the
value of obtaining an item of information (e.g., result of a
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test) for our decision problem (e.g., differentiating a setof
faults) (Jensen 2001). It starts with defining a value function
which maps the probability distribution of a hypothesis into
a real value:V (P (H |e)) : [0; 1]|H| → R, whereH is a
hypothesis with|H | number of mutually exclusive states and
e is the set of evidences. The expected value for performing
a testT is

EV (T ) =
∑

t∈T

V (P (H |e, t))P (t), (1)

wheret is a result of the testT . The expected benefit for
performing a testT is

EB(T ) = EV (T ) − V (P (H |e)). (2)

Decision theory recommends using utility function as the
value function. In situations where utility function is hard to
elicit, one can use quasi-utility value functions (Glasziou &
Hilden 1989). In this paper, we will use entropy function as
our value function:1

V (P (H |e)) , H(H |e) = −
∑

h∈H

P (h|e) log2 P (h|e),

(3)
whereh is a state of the hypothesisH , and the expected
benefit as

EB(T ) = H(H |T, e)−H(H |e) = I(H ; T |e), (4)

whereI(H ; T |e) is the mutual information betweenH and
T . In order to rank different hypotheses usingEB(T ), we
will normalize the expected benefit byH(H |e) and define
the value of information of performing a testT for a hy-
pothesisH given evidencese as

VOI(H, T |e) =
EB(T )

H(H |e)
− αC(T ), (5)

whereC(T ) is the cost of performing the testT andα is a
scaling ratio2.

When performing the single fault diagnosis, we are in-
terested in differentiating a selected focus fault againstthe
rest. In other words, we define a hypothesis variableH as
H = {f, f}, wheref is a target state (fault) of a target vari-
able andf is the negation of the faultf , i.e., the rest of the
states of the target variable.

Recall that a dBN may consist of many target nodes and
each target node may have more than one target states. Con-
sider for example a dBN which includes, in addition to
other node types, two target nodesF1 and F2 with states
{f11, f12, ok} and {f21, ok} respectively. This dBN al-
lows us to investigate three single fault hypothesesH1 =
{f11, f11}, H2 = {f12, f12}, and H3 = {f21, f21}. If
we decide to pursue the faultf11, i.e., selecting thef11 as
the focus fault from the ranked list of faults, we will com-
puteVOI(H1, T |e) for each unperformed testT to generate
a ranked list of tests, i.e., ranking the values of VOI of all
unperformed tests.

1Readers are recommended to read (Glasziou & Hilden 1989)
for the appropriate use of different quasi-utility functions.

2Please note that we use the linear transformation as an exam-
ple, however, one can have more elaborated transformation func-
tion.

Table 1: Configurations of(F1, F2).
c1 = (f11, f21) c2 = (f12, f21) c3 = (ok, f21)
c4 = (f11, ok) c5 = (f12, ok) c6 = (ok, ok)

When performing the multiple fault diagnosis, we first se-
lect a set of focus faults that we wish to pursue. There are
many ways to construct a hypothesis variableH for the se-
lected focus faultsF (Jagt 2002). We consider three com-
mon ways of constructing a hypothesis variable: conjunction
(∧), disjunction (∨), and unique existence (⊕). Continuing
on our example, there are six configurations (ci) for our two
target variables (Table 1). Assume that we selectf11 andf21

as our focus faultsF . If we are interested in differentiating
f11 ∧ f21 from the rest, we will repartition the configuration
of (F1, F2) to derive the hypothesis variableH = {h1, h2},
whereh1 = c1 and h2 = {c2, . . . , c6}. If we are inter-
ested in differentiatingf11 ∨ f21 from the rest, we will
haveH = {h1, . . . , h5}, wherehi = ci for i = 1, . . . , 4,
andh5 = {c5, c6}. If we are interested in differentiating
f11 ⊕ f21 from the rest, we will haveH = {h1, h2, h3}
whereh1 = c3, h2 = c4, andh3 = {c1, c2, c5, c6}.

In this paper, we will use the disjunction (∨) to com-
pose hypothesis states, i.e., each configuration which is sat-
isfied with the disjunction of the selected focus faults will
become a state ofH and those unsatisfied configurations
will be grouped into one state ofH . We will then com-
puteVOI(H, T |e) for each unperformed testT to generate a
ranked list of tests. In other words, we are ranking the values
of VOI for all available tests on differentiating the states of
H derived from the disjunction of focus faults.

Unlike computingVOI for single fault diagnosis, where
all required probabilities ofH are available from standard
belief updating in BN, computingVOI for multiple fault di-
agnosis require us to derive the probabilities ofH from the
joint probabilities of the selected focus variables, whichare
not directly available in standard belief updating in BN. Al-
though there are methods for computingP (H |e), whereH
is technically a set of target variablesF in dBN (Xu 1995;
Smith 2001), it soon becomes intractable since the number
of configurations ofF grows exponentially. Instead, we
will approximateP (H |e) by the marginal probabilities of
F . In other words, we assume that target variables inF
are independent. Continuing on our example, we will have
P (F |e) = P (F1|e)P (F2|e) to deriveP (H |e).

