
Learning Uncertain Rules with CONDORCKD ∗

Jens Fisseler
Department of Computer Science

University of Hagen
58084 Hagen

Germany

Gabriele Kern-Isberner
Department of Computer Science

University of Dortmund
44227 Dortmund

Germany

Christoph Beierle
Department of Computer Science

University of Hagen
58084 Hagen

Germany

Abstract

CONDORCKD is a system implementing a novel approach
to discovering knowledge from data. It addresses the issue
of relevance of the learned rules by algebraic means and ex-
plicitly supports the subsequent processing by probabilistic
reasoning. After briefly summarizing the key ideas underly-
ing CONDORCKD, the purpose of this paper is to present a
walk-through and system demonstration.

Introduction
Knowledge discovery in databases (KDD) is the process of
identifying novel and interesting patterns in data (Fayyad,
Piatetsky-Shapiro, & Smyth 1996). The data set typically
consists of possibly millions of objects, each described by
a set of measurements or attributes, and the pattern types
searched for can be roughly categorized as either descriptive
or predictive. Assessing the novelty and interestingness of
the discovered patterns is a difficult task by itself (Hilder-
man & Hamilton 1999), and in most cases the subsequent
use of the discovered knowledge is ignored during the dis-
covery process. The purpose of this paper is to present a
walk-through and system demonstration of CONDORCKD,
an implementation of a novel approach to learning (uncer-
tain) rules from data. CONDORCKD addresses the issue
of relevance by algebraic means and explicitly supports the
subsequent processing of information via the principle of
maximum entropy.

We start by summarizing some key ideas underlying
CONDORCKD and briefly sketching its implementation.

CONDORCKD – Conditional Knowledge
Discovery by Algebraic Means

The focus of the knowledge discovery method that we devel-
oped and implemented during the CONDOR project (Beierle
& Kern-Isberner 2003b) was on linking the learning pro-
cess more closely to the subsequent inference process – the
learned patterns ought to be useful in the sense that they
could serve directly as inputs for knowledge representation
and reasoning. We found rules or conditionals, respectively,

∗The research reported here was partly supported by the DFG –
Deutsche Forschungsgemeinschaft (grant BE 1700/5-3).
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to be adequate patterns that satisfy the demand for finding
generic and understandable knowledge, on the one hand,
and that reveal important structures for inductive probabilis-
tic inferencing, on the other.

There are two key ideas underlying the approach we used
for our implementation: First, the link between structural
and numerical knowledge is established by an algebraic the-
ory of conditionals, which makes it possible to consider
complex interactions between rules (Kern-Isberner 2000).
By applying this theory, we develop an algorithm that com-
putes sets of probabilistic rules from distributions. Second,
knowledge discovery is understood as a process which is in-
verse to inductive knowledge representation, i.e. a set of
rules is searched for that may generate the investigated dis-
tribution via induction, hence serving as a basis. In this way,
the inductive processing of information is anticipated and
used in order to improve the conciseness of the output. In
particular, the relevance of discovered information is judged
with respect to the chosen induction method, giving rise to
a formal quality criterion that is implicitly applied to select
“best” rule sets. The inductive representation method used
here is based on maximizing entropy, an information theo-
retical principle (ME-principle (Paris 1994)). So, the dis-
covered rules can be considered as being most informative
in a strict, formal sense, and can be used directly as input
for the SPIRIT system which processes probabilistic infor-
mation on optimum entropy and may be used e.g. for de-
cision support (Rödder, Reucher, & Kulmann 2006). This
approach is described in detail in (Kern-Isberner & Fisseler
2004); we will give a brief overview in this section, also pre-
senting a small running example, cf. (Fisseler et al. 2007).
A more complex example will be given in the walk-through.

Example 1 Suppose in our universe there are animals (A),
fish (F), aquatic beings (Q), objects with gills (G) and ob-
jects with scales (S). The following table may reflect our
observations:

object freq. prob. object freq. prob.

afqgs 59 0.5463 afqgs 11 0.1019

afqgs 21 0.1944 afqgs 9 0.0833
afqgs 6 0.0556 afqg s 2 0.0185

We are interested in any relationship between these objects,
e.g., to what extent can we expect an animal that is an

74

Algorithm CKD
(Conditional Knowledge Discovery)

Input A frequency/probability distribution P
Output A set of probabilistic conditionals

Begin
% Initialization
Compute the list NC of null-conjunctions
Compute the set S0 of basic rules
Compute ker P
Compute ker g
Set K := ker g
Set S := S0

% Main loop
While equations are in K Do

Choose gp ∈ K
Modify (and aggregate) S
Modify (and reduce) K

Calculate the probabilities of the conditionals in S
Return S and appertaining probabilities

End.

