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Abstract

We present a heuristic search algorithm for solving goal based
Markov decision processes (MDPs) named Multi-threaded
BLAO* (MBLAO*). Hansen and Zilberstein proposed a
heuristic search MDP solver named LAO* (Hansen & Zil-
berstein 2001). Bhuma and Goldsmith extended LAO* to
the bidirectional case (Bhuma & Goldsmith 2003) and named
their solver BLAO*. Recent experiments on BLAO* (Dai &
Goldsmith 2006) discovered that BLAO* outperforms LAO*
by restricting the number of Bellman backups. MBLAO*
is based on this observation. MBLAO* further restricts the
number of backups by searching backward from the goal
state, and also from some middle states (states along the most
probable path from the start state to the goal state). Our ex-
periments show that MBLAO* is more efficient than BLAO*
and other state-of-the-art heuristic search MDP planners.

Introduction
Given a set of states, a set of actions, a start state and a set
of goal states, the classical AI planning problem is to find
a policy, a sequence of actions that originates from the start
state and reaches any goal state. Decision theoretic planning
(Boutilier, Dean, & Hanks 1999) is an attractive extension of
the classical AI planning paradigm, because it allows one to
model problems in which actions have uncertain and cyclic
effects. Uncertainty is because one event can lead to differ-
ent outcomes, and the occurrences of these outcomes are un-
predictable but probabilistic, though they are constrained by
some form of predefined statistics. The systems are cyclic
because an event might leave a state unchanged or return to
a visited state.

Markov decision processes (MDP) are a formalism AI
researchers have been using for representing decision the-
oretic planning problems. Value iteration (Bellman 1957)
and policy iteration (Howard 1960) are two fundamental dy-
namic programming algorithms for solving MDPs. How-
ever, these algorithms are sometimes inefficient, because
they spend too much time backing up states that may be
useless or redundant. Recently, researchers have been work-
ing on more efficient solvers. One technique uses reach-
ability information and heuristic functions to avoid unnec-
essary expansions, such as RTDP (Barto, Bradke, & Singh
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1995), LAO* (Hansen & Zilberstein 2001), LRTDP (Bonet
& Geffner 2003b) and HDP (Bonet & Geffner 2003a). An-
other uses approximation methods to simplify the prob-
lems by living with suboptimal results, such as the ap-
proaches in (Guestrin et al. 2003; Poupart et al. 2002;
Patrascu et al. 2002). A third technique aggregates groups
of states of an MDP by features, represents them as factored
MDPs and solves the factored MDPs by making use of math-
ematical tools such as Algebraic decision diagrams (ADDs)
and Binary decision diagrams (BDDs) (Bahar et al. 1993).
Often the graphical structure of factored MDPs are exponen-
tially simpler, but the strategies of factored MDP solvers are
often trickier. SPUDD (Hoey et al. 1999), sLAO* (Feng &
Hansen 2002), sRTDP (Feng, Hansen, & Zilberstein 2003)
are examples. We can also use prioritization to decrease
the number of inefficient backups. Focused dynamic pro-
gramming (Ferguson & Stentz 2004), prioritized policy iter-
ation (McMahan & Gordon 2005), state group prioritization
(Wingate & Seppi 2005) and topological value iteration (Dai
& Goldsmith 2007) are recent examples. Note that our cate-
gorization is by no means complete.

Background
In this section, we define Markov decision processes and
discuss some extant MDP solvers.