Focusing Strategies
A focusing strategy is used to decide which fault will be in-
cluded in the set of focus faults. The set of focus faults is
then used to form the states of the hypothesis variable for
VOI computation. Since the number of the states of the
hypothesis variable grows exponentially in the number of
selected focus faults, it is impractical to include all faults
as focus faults when diagnosing a complex system. On the
other hand, applying an ad-hoc strategy, such as using a pre-
determined small number of focus faults, is hard to general-
ize to different kinds of system failures.

For example, in model-based diagnostic systems
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(de Kleer & Willams 1989; de Kleer 1991), adiagnosis,
also called acandidate, is a conjunction of faults. They
focus the diagnostic reasoning on the subset of diagnoses
(called leading diagnoses) that satisfy the following
conditions:

• There are no more thank1 (usuallyk1 = 5) leading diag-
noses.

• Candidates with probability less than1
k2

th usuallyk2 =
100) of the best diagnosis are not considered.

• The diagnoses need not include more thank3 (usually
k3 = .75) of the total probability mass of the candidates.

We could adapt deKleer’s selection of leading diagnoses as
focus fault selections. However, we are still lacking a way
to analyze the consequence of their focusing strategy.

To evaluate focusing strategies, we apply decision theory.
We first assume that each decision of selecting a fault as
focus can be made independently3. Let λi(fij |fik) be the
loss function associated with selecting a target (fault) state
fij of a target nodeFi as a focus fault, when actually a state
fik of Fi should be selected4. The expected loss (risk) of
selecting the faultfij as focus is defined as follows:

Ri(fij |e) =
∑

ik

λi(fij |fik)P (fik|e). (6)

The optimal decisionf∗
ij is derived from minimizing the risk

Ri(fij |e):

f∗
ij = argmin

ij

∑

ik

λi(fij |fik)P (fik|e). (7)

Assume the linear additivity among the risks, the total risk
of selecting a set of focus faultsFl is defined as follows:

R(Fl) =
∑

i∈l

ωiRi(fij |e), (8)

whereωi is the weighting factor forRi. We can compute
R(Fl) for any non-empty set of focus faultsFl derived from
different focusing strategies. However, the optimal strategy
is the one minimizingR(Fl):

F ∗
l = argmin

l

∑

i∈l

ωiRi(fij |e). (9)

When loss functionsλi(fij |fik) and weight factorsωi are
hard to obtain, we may assume the zero-one loss function
(λi(fij |fik) = 1, if fij 6= fik; λi(fij |fik) = 0, otherwise)
and the equal weighting factor (ωi = 1) for all i. Conse-
quently, the risk for deciding onfij reduces to the probabil-
ity of error, i.e.,Ri(fij |e) = 1 − P (fij |e).

To minimize the risk, we will choosef∗
ij with the maxi-

mumP (fij |e) among allj. In other words, the probability
of correctness isP (f∗

ij |e). Since all faults inFl are assumed
to be jointly independent, we will have the total probabil-
ity of correctness as

∏
i P (f∗

ij |e) and the total probability of

3If this assumption is not valid, we need to consider the utility
(loss) function over the dependent faults.

4fik could be anok state.

error as1 −
∏

i P (f∗
ij |e). These assumptions will lead us

to the optimalF ∗
l , which contains only one fault with the

maximumP (f∗
ij |e). In general, we have derived a decision-

theoretic framework to evaluate the total risk for anyFl as
in Equation 8.

In practice of multiple fault diagnosis, it is convenient
to classify faults into four categories: (1)committed faults,
which users are committed to fix, (2)focus faults, which
users need to pursue, (3)depleted faults, which are of in-
terest but are not prominent enough to be pursued, (4)dis-
carded faults, which fall beyond users’ interest. One way of
classifying a fault into one of these categories is to define the
probability thresholds: committed fault threshold (pc), focus
fault threshold (pf ), and discarded fault threshold (pd), such
that a faultfij is considered committed (pc ≤ P (fij |e) ≤
1), focus (pf ≤ P (fij |e) < pc), depleted (pd ≤ P (fij |e) <

pf ), or discarded (0 ≤ P (fij |e) < pd)5. Ideally, we can
define separately the set of probability thresholds for each
fault, because we may see the risk for each fault differently;
for example, the committed fault threshold,pc, for a mis-
sion critical fault will be smaller than the one for a fault of
an auxiliary component. However, when such information
is hard to obtain, we can define one set of thresholds for all
faults. Once we have classified all the faults into their cate-
gories, we can compute the total risks for each category of
faults so that users are informed about the consequences of
their decisions.