Figure 1: High-level description of our CKD algorithm
(Kern-Isberner & Fisseler 2004).

aquatic being with gills to be a fish? This relationship is
expressed by the conditional (f |aqg), which is read as “f ,
under the condition a and q and g”. If P is the probabil-
ity distribution given by the table above and x ∈ [0, 1] is
a probability value, P satisfies the probabilistic conditional
(f |aqg)[x], written as P |= (f |aqg)[x] iff the conditional
probability P (f |aqg) = x. In our example, it is easily cal-
culated that P |= (f |aqg)[0.8].

From the given data, a frequency distribution is computed
which is mined for structural information to be processed in
the algebraic machinery. Here, conditionals are represented
by group generators, and group homomorphisms are used as
a formal means to elaborate and process structural informa-
tion. As is well-known from algebraic theories, the kernels
of such homomorphisms reflect structural invariants. In our
case, so-called conditional indifferences are discovered in
probability distributions. Conditional indifference is a no-
tion that may help organizing probabilistic networks, in a
similar way as conditional independencies do so for Markov
and Bayesian networks. Indeed, conditional indifference
turned out to be more finely grained than conditional inde-
pendence (for further details, cf. (Kern-Isberner 2000; 2004;
Beierle & Kern-Isberner 2003a)). An overview of the algo-
rithm in pseudocode is given in Figure 1 and its data flow is
illustrated in Figure 2; both will be explained in a bit more
detail in the following. The algorithm has been implemented
as a component of the CONDOR system (for an overview,
cf. (Beierle & Kern-Isberner 2003b))

The frequency distributions calculated from data are
mostly sparse, full of zeros, with only scattered clusters
of non-zero probabilities. In our approach, these zero val-
ues are treated as non-knowledge without structure. They
play a prominent role in setting up a set S0 of basic

data

cycles

basic
rules ker P

rule
aggregator

rules

Figure 2: Dataflow of the CONDORCKD algorithm.

rules of manageable size in the beginning. The set NC of
null-conjunctions NC (i.e. conjunctions of attribute-value-
literals, with frequency 0) represents missing information in
a most concise way. Next, the numerical relationships in
P have to be explored to set up the structural kernel of P ,
ker P . Any such relationship is found to correspond to a
simple cycle of even length (i.e. involving an even number
of vertices) in an associated graph. Therefore, the search
for numerical relationships holding in P amounts to search-
ing for such cycles in a graph. Finally, as the last step of
the initialization, the kernel of a structure homomorphism,
ker g, has to be computed from ker P with respect to the
set S0 of conditionals. In this way, algebraic representations
of numerical probabilistic information are obtained, which
are encoded as equations holding in groups associated with
the respective set of conditionals. Solving these equations
successively yields modifications both on the groups and on
the appertaining conditionals.

So, in the main loop of the algorithm CKD, the sets K of
group elements and S of conditionals are subject to change.
In the beginning, K = ker g and S = S0; in the end, S
will contain the discovered conditional relationships. Note
that no probabilities are used in this main loop – only struc-
tural information (derived from numerical information) is
processed. It is only afterwards, that the probabilities of the
conditionals in the final set S are computed from P , and the
probabilistic conditionals are returned.

Example 2 We continue Example 1. First, the set NC of
null-conjunctions has to be calculated from the data; here,
we find NC = {a, q, f g} – no object matching any one
of these partial descriptions occurs in the data base. These
null-conjunctions are crucial to set up a starting set S0 = B

75

of basic rules of feasible size:

B = { φf,1 = (f |aqgs) φg,1 = (g|afqs)
φf,2 = (f |aqgs) φg,2 = (g|afqs)
φf,3 = (f |g) φg,3 = (g|f)

φs,1 = (s|afqg) φa,1 = (a|�)
φs,2 = (s|afqg)
φf,3 = (f |afqg) φq,1 = (q|�) }

The next step is to analyze numerical relationships in P . In
this example, we find two numerical relationships that hold
with near equality:

P (afqgs) ≈ P (afqgs) and
P (afqgs)
P (afqgs)

≈ P (afqgs)
P (afqgs)

These relationships are translated into algebraic group
equations and help modifying the set of rules. For instance,
φf,1 and φf,2 are joined to yield (f |aqg), and φs,3 is elim-
inated. As a final output, the CKD algorithm returns the
following set of conditionals:

Conclusion Premise Prob.