MDPs and Two Basic Dynamic Programming
Solvers
An MDP is a four-tuple (S,A, T,C). S is the set of states
that describe a system at different times. We consider the
system developing along a sequence of discrete time slots.
In each time slot, only one event takes effect. We call these
time slots stages. At any stage t, each state s has an associ-
ated set of applicable actions At

s. The effect of applying any
action is to make the system change from the current state
s to the next state s′ at stage t + 1. The transition function
for each action, Ta: S × S → [0, 1], tells the probability
of the system changing to state s′ after applying a in state
s. C : S → R is the instant cost. In addition to the four
components of an MDP, a value function V , V : S → R, is
used to denote the best (maximum, if C is nonpositive) total
expected cost from being in a state s. The horizon of a MDP
is the total number of stages the system evolves. In prob-
lems where the horizon is a finite number H , our aim is to
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define a mapping from reachable states to actions that maxi-
mizes the expected cumulative reward, more concretely, the
value of f(s) =

∑H

i=0 C(si). For infinite-horizon prob-
lems, the reward is accumulated over an infinitely long path.
To emphasize the relative importance of instant rewards, we
introduce a discount factor γ ∈ [0, 1] for future rewards. In
this case, our goal is to maximize f(s) =

∑
∞

i=0 γiC(si).
Given an MDP, a policy π : S → A is a mapping from

states to actions. An optimal policy guides the agent to pick
an action at stage that minimizes the expected cost or value.
Bellman (Bellman 1957) showed that the expected value of
a specific policy π can be computed using the set of value
functions V π . For finite-horizon MDPs, V π

0 (s) is defined to
be C(s), and we define V π

t+1 according to V π
t :

V π

t+1(s) = C(s) +
∑

s′∈S

{Tπ(s)(s
′|s)V π

t (s′)}. (1)

The optimal value function is the maximum value function
over all possible policies:

V ∗

t+1(s) = maxa∈A(s)[C(s) +
∑

s′∈S

{Tπ(s)(s
′|s)V ∗

t (s′)].

(2)
For infinite-horizon MDPs, the optimal value function is de-
fined with the discount factor:

V ∗(s) = maxa∈A(s)[C(s)+γ
∑

s′∈S

Ta(s′|s)V ∗(s′)], γ ∈ [0, 1].

(3)
Equation 2 and 3 are named Bellman equations. Based on
Bellman equations, we can use dynamic programming tech-
niques to compute the exact value of optimal value func-
tions. An optimal policy is easily extracted by choosing an
action for each state that contributes to its value function.
The process of finding the optimal value function and opti-
mal policy is called solving an MDP.

Value iteration is a dynamic programming algorithm that
solves MDPs. Its basic idea is to iteratively update the value
functions of every state until the optimal value functions are
derived, and we say they converge. In each iteration, the
value functions are updated according to Equation 3. We call
one such update a Bellman backup. The Bellman residual of
a state s is defined to be the difference between the value
functions of s in two consecutive iterations. The Bellman
error is the maximum Bellman residual of the state space.
When this Bellman error is less than some threshold value,
we conclude that the value functions converge. Policy iter-
ation (Howard 1960) is another approach to solve infinite-
horizon MDPs. This algorithm consists of two interleaved
steps: policy evaluation and policy improvement. The al-
gorithm stops when in some policy improvement phase, no
changes are made. These algorithms both suffer from ef-
ficiency problems. Both of them converge in time polyno-
mial in the number of states and 1/(1 − γ) (Littman, Dean,
& Kaelbling 1995), so for realistic problems when the state
spaces are large, these algorithms are sometimes slow.

The main drawback of the two algorithm is that, in each it-
eration, the value functions of every single state are updated,
which is highly unnecessary. Firstly, the value functions of

each state are initialized by instant cost functions, and some-
times this initialization is too conservative. So the backups
in the early iterations are less helpful. Secondly, in each iter-
ation of dynamic programming, all the states are backed up.
This could be extremely unnecessary, since different states
converge with different rates, when only a few states have
not converged, we may only need to back up a subset of the
state space in the next iteration.

Other solvers
In this section, we discuss several MDP solvers that fall into
our first category. Because our new solver MBLAO* is also
in this category, our experiments compare MBLAO* with
other solvers in this group. This section helps put our work
in the context of recent MDP planning.

