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Abstract

In this paper, we present subcaching, a method for re-
ducing the size of the caches in the recursive decompo-
sition while maintaining the runtime of recursive condi-
tioning with complete caching. We also demonstrate a
heuristic for constructing recursive decompositions that
improves the effects of subcaching, and show empiri-
cally that the savings in space is quite substantial, with
very little effect on the runtime of recursive condition-
ing.

Introduction
Recently, we proposed elimination trees, and their simple
extensions, conditioning graphs as runtime representations
of belief networks (Grant & Horsch 2005). These are novel
variants of the dtree structure used in recursive conditioning
(Cooper 1990; Darwiche 2000). The term recursive decom-
positions refers to this class of recursive compilations.

Conditioning graphs (CGs) have a number of properties
that make them ideal for use in embedded systems or multi-
agent architectures, where memory limitations prevent the
use of junction-tree message passing (JTP) (Lauritzen &
Spiegelhalter 1988) or variable elimination (VE) (Zhang &
Poole 1994; Dechter 1996). First, they require only linear
space: the space needed is the same order as the memory
needed to store the Bayesian network itself. Second, a CG
consists of simple node pointers and floating point values:
sophisticated data structures are not needed. As well, the
inference algorithm for CGs is a small recursive algorithm,
easily implementable on any architecture.

These minimal memory requirements are achieved at the
cost of increased run-time. The time complexity of inference
using a conditioning graph is exponential on the height of
its underlying elimination tree. Algorithms have been pro-
posed to minimize the height of these trees (Grant & Horsch
2006b), but for a given network, the height of the tree can
still be substantially larger than the treewidth of the network.
It is possible to restrict computation to relevant portions of
the network based on current query and evidence (Grant &
Horsch 2006a), but this does little in situations where the
size of the relevant network is large.
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The technique of caching is a well-known optimization
for recursive decompositions (Darwiche & Hopkins 2001;
Allen & Darwiche 2003b; Allen, Darwiche, & Park 2004),
and is applicable to elimination trees. Caching reduces run-
time by storing values required for intermediate calculation
to avoid recomputing them. Caching all possible intermedi-
ate values reduces the runtime in recursive decompositions
to that of JTP and VE, while at the same time increasing
its space requirements to JTP and VE. Caching in recur-
sive decompositions has two distinct advantages over other
algorithms. First, the technique of caching allows for par-
tial caching schemes, where only a subset of the values are
cached, making the algorithm any-space (Darwiche 2000).
Secondly, certain values (those in dead caches, discussed in
the next section) are only used in calculation once, and there-
fore do not need to be cached (Allen & Darwiche 2003a).
Identifying these values and excluding them from the cache
gives a decisive advantage over JTP and VE in terms of
memory, while still allowing it a runtime that is exponen-
tial on treewidth (Allen & Darwiche 2003a).

In this paper, we extend the state of the art in caching
for recursive decompositions with a technique called sub-
caching, which reduces the size of the caches in elimina-
tion trees by reusing memory in the cache during inference.
We present a heuristic for constructing elimination trees that
make good reuse of memory in the cache (though not nec-
essarily optimal), and show empirically that the savings in
space is quite substantial. Our work is presented in terms of
elimination trees, but can be simply extended to other recur-
sive decompositions.

Background
We denote random variables with capital letters (eg. X ,
Y , Z), and sets of variables with boldfaced capital letters
X = {X1, ..., Xn}. Each random variable V has an asso-
ciated domain D(V ) = {v1, ..., vk}, which we assume is
finite and discrete. An instantiation of a variable is denoted
V=v, or v for short. A context, or instantiation of a set of
variables, is denoted X=x or simply x. Given a set of ran-
dom variables V = {V1, ..., Vn} with domain function D, a
Bayesian network is a tuple 〈V,Φ〉. Φ = {φV1

, ..., φVn
} is

a set of distibutions with a one-to-one correspondence with
the elements of V. A Bayesian network has an associated
DAG, and each φVi

∈ Φ is the conditional probability of Vi
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Figure 1: An example Bayesian network.

given its parents in the DAG (called conditional probability
tables or CPTs). That is, if πVi

represents the parents of Vi,
then φVi

= P (Vi|πVi
). The family of a variable Vi is the set

{V } ∪ πVi
, which is also the domain of the CPT for Vi.1

A variable in a Bayesian network is said to be condition-
ally independent of its non-descendents given its parents.
This allows the joint probability to be factorized as:

P (V) =

n∏

i=1

P (Vi|πVi
) (1)

Figure 1 shows the DAG of a Bayesian network, taken from
(Lauritzen & Spiegelhalter 1988).