A=YES 1.0

F=YES G={NO} 1.0
F=YES A={YES}, Q={YES}, G={YES} 0.8

Q=YES 1.0

G=YES F={NO} 1.0
G=YES A={YES}, F={YES}, Q={YES} 0.91

S=YES A={YES}, F={YES}, Q={YES} 0.74

This result can be interpreted as follows: All objects in
our universe are aquatic animals which are fish or have
gills (corresponding to the four rules with probability 1.0).
Aquatic animals with gills are mostly fish (with a probability
of 0.8), aquatic fish usually have gills (with a probability of
0.91) and scales (with a probability of 0.74).

Note that our system already generated the LATEX-code for
the table given above as output.

Implementing CONDORCKD
We implemented CONDORCKD using Haskell (Hudak et al.
1992), a non-strict, strongly typed functional programming
language. Using a functional language allowed us to quickly
implement a working prototype, which could subsequently
be refined and improved. Other advantages of Haskell are
its clean syntax, and the conciseness of functional languages
in general. The whole documented code-base involves little
more than 9000 lines of code, whereas an implementation
written in C++ or Java can be expected to be several times
larger. More details are given in (Fisseler et al. 2007).

In the following two subsection we want to give a short
overview of two crucial, language-independent parts of
CONDORCKD, before illustrating its application in the next
section.

A data structure for probability distributions

Like most data mining algorithms, CONDORCKD processes
tabular data, treating this data as a discrete multivariate prob-
ability distribution with a set V = {V1, V2, . . . , Vk} of ran-
dom variables, each with a finite domain. Every record of
the data set represents a complete conjunction of the vari-
ables V , i.e. a conjunction of attribute-value-literals, one
for each V ∈ V . Whereas the given tabular data repre-
sentation can be used for computing the probability of each
(complete) conjunctions (although this would be highly in-
efficient), the requirement to be able to compute which con-
junctions do not occur in the given data (the so-called null-
conjunctions), makes this simple representation inappropri-
ate for CONDORCKD. Thus, to support frequency compu-
tations and the computation of null-conjunctions, CONDOR-
CKD utilizes a tree-like data structure for representing the
probability distribution in memory. Each internal node of
this distribution tree (DTree) is marked with one of the vari-
ables V ∈ V , and every edge leaving an internal node la-
beled with variable Vi is assigned one of the values vi of
Vi. As no two nodes on any path from the root to another
node are marked with the same variable, each of these paths
depicts a conjunction, whose frequency is stored at the node
that path ends in. Paths depicting complete conjunctions end
at a leaf node.

A DTree can easily be built by starting with an empty tree
and processing each record of the data set in turn, thereby
building only those parts of the DTree containing non-null
conjunctions. The empty DTree has implicitly assigned the
same variable to all internals nodes of the same depth, i.e.
the root node would be assigned variable V1, all of its chil-
dren would be assigned variable V2, and so on. As each data
record represents a complete conjunction, it depicts a path
from the root node of the DTree to a leaf. If all nodes of such
a path are already part of the DTree, the frequencies stored
at all path nodes only need to be incremented by one in order
to account for the current record. Otherwise the path can be
divided into a prefix and suffix. All prefix nodes are already
part of the DTree, and thus their frequencies need to be in-
cremented by one. The suffix nodes are not yet part of the
tree and are inserted, each with a frequency of 1. Building
a DTree this way ensures that only those parts of the DTree
containing non-zero conjunctions are built, leading to mem-
ory savings in comparison to a complete tree, because those
parts of the tree containing only null-conjunctions will never
be created.

Once the DTree representing a data set has been built, the
null-conjunctions can be computed by a simple tree traver-
sal. For example, suppose we have built a DTree for a data
set with four binary variables A, B, C and D, whose only
null-conjunctions are abcd, abcd, abcd, abcd. Traversing the
tree will yield these four null-conjunctions, but note that by
rearranging the variables (and thereby the DTree) to B, D,
A and C, a traversal would give the shorter null-conjunction
bd. Thus, in order to obtain more concise null-conjunctions,
several reordering heuristics can be applied.