Barto et al. (Barto, Bradke, & Singh 1995) proposed an
online MDP solver, real time dynamic programming. This
algorithm assumes that initially it knows nothing about the
system except the start state and the goal states. It simu-
lates the evolution of the system by a series of trials. Each
trial starts from the start state and ends at a goal state. In
each step of the trial, one greedy action is selected based
on the current knowledge of value functions and the state is
changed stochastically. During the trial, all the visited states
are backed up once. The algorithm succeeds when a certain
number of trials are finished.

LAO* (Hansen & Zilberstein 2001) is a solver that uses
heuristic functions. Its basic idea is to expand an explicit
graph G iteratively based on the best-first strategy. Heuris-
tic functions are used to guide which state is expanded next.
Every time a new state is expanded, the values of its ances-
tor states are updated iteratively, using value iteration. In
Hansen and Zilberstein’s algorithm, they use the mean first
passage heuristic. LAO* converges faster than RTDP since
it expands states instead of actions.

The advantage of RTDP is that it can find a good sub-
optimal policy pretty fast, but its convergence is slow. Bonet
and Geffner extended RTDP to labeled RTDP (LRTDP)
(Bonet & Geffner 2003b), and the convergence of LRTDP
is much faster. In their approach, they define a state s as
solved if the Bellman residuals of s and all the states that
are reachable through the optimal policy from s are small
enough. Once a state is solved, we regard its value function
as converged, so it is treated as a “tip state” in the graph.
LRTDP terminates when the start state is solved.

HDP is another state-of-the-art algorithm by Bonet and
Geffner (Bonet & Geffner 2003a). HDP uses a similar la-
beling technique to LRTDP, and also finds the connected
components in the solution graph of the MDP. HDP labels a
component solved when all the states in that component have
been labeled. HDP expands and updates states in a depth-
first fashion rooted at the start states. All the states belonging
to the solved components are regarded as tip states. Their ex-
periments show that HDP dominates LAO* and LRTDP on
most of the racetrack MDP benchmarks when the heuristic
function hmin (Bonet & Geffner 2003b) is used.

BLAO* (Bhuma & Goldsmith 2003; Bhuma 2004) ex-
tends the LAO* algorithm by searching from the start state
and the goal state in parallel. In detail, BLAO* has two
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searches: forward search and backward search. Initially, the
value functions of the state space are assigned by heuristic
functions. Both searches start concurrently in each iteration.
The forward search is almost the same as that of LAO*. It
keeps adding unexpanded states into the explicit graph by
means of expansions. In an expansion step, an unexpanded
“tip” state is chosen, one greedy action and all its associated
successor states are added into the explicit graph. After one
such expansion, the new value functions of the states in G
that are ancestors of the newly expanded state are computed
by value iteration.

The backward search is different from the forward search.
It originates from the goal state and expands toward the start
state. A state s which has not been expanded backwards is
expanded along the best predecessor state. For one state s′

to become the best predecessor state of another state s, it has
to fulfill two requirements. First, s′ must belong to the set
of state L, where the current best action of each state in L
has s as a successor state. Second, s′ must be the one that
has the highest probability to reach s from all the states in
L. So the backward search trial is a path instead of a tree.
Each backward expansion step adds at most one more node
to the explicit graph. The update of value functions after
each expansion is the same as the forward search.

Each forward (backward) search terminates when the
search loops back to an expanded state, or reaches the goal
(start) state or a nonterminal leaf state. After each iteration,
a convergence test is called. The convergence test checks
whether this iteration expands any states, or the highest dif-
ference between value functions of the current iteration and
last iteration of each state in G exceeds some predefined
threshold value. If not, the optimal policy is extracted and
the algorithm ends.

The common advantage of the above algorithms is us-
ing start state information to constrain the set of states ex-
panded. The states that are unreachable from the start
state are never expanded nor backed up. The algorithms
also make use of heuristic functions to guide the search to
promising branches.