An elimination tree (etree) (Grant & Horsch 2005) is a
tree whose leaves and internal nodes correspond to the CPTs
and variables of a Bayesian network, respectively. The tree
is structured such that all CPTs containing variable Vi in
their domain are contained in the subtree of the node labeled
with Vi. Figure 2 shows one of the possible etrees for the
Bayesian network of Figure 1.

The function P (Figure 3) computes the probability of a
given context and etree. By construction, a depth-first traver-
sal of an etree defines an elimination ordering. Whereas
standard VE could be implemented in a bottom-up computa-
tion in an etree, algorithm P recursively computes the sums
and products of variable elimination using a top-down ap-
proach. The base case looks up values in the CPTs of the
Bayesian network. We use the following notation: if T is a
leaf node, then φT represents the CPT at T . If T is an in-
ternal node VT represents the variable labeling T , and chT

represents its children. Finally, if an etree T is used in the
context of a treenode, then we are referring to the root node
of T .

The time complexity of P over an etree T is exponen-
tial on T ’s height, while the space complexity is exponential
only on the largest family in the Bayesian network (Grant &
Horsch 2005).

1The term domain is overloaded here, but usage should be clear
from the context.
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Figure 2: The network from Figure 1, arranged in an etree.

P(T , c)
1. if T is a leaf node
2. return φT (c)
3. elseif VT is instantiated in c

4. Total ← 1

5. for each T ′ ∈ chT while Total > 0
6. Total ← Total ∗ P(T ′, c)

7. else
8. Total ← 0

9. for each vT ∈ D(VT )

10. Total ← Total + P(T, c ∧ {vT })

11. return Total

Figure 3: Code for processing an etree given a context.

Caching
The runtime of computing over a dtree can be reduced
through the use of caching (Darwiche 2000; Allen & Dar-
wiche 2003a). The same techniques can be applied to etrees,
without significant modification. Let NV denote the internal
node in an etree that is labeled with variable V . Consider
the tree from Figure 2, and consider calling node NT when
O = o0, S = s0, and C = c0:

P(NT , {o0 ∧ s0 ∧ c0}) =
∑

T

P (o0|T, c0)
∑

V

P (T |V )P (V )

(2)
Notice that this equation does not depend on the value of
S. Hence, when O = o0, C = c0 and S = s1, the value
returned from node NT will be exactly the same as the return
value of Equation 2. By caching this value at node NT , it
needs only be calculated when S = s0, and retrieved when
S = s1.

Define the a-cutset of node N to be the set of variables
labeling the nodes in N ’s ancestry; the cache-domain of N
(denoted CD(N)) is the intersection of N ’s a-cutset and the
domains of the CPTs in N ’s subtree. The cache-domains of
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each node in Figure 2 are shown in curly braces to the right
of each node. The return value from N depends only on the
assignment to its cache-domain, and not its a-cutset. This
is clearly demonstrated in the previous example: the cache-
domain of node NT is {O, C}, since the values of this node
did not depend on S.

The algorithm for calculating probabilities from an etree
(Figure 3) can be very simply modified to perform caching.
As with dtrees, when a value is calculated for a particular
assignment of the cache-domain, it is stored in the cache at
that node. When a node is visited, we check to see if the
corresponding value is cached. If it is, the cached value is
returned; if not, the value is calculated, cached, and returned.
Theorem 1. (Grant 2006) The complete cache space re-
quired by an etree is O(n exp(w)), where n is the number
of variables in the tree, and w is the width of the variable
ordering used to construct the etree. The time required for
algorithm P to compute a value from an etree that caches is
O(n exp(w)).

Proof Sketch: To sketch the space complexity result, note
that the variables in a node’s cache-domain are exactly the
variables over which VE would build an intermediate dis-
tribution, given the variable ordering of an etree. For time
complexity, we note that the top down process computes
cache elements exactly once.

The time savings due to caching can be substantial. Con-
sider again the etree shown in Figure 2. Without caching,
computation requires 165 total recursive calls. When all pos-
sible values are cached, the same computation requires only
85 recursive calls.

Caching allows a time-for-space trade-off. Darwiche
(Darwiche 2000) demonstrated an any-space algorithm,
which used a partial-caching technique (only some nodes
are allowed to cache). The same technique can be applied to
etrees (Grant 2006).