These heuristics change the structure of the DTree by re-
ordering the variables in the subtrees, trying to find an order-

76

ing that will possibly yield shorter null-conjunctions. The
DTree is processed in-order, starting at its root. At every
inner node, one of the remaining variables (i.e. one of the
variables not marking any other node on the path from the
current node to the root) is chosen to mark the current in-
ner node. One way to choose a variable is to favor variables
with many possible values, resulting in a DTree with large
branching factors near the root, which will possibly result in
shorter null-conjunctions, as some of combinations of liter-
als near the root might not occur in the data set.

Computing ker P

Another important part of the implementation of CONDOR-
CKD is the computation of ker P , the kernel of the multi-
variate probability distribution P . As stated in the previous
section, the computation of ker P amounts to searching for
simple, even-length cycles in an undirected graph. There
are several approaches to compute the simple cycles of an
undirected graph (Mateti & Deo 1976), of which the vector
space approach and search-based algorithms are the most
important ones. We will introduce both approaches briefly,
before sketching our new combined approach.

Algorithms utilizing the vector space approach for com-
puting the cycles of an undirected graph first compute a
set of so-called fundamental cycles, from which all cycles
can be generated by combining the fundamental cycles. As
there are exponentially many combinations of fundamental
cycles, vector space algorithms must try to compute as few
of these combinations as possible, yet very little has been
done regarding pruning these unnecessary computations, let
alone incorporating cycle length restrictions.

Search-based algorithms use a modified depth-first search
with backtracking, during which edges are appended to a
path until a cycle is found. Although search-based algo-
rithms are the fastest known algorithms for enumerating all
cycles of an undirected graph, even their running times on
several of the graphs induced by our data sets were pro-
hibitively large. Therefore, we utilize certain characteristics
of the vector space approach in order to further reduce the
search space for the search-based algorithm. Basically, we
associated a subgraph to each fundamental cycle, and con-
ducted a search-based cycle enumeration in this subgraph
only. Details can be found in (Fisseler et al. 2007).

We have compared the running time1 of our novel algo-
rithm (column “FCs + DFS”) and that of a standard search-
based algorithm (DFS) on three different graphs, and the
preliminary results are encouraging (see Figure 3).

CONDORCKD – Walk-through and System
Demonstration

Having introduced the theory of CONDORCKD and two im-
portant parts of its implementation, we now want to exem-
plify its application on the “Lenses” database from the UCI
machine learning repository (Newman et al. 1998). The

1Implementation in Haskell, compiled with GHC 6.4.1, opti-
mizations turned on and code generation via C. The executables
were running on an AMD Athlon64-3200+ in 32bit-mode with
1GB RAM, using Linux.

Graph Max. cycle length #Cycles FCs + DFS DFS

A 10 2827 0:00:01 0:00:02
12 16699 0:00:05 0:00:13
14 119734 0:00:45 0:08:13
16 890204 0:05:48 7:23:54

B 10 2929 0:00:04 0:00:06
12 23021 0:00:42 0:01:28
14 222459 0:09:11 0:42:09

C 6 2927 0:00:10 0:01:26
8 18695 0:00:36 0:02:13

10 268097 0:13:51 0:30:27

Figure 3: Runtime comparison.

Figure 4: Main window of CONDORCKD after loading the
“Lenses” database.

“Lenses” database contains information about the type of
contact lenses suitable for what kind of patients. This de-
cision is based on certain medical conditions of the patient,
e.g. whether she is long-sighted, suffers from reduced tear
production or astigmatism.

The first step when working with CONDORCKD is,
of course, loading the data file into memory. Currently,
CSV (comma-separated values) and ARFF (Witten & Frank
2005) files are supported, as these are the two most common
file formats supported by data mining systems. After load-
ing the data, CONDORCKD displays the list of variables and
their corresponding ranges, cf. Figure 4, which shows the
main window of CONDORCKD after loading the “Lenses”
database.