Multi-thread BLAO*
In our previous experiments on the performance of LAO*
and BLAO* (Dai & Goldsmith 2006), we discovered that
BLAO* outperforms LAO* by about 10% in racetrack do-
mains. More promisingly, in randomly generated MDPs
with large action numbers, BLAO* sometimes runs three
times as fast as LAO*. This performance gain is not the
result of constraining the number of expanded states. For
some problems, BLAO* expands a superset of the states
expanded by LAO*, since the backward search may intro-
duce more states to the explicit graph. However, BLAO*
is superior to LAO* in that it performs fewer backups. In
order to see why, let’s take a closer high-level look at the
algorithms. In MDP heuristic search planners, the heuristic
functions we often use are generated in a backwards man-
ner. For this reason, the heuristic values of states near the
goal are often more accurate than those of states near the
start state. If we only search forward, as long as the search
has not reached the portion that is near the goal, when we do

MBLAO*
MBLAO*(int n)
1. for every state s
2. V (s) = heuristic value
3. π(s) = an arbitrary action
4. iteration = 0;
5. iteration++;
6. for every state s
7. s.expanded = false
8. initialize the following n + 1 threads
9. Forward search(Start);
10. for i ← 1 to n
11. pick one state s along the optimal path
12. Backward search(s);
13. if Convergence test(δ)
14. return V and π;
15. else goto 5;
Forward search(state s)
1. s.expanded = true;
2. a = π(s)
3. while a has any unexpanded successor state s′

4. G = G ∪ s′

5. A = A∪ ancestor states of states of s′ ∪s′

6. for every state in A
7. perform value iteration on them
8. pick an unexpanded tip state s ∈ G
9. Forward search(s)
10. return;
Backward search(state s)
1. s.expanded = true;
2. V (s) = maxa{C(s) + γ

∑
s′∈S

(Ta(s′, s)V (s′))};
3. π(s) = argmaxa{

∑
s′∈S

(Ta(s′, s)V (s′))};
4. s′ ← best predecessor state of s
5. if s′ is not the start state or has not been expanded
6. Backward search(s′);
7. return;
Convergence test(δ)
1. return (changes of value function of every node is
less than δ)

Figure 1: Pseudocode of MBLAO*

Bellman backups, the values used on the right hand side of
Bellman equations are crude heuristic values, and therefore
are not guaranteed to be accurate. So the backups performed
during these steps are mostly less useful. In BLAO*, by do-
ing backward searches from time to time, we can propagate
“more accurate” values by improving the heuristic values of
states that are far away from the goal. In this case, the back-
ups performed during the earlier steps of BLAO* make more
sense. And sometimes these value propagations turn out to
be very helpful.

The intuition behind MBLAO* is based on the above ob-
servation. We wondered: can we further decrease the num-
ber of backups? We tried changing the strategy of BLAO*
(Dai & Goldsmith 2006). The backward search of BLAO* is
only along the best predecessor states. We hoped to further
constrain the number of backups by broadening the width
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of the backward search by searching along all predecessor
states, but the experimental results showed that enlarging the
branching factor of the backward search is not useful.

In MBLAO*, we try something new. The idea is to con-
currently start several threads in the explicit graph expan-
sion step. One of them is the same as the forward search in
BLAO*, and the rest of them are the backward searches, but
have different starting points. We define the optimal path of
an MDP to be the most probable path from the start state to
the goal state, if in every step we follow one optimal policy
and choose one successor state with the highest probabil-
ity of the transition function. The starting points of these
backward searches are selected from states belonging to the
current optimal path (not including the start state). The un-
derlying idea is the following: One backward search from
the goal could help propagate more accurate values from
the goal, but not from other sources. This could be com-
plemented by backward searches from other places. Since
the planning is mostly interested in the states on the op-
timal path, value propagations from middle points on this
path should be helpful. Also note that the optimal path may
change from iteration to iteration, so the sources and tra-
jectories of the backward searches also change. The pseu-
docode of MBLAO* is shown in Figure 1. The input number
n gives the number of backward search threads of our algo-
rithm. As long as the value functions are not close enough
to the optimal, as determined by the convergence test() sub-
routine, MBLAO* initializes n + 1 threads in parallel. One
of them is the forward search originating from the start state,
and the rest are backward ones. The value functions are up-
dated by value iteration in the forward search, since the for-
ward search graph may contain cycles. The backward search
only do one backup at each step.