Instead of specifying probability thresholds, users can
specify the model-wide total risk thresholds for committed
(trc), focus (trf ), and depleted (trdp) faults. Given a list of
faults F ranked by theirP (fij |e) in descending order, we
can classify each faultfij into its category according to the
procedureClassifyFaults(F, trc, trf , trdp) outlined in Fig-
ure 2, where we assume zero-one loss functions and equal
weighting factors. The procedure takes a ranked list of faults
F with their P (fij |e) as inputs and outputs apartition of
F into: committed faults (Fc), focus faults (Ff ), depleted
faults (Fdp), and discarded faults (Fdi ). The procedure loops
through the list of faults inF (Line 5-18). For each fault, the
procedure starts with computing the accumulated risk (prob-
ability of errors) of including the fault (Line 6-7). If the ac-
cumulated risk is smaller than the total risk threshold for the
current fault category, the fault is added into the category
(Line 9). Otherwise, the procedure checks if it has reached
the last category (Line 14) , if yes, all the remaining faults
will be added into discarded faults (Line 19-21); if not, the
procedure advances to the next fault category (Line 11).

Evaluation
To test the performance of different focusing strategies, we
conducted experiments on two proprietary networks, tcc4g
and emdec6h, constructed by HRL for diagnosing two sub-
systems of locomotives. In tcc4g network, there are 36 target

5These thresholds are in fact the probabilities of correctness of
classifyingfij into one of the categories, if we use the zero-one loss
function and the equal weighting factor. In other words, onecan
use risk thresholds instead of probability thresholds, if information
is available.
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Procedure ClassifyFaults(F, trc, trf , trdp)

Input: A list of faults F ranked by theirP (fij |e) in
descending order, a total rsik threshold for committed
faultstrc, a total risk threshold for focus faultstrf , and
a total risk threshold for depleted faultstrdp,

Output: Fc : the set of committed faults;Ff : the set of
focus faults;Fdp: the set of depleted faults, andFdi:
the set of discarded faults.

1. k := 0; // index ofTR andSF

2. tpc := 1.0; // total probability of correctness
3. TR := [trc, trf , trdp];
4. SF := [Fc, Ff , Fdp];
5. for (ij := 0; ij < |F |; ij++)
6. tpc := tpc ∗ P (fij |e);
7. tpe := 1.0 − tpc; // total probability of error
8. if (tpe < TR[k])

9. SF [k] := SF [k] ∪ fij ;
10. else
11. k++; // move to the next fault category
12. tr := 1.0; // reset total risk
13. ij −−; // retreat fault index
14. if k > 2

15. break; // break for loop
16. end if
17. end if
18. end for
19. for (;ij < |F |; ij++)
20. Fdi := Fdi ∪ fij ;
21. end for

Figure 2: A procedure for classifying a list of faults into
their fault categories.

nodes and 69 observations (29 error messages and 40 tests).
In emdec6h network, there are 47 target nodes and 117 ob-
servations (53 error messages and 54 observations). We de-
cided not to run our performance evaluation on any of the
publicly available BN, since we have no domain knowledge
of annotating those networks into dBN.

For each network, we randomly generaten diagnostic
cases and run three focusing strategies (deKleer, probability-
threshold, risk-threshold) on them. In each case, we first
generate the “real” target states by randomly selecting 10
percent of target nodes to fail, and each of which is ran-
domly assigned with one of its target states. The rest of
target nodes are randomly assigned with one of their non-
target states.6 We then plug in these “real” target states into
the network and update the belief for observations. We gen-
erate the “real” states of observations by casting the states

6This assignment scheme does not lead to inconsistent target
states because target nodes in both tcc4g and emdec6h are jointly
independent. When target nodes are dependent in a dBN, we may
use the forward sampling to generate consistent states.

of the modes of their posterior distributions. These “real”
states of observations will be used in diagnosis as simulated
test results or the initial states of error messages.

Once we generate the “real” states for all the cases, we
start the diagnosis procedure as outlined in Figure 1 to gen-
erate “diagnosed” states. For each case, we instantiate aller-
ror messages into their “real” states in dBN as in Step 1. The
diagnostic procedure will perform each step iteratively until
there is no test to perform (Step 6), no focus faults available
(Step 5), or ready to repair (Step 3). We assume that we are
ready to repair, when we perform tests up to three times the
number of failed targets. Once the diagnostic procedure is
stopped, we record the “diagnosed” state of a target node by
casting the mode of its posterior distribution.