After loading a database, the user could immediately ini-
tiate the calculation of the conditionals. But especially with
new and unknown data sets, acquiring a better understand-

77

Figure 5: Main window of CONDORCKD after posing sev-
eral queries.

ing of the data is an essential part of the data mining process
(Fayyad, Piatetsky-Shapiro, & Smyth 1996), as it allows for
a better comprehension of the data mining results, or even
checking some hypotheses about the data before mining. To
support interactive exploration of a data set, CONDORCKD
offers a facility to query the probability distribution given
by the data, i.e. to compute the (conditional) probability
of a given conjunction. E.g., given the “Lenses” database,
one might be interested in the probability of people wearing
soft lenses, given they are young. This question is an ex-
ample of a conditional query, which can be posed to CON-
DORCKD by entering (lenses = {soft} | age = {young})
The probability of this query is 0.25, because a fraction of
0.25 of the records with the age-variable having value young
also have the lenses-variable set to soft. This and several
other queries together with their results can be seen in Fig-
ure 5. In general, queries are of the form (〈conclusion〉)
for unconditional, and (〈conclusion〉 | 〈premise〉) for condi-
tional queries. Premise and conclusion are conjunctions of
attribute-valueset-literals, hence the curly braces that can be
seen in Figure 5. One example of a query using a set of val-
ues for a query-variable is the question of the probability of
people wearing hard lenses, given they are young or not yet
presbyopic, i.e. pre-presbyopic. This query can be posed as
(lenses = {hard} | age = {young, prepresbyopic}), with a
resulting probability of 0.1875.

Before initiating the actual data mining, the user can
adjust several parameters of the CONDORCKD-algorithm.
Figure 6 shows the “Calculate rules”-dialog, which is used

Figure 6: “Calculate rules” dialog window.

for this purpose. The “maximum dependency complexity”-
parameter restricts the complexity of the numerical relation-
ships used for rule aggregation. In addition to being repre-
sented by simple cycles of even length, these numerical re-
lationships must be close to 1, where the degree of closeness
is specified by ε. The value of the parameter ε can be varied
within [0, 0.5]. The third parameter of CONDORCKD is the
so-called “rule aggregation heuristic”. Though CONDOR-
CKD is based on a non-heuristic theory, complex real-world
data necessitates the relaxation of certain aspects of the al-
gorithm. With the help of the rule aggregation heuristic, the
user can control the extent of conjoining and shortening of
rules. The default heuristic should suffice for most data sets,
but certain databases may require more “cautious” aggrega-
tion, or, on the contrary, “bold”er aggregation.

Having specified the parameters of CONDORCKD, the
user can select several output formats. Currently, CONDOR-
CKD can output the discovered conditionals as plain text, in
a special format used by the ME-based expert system shell
SPIRIT (Rödder & Kern-Isberner 1997; Rödder, Reucher,
& Kulmann 2006), or as LATEX-code. Additionally, the user
can enable the output of logging information, though this is
only of interest to the developers.

After choosing appropriate parameters, the user can fi-
nally initiate the rule computation. CONDORCKD will then
calculate the ME-optimal rules for the given database and
the specified parameters. Due to the theory of CONDOR-
CKD, the rule computation can be done independently for
each attribute-value-literal of the rule conclusion, which re-
duces the memory consumption and would allow for a pos-
sible parallelization. Nonetheless, a lot of rules have to be
processed even for moderately complex data sets. Using the

78

parameter settings depicted in Figure 6, we want to demon-
strate some steps of CONDORCKD, especially those leading
to the rule (lenses = {soft} | astigmatism = {no}).

There are, in principle, 12 basic rules having lenses =
{soft} as their conclusion and the literal astigmatism =
{no} in their premise; this follows from the 2·2·3 = 12 pos-
sible combinations of the literals of the remaining variables
age, prescription and tears. By interpreting zero probabili-
ties as missing information on structures, these 12 rules can
be reduced to 8 rules, of which the following five can be
conjoined:

(lenses = soft | age = prepresbyopic, prescription = myope,
astigmatism = no)

(lenses = soft | age = young, prescription = myope,
astigmatism = no)

(lenses = soft | age = prepresbyopic, prescription = hypermetrope,
astigmatism = no, tears = normal)

(lenses = soft | age = presbyopic, prescription = hypermetrope,
astigmatism = no, tears = normal)

(lenses = soft | age = young, prescription = hypermetrope,
astigmatism = no, tears = normal).

E.g., because of the numerical relationship

P

⎛
⎜⎜⎝

lenses = soft,
age = prepresbyopic,
prescription = hypermetrope,
astigmatism = no,
tears = normal)

⎞
⎟⎟⎠ ≈ P

⎛
⎜⎝

lenses = soft,
age = young,
prescription = myope,
astigmatism = no

⎞
⎟⎠

the second and third rule can be conjoined, yielding the
more concise rule

(lenses = soft | age = {prepresbyopic, young}, astigmatism = no).

Utilizing the remaining numerical relationships, all five rules
can be conjoined, resulting in (lenses = soft | astigmatism =
{no}). This rule represents all information (with respect to
the ME-principle) contained in the original five rules.

Conclusions and further work
CONDORCKD is a system implementing a novel approach
to knowledge discovery that is based on algebraic means and
closely links the learning process to a subsequent inference
process. We are currently working on several extensions of
this approach, including the partitioning of larger sets of at-
tribute sets into manageable parts and further improvement
of the probability distribution representation (cf. (Moore &
Lee 1998)).

Acknowledgements We’d like to thank the anonymous
reviewers for their helpful comments.

References
Beierle, C., and Kern-Isberner, G. 2003a. An alternative
view of knowledge discovery. In Proceedings f the 36th An-
nual Hawaii International Conference on System Sciences,
HICSS-36, 68.1. IEEE Computer Society.
Beierle, C., and Kern-Isberner, G. 2003b. Modelling condi-
tional knowledge discovery and belief revision by abstract
state machines. In Boerger, E.; Gargantini, A.; and Ric-
cobene, E., eds., Abstract State Machines 2003 – Advances

in Theory and Applications, Proceedings 10th Interna-
tional Workshop, ASM2003, 186–203. Springer, LNCS
2589.
Fayyad, U. M.; Piatetsky-Shapiro, G.; and Smyth, P.
1996. Advances in Knowledge Discovery and Data Min-
ing. AAAI Press / The MIT Press. Chapter From Data
Mining to Knowledge Discovery: An Overview, 1–34.
Fisseler, J.; Kern-Isberner, G.; Beierle, C.; Koch, A.; and
Müller, C. 2007. Algebraic knowledge discovery us-
ing Haskell. In Practical Aspects of Declarative Lan-
guages, 9th International Symposium, PADL 2007, Lecture
Notes in Computer Science. Berlin, Heidelberg, New York:
Springer. (to appear).
Hilderman, R. J., and Hamilton, H. J. 1999. Knowledge
discovery and interestingness measures: A survey. Tech-
nical Report CS-99-04, Department of Computer Science,
University of Regina.
Hudak, P.; Jones, S. L. P.; Wadler, P.; Boutel, B.; Fairbairn,
J.; Fasel, J. H.; Guzmán, M. M.; Hammond, K.; Hughes,
J.; Johnsson, T.; Kieburtz, R. B.; Nikhil, R. S.; Partain,
W.; and Peterson, J. 1992. Report on the programming
language Haskell, a non-strict, purely functional language.
SIGPLAN Notices 27(5):R1–R164.
Kern-Isberner, G., and Fisseler, J. 2004. Knowledge dis-
covery by reversing inductive knowledge representation. In
Proceedings of the Ninth International Conference on the
Principles of Knowledge Representation and Reasoning,
KR-2004, 34–44. AAAI Press.
Kern-Isberner, G. 2000. Solving the inverse representation
problem. In Proceedings 14th European Conference on
Artificial Intelligence, ECAI’2000, 581–585. Berlin: IOS
Press.
Kern-Isberner, G. 2004. A thorough axiomatization of
a principle of conditional preservation in belief revision.
Annals of Mathematics and Artificial Intelligence 40(1-
2):127–164.
Mateti, P., and Deo, N. 1976. On algorithms for enumer-
ating all circuits of a graph. SIAM Journal on Computing
5(1):90–99.
Moore, A., and Lee, M. S. 1998. Cached sufficient statis-
tics for efficient machine learning with large datasets. Jour-
nal of Artificial Intelligence Research 8:67–91.
Newman, D. J.; Hettich, S.; Blake, C. L.; and Merz, C. J.
1998. UCI repository of machine learning databases.
Paris, J. 1994. The uncertain reasoner’s companion – A
mathematical perspective. Cambridge University Press.
Rödder, W., and Kern-Isberner, G. 1997. Representation
and extraction of information by probabilistic logic. Infor-
mation Systems 21(8):637–652.
Rödder, W.; Reucher, E.; and Kulmann, F. 2006. Features
of the expert-system-shell SPIRIT. Logic Journal of IGPL
14(3):483–500.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kauf-
mann.

79

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