Experiments
We compare multi-thread BLAO*’s performance with value
iteration (VI), LAO*, BLAO*, LRTDP and HDP. All the
algorithms are coded in C, and run on the same processor
Intel Pentium 4 1.50GHz with 1G main memory and a cache
size of 256kB. The operating system is Linux version 2.6.15
and the compiler is gcc version 3.3.4.

Our experiments use some popular domains from the lit-
erature: racetrack (Barto, Bradke, & Singh 1995), mountain
car (MCar) , single-arm pendulum (SAP) and double-arm
pendulum (DAP) (Wingate & Seppi 2005). Racetrack MDPs
are simulations of race cars on different tracks. We choose
two racetrack domains. One of them is a small track with
1849 states, and the other has 21371 states. Mountain car
is an optimal control problem, whose aim is to make the car
reach the destination with enough momentum within min-
imum time. SAP and DAP are similar domains to MCar,
whose differences from MCar is that the goal states1 in SAP
and DAP are reachable from the entire state space. All al-
gorithms except VI in our list are initial-state driven algo-

1In MCar, SAP and DAP, states that have positive instant reward
are goal states. Each SAP or DAP problem has one goal state,
but an MCar problem has several, because the destination can be
reached with various speeds.

rithms, but in MCar and SAP and DAP domains, we do
not have any assumptions about initial states. When we run
algorithms on these instances, we randomly pick 10 states
from the state space as initial states, and average the statis-
tics over them.

In MBLAO*, our goal is to decrease the number of Bell-
man backups. In our first group of experiments, we measure
both the overall computational cost and the number of back-
ups performed by each approach. We run all the algorithms
listed on different instances of domains. Due to the con-
straints of this paper, we only pick the statistics for one or
two instances from each domain, with the size of the state
space ranging from 1849 to 160,000. Also, we only pick
the results of MBLAO* with 11 threads, that is, one for-
ward search thread and 10 backward ones. We list the size
of the solution states2 of each domain and number of back-
ups performed by each algorithm in Table 2. Note that for
instances not shown in the table, the data we have got are
similar to their domain representatives. From the backup
data, we find that MBLAO* performs fewer backups than
LAO* and other heuristic search solvers, including its an-
cestor, BLAO*. This efficiency helps MBLAO* run faster
than other solvers on some domains, as is clearly shown in
Table 1. MBLAO* is not suitable for all domains, since we
notice the save ratio on racetrack domains is not that appeal-
ing. However, it provides relatively large savings on MCar
and SAP domains.

In our second group of experiments, we tune the number
of backward searches, and analyze how the number of back-
ward searches influence the number of backups MBLAO*
ultimately performs. We choose the MCar (300 × 300) do-
main in particular. As we mentioned earlier, MCar problems
are not initial-state driven. So we randomly pick states from
the state space as start states. For every different start state,
we call this particular MDP an instance. On each instance,
we compare the number of backups performed by LAO* and
MBLAO* with various number of threads. We try 100 dif-
ferent instances, and randomly pick the statistics from six of
them. The number of backups are plotted into the six figures
in Table 3. After scrutiny of the figures, we come up with
the following conclusions.

• It is not the case that the more threads, the better the per-
formance. This is because, when the number of threads
is too large, the backward search threads themselves pro-
duce a lot of waste, since the backups performed in back-
ward searches could become less critical. Furthermore,
too many backward searches distract from the forward
search.