For each case, we compute the scores of sensitivity (Sen.),
specificity (Spe.), and accuracy (Acc.) to account for the
quality of diagnosis. Recall that each target node has a “real”
state and “diagnosed” state in our simulation. If the “real”
state is a target (non-target) state and its diagnosed stateis
the same target (non-target) state, we count it as one of the
correctly diagnosed defects (non-defects). The sensitivity
(specificity) is the ratio of correctly diagnosed defects (non-
defects). The accuracy is the ratio of overall correct diagno-
sis. For each combination of simulation parameters, we fur-
ther compute the mean and standard deviation of sensitivity,
specificity, and accuracy scores for each focusing strategy.

To ensure that the number of randomly generated diag-
nostic cases does not bias our evaluation results, our ex-
ploratory experiments indicate that 5000 cases seem to be
sufficient for both tcc4g and emdech6h. Hence we will only
report our experiment results of 5000 cases with some fixed
parameters for each focusing strategy. For de Kleer’s fo-
cusing strategy, we fixk1 = 5 andk3 = .75 as suggested in
de Kleer & Willams (1989) and vary thek2 = 1000, 100, 10.
For probability-threshold strategy, we fixpc = 0.9 and
pd = 0.00001 and vary thepf = 0.001, 0.01, 0.1 with re-
spect to the variation ofk2. For risk-threshold strategy, we
fix trc = 0.271 andtrdp = 0.9999 corresponding to the se-
lectedpc andpd, and vary thetrf = 1, 0.9999, 0.999 with
respect to the variation ofpf . We further introduced thek1

parameter into both decision-theoretic focusing strategies,
i.e., both strategies will not pursue more thank1 = 5 targets,
to reduce the built-in bias in de Kleer’s focusing strategy.
The results of evaluation for tcc4g and emdec6h are shown
in Table 2 and 3. We did see both probability-threshold
and risk-threshold strategies perform slightly better than de
Kleer’s strategy.

Conclusion
The major contributions of our paper are: (1) introduction
of the concept of fault categories, (2) application of deci-
sion theory to analyze the problem of focus fault selections,
(3) development of an informative decision-theoretic focus-
ing strategy, (4) reporting experiment results of evaluating
different focusing strategies, and (5) deploying the imple-
mentation of our focusing strategies into the field.

Although focusing is not novel in diagnosis, applying
decision theory to analyze the consequence of focusing is
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Table 2: Evaluation Results for TCC4G: Average Sensitivity, Specificity, and Accuracy - 5000 cases.
de Kleer’s Probability-Threshold Risk-Threshold

k2 Sen. Spe. Acc. pf Sen. Spe. Acc. trf Sen. Spe. Acc.
0.001 0.6654 0.9940 0.9666 0.001 0.6733 0.9940 0.9673 1 0.6670 0.9939 0.9667
0.01 0.6313 0.9941 0.9639 0.01 0.6378 0.9941 0.9644 0.9999 0.6439 0.9937 0.9646
0.1 0.5880 0.9927 0.9590 0.1 0.5709 0.9929 0.9577 0.999 0.6255 0.9936 0.9630

Table 3: Evaluation Results for EMDEC6H: Average Sensitivity, Specificity, and Accuracy - 5000 cases.
de Kleer’s Probability-Threshold Risk-Threshold

k2 Sen. Spe. Acc. pf Sen. Spe. Acc. trf Sen. Spe. Acc.
0.001 0.6579 0.9985 0.9695 0.001 0.6742 0.9982 0.9707 1 0.6752 0.9981 0.9706
0.01 0.6469 0.9985 0.9686 0.01 0.6800 0.9983 0.9712 0.9999 0.6842 0.9980 0.9713
0.1 0.6342 0.9984 0.9674 0.1 0.5711 0.9979 0.9616 0.999 0.6834 0.9980 0.9712

novel. Such analysis leads us to the development of infor-
mative focusing strategies. Furthermore, the concept of fault
categories (especially the category of committed fault) isnot
found in the literature to the best of our knowledge. This
makes our focusing strategies potentially perform better than
the strategy adapted from de Kleer’s (1989), because their
strategy might wrongly focus on differentiating committed
faults.

When applying focusing strategies to a particular prob-
lem, we recommend users to validate assumptions in our
decision-theoretic focusing strategies. For example, one
may want to use different loos function for each individual
fault, if dBN include dependent faults or zero-one loss func-
tion is not appropriate. One may want to use different total
risk function, if linear additivity is not valid. Furthermore,
one may consider using different hypothesis formation op-
erator in VOI computation. We also recommend users to
fine-tune the parameters of selected focusing strategy with
respect to the problem.

In the future, we would like to extend our evaluation
methods to attribute the diagnosibility to its sources. In ad-
dition to focusing strategies, there could be many other fac-
tors affecting our diagnostic scores. For example, it could
be the case that we have a perfect model describing the sys-
tem, but the system does not provide enough observability
to separate the faults. It could also be the case that we did
not model the system correctly into dBN. We are currently
investigating different evaluation methods.
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