Dead Caches
Dead caches are caches whose values are only generated and
never queried (Allen & Darwiche 2003a). Consider the etree
in Figure 2; in particular, consider node NB . The cache-
domain at this node is {O, S}. When caching is employed,
Algorithm P visits a node once for each assignment of its
parent’s cache-domain and labeling variable. As this is the
case, node NB is visited only once for each assignment of
its own cache-domain. Therefore, the cache values are never
actually used, only set. Dead caches can be removed from
recursive decompositions with no runtime consequence. In
Figure 2, the dead caches are labeled with an asterisk.

Dead caches can be identified in dtrees as a cache whose
context is a superset of its parent’s context (Allen & Dar-
wiche 2003a). While this definition suffices in etrees as
well, the restriction of exactly one variable per node allows
us to identify dead caches without performing set compar-
ison. Let var (N) represent the variable labeling node N ,
and let NP refer to node N ’s parent in its etree. We define
a proper etree as follows:
Definition 1. An etree is proper if, for all nodes N , the sub-
tree of node N contains a CPT with var(NP ) in its domain,

A

B

C

D

D

D

D

{A, C } 

{A,B}*

{A}*

{ }*

Figure 4: A partial etree, with caches shown to the left of the
nodes. Dead caches are marked with an asterisk.

for all N .

A proper etree is guaranteed using previously published
construction methods (Grant & Horsch 2005; 2006b), but
Algorithm P is correct even for improper etrees. For the
remainder of the document, we will assume that our etrees
are proper, unless otherwise stated. It is possible to prove
the following theorem for proper etrees:

Theorem 2. (Grant 2006) If CD(N) ⊃ CD(NP ), then
CD(N) = CD(NP ) ∪

{
var(NP )

}
.

From Theorem 2, we can identify a dead cache in a proper
etree as any cache whose cardinality is larger than the car-
dinality of the cache of its parent node. This is a slightly
simpler criterion than the one used for dtrees (Allen & Dar-
wiche 2003a).

Figure 2 demonstrates the advantage of removing dead
caches, as it removes the number of cache values from 23 to
10. We provide more empirical demonstration of the mem-
ory saved by eliminating dead caches in a subsequent sec-
tion; briefly, the results in etrees are very similar to those
obtained by Allen and Darwiche (Allen & Darwiche 2003a).

For the remainder of the document, we will refer to com-
puting with dead caches removed as live caching (not re-
moving dead caches will be referred to as complete caching).

Subcaching
While live caching requires much less space than complete
caching, we can improve on the space requirements further,
by noting that while a cache may not be dead, there exist
cases where only certain parts of it are live at any moment.
Consider a portion of an etree, shown in Figure 4. The
caches are shown to the left of the node, with dead caches
marked with an asterisk. There is one live cache at node ND,
caching values over the variables {A, C}.

A trace of the visits to node ND in Figure 4 reveals two
important points:

1. The cache values corresponding to A = 0 are never
reused after A becomes 1 (that is, after visit 4).

2. The cache values corresponding to A = 1 are only calcu-
lated after A becomes 1.

In other words, the portion of the cache corresponding to
A = 0 is dead following A’s being set to 1, so its memory
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can be reused. As well, the portion of the cache correspond-
ing to A = 1 has yet to be calculated following A’s condi-
tioning to 1. Therefore, these values can occupy the same
memory. The new cache will be indexed only on the vari-
able C, and will be reset each time the value of A changes.
While the computation at node D has not changed, we have
reduced its cache memory requirements by 50%.

This form of caching is not partial caching, as we do even-
tually cache all of the values that live caching does. Since
we only cache a subset of the entire cache at a time, we re-
fer to this as subcaching. The subset of the cache-domain of
node N that will define the cache will be referred to as an
effective cache-domain.

The effective cache-domain can be defined as follows:
let ρ = [A1, ..., Aq] be the cache-domain of node N or-
dered according to the etree (variables whose nodes are
closer to the root come first in the ordering). Let ρ′ =
[B1, ..., Br, var(NP )] be the cache-domain of the parent
node of N , ordered according to the etree, and appended
with the variable labeling NP . Let ρ[i] denote the ith vari-
able in ρ according to the said ordering. The effective cache-
domain of N , denoted ECD(N), is equal to [Ai, ..., Aq],
where ρ[i] �= ρ′[i] and ∀j < i ρ[j] = ρ′[j]. The cache will
be reset each time the value of Ai−1 changes (if it exists).
We will denote this variable as the reset variable of N .

There are two special cases that the above specification of
effective cache-domains does not consider:

1. A1 �= B1. This means that the cache-domain of N is
equivalent to the effective cache-domain of N , in which
case the cache is never reset. Caching proceeds as normal.

2. Ai = Bi, ∀i. This means that the effective cache-domain
of N is empty. However, this also means that CD(N) =
CD(NP )∪

{
var(NP )