• For different instances, the ratios of the number of back-
ups to the number of threads have no uniform pattern.
Neither do they have the same “optimal” thread number,
in which the number of backups performed by running
MBLAO* is minimal. Particularly, 7, 4, 6, 3, 30 and 5
are the optimal thread number of the instances we have
chosen respectively.

2the number of states that might be reached by simulating the
optimal policy from the start state
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Domains # of solution states VI LAO* BLAO* MBLAO* LRTDP HDP
Racetrack(small) 76 0.06 0.01 0.01 0.00 0.02 0.78
DAP(10

4) 9252 1.27 0.74 0.73 0.52 1.01 70.83
Racetrack(big) 2250 2.08 1.73 1.37 0.80 20.06 10.49
MCar(300 × 300) 2660 6.45 1.21 1.01 0.65 8.78 1.17
SAP(300 × 300) 49514 48.51 4.36 3.64 3.11 N/A N/A
MCar (400 × 400) 24094 N/A 0.78 0.57 0.30 0.55 1.57

Table 1: Convergence time performed for different algorithms on different domains (δ = 10−6)

Domains # of solution states VI LAO* BLAO* MBLAO* LRTDP HDP
Racetrack (small) 76 29584 3195 2986 1877 5166 5781
DAP (10

4) 9252 721091 250959 250105 232922 353487 217959
Racetrack (big) 2250 854840 325988 305916 283577 2728517 577160
MCar(300 × 300) 2660 1102981 91015 86120 43225 453156 71640
SAP(300 × 300) 49514 48690019 3015618 2764891 1828943 N/A N/A
MCar (400 × 400) 24094 N/A 457594 401740 352719 821740 400039

Table 2: # of backups performed by different algorithms on different domains (ε = 10−6)

• As the length of the optimal path increases, the optimal
thread number does not necessarily increase. At the be-
ginning, we tried to find out the pattern for how many
threads are optimal for each problem, but failed. How-
ever, the optimal thread number never exceeds 10% of the
length of the optimal path in our experiments.

Another interesting discovery is that although MBLAO*
sometimes increases the number of state expansions com-
pared to LAO*, the increase rate never exceeds 1%. In some
cases, MBLAO* even decreases the expansions, since better
heuristic values help make the search more focused. Due to
space constraints, we do not discuss this issue in detail.

Conclusion
In this paper, we have discussed an MDP solver named
MBLAO*. MBLAO* is an extension to LAO* and a gen-
eralization to BLAO*. Unlike most other state-of-the-art
heuristic search MDP solvers such as LAO*, LRTDP, and
HDP, which mainly focus on applying heuristic search and
reachability analysis strategies to constrain the number of
expanded nodes, it also restricts the number of Bellman
backups by performing timely backward searches. We no-
tice that although the problem of inefficient backups has
been addressed by previous approaches, the decrease in the
number of expanded states achieved by traditional heuristic
search strategies does not necessarily lead to the economic
use of Bellman backups. This is because for a large propor-
tion of time, the backups performed in the forward search
use inaccurate heuristic functions. This situation can be al-
leviated by backward searches that help propagate more ac-
curate value functions, and therefore improve heuristics.

Our previous approach in this category is BLAO*, which
is able to reduce the number of backups to some degree, but
not notably. For this reason, we design MBLAO*, which
performs several backward searches for each forward one.
Our experimental results show that by integrating a number
of backward searches and value propagation, the decreases

in the number of backups for our test domains are more dis-
tinct. We believe that reducing Bellman backups could be-
come an interesting research topic in heuristic search plan-
ning algorithms. Different from the typical way of minimiz-
ing the number of expanded states, good strategies could be
deployed to make Bellman backups more fruitful, and there-
fore decrease the overhead in backup computations. These
two approaches can complement each other. It’s this synthe-
sis that makes MBLAO* so efficient.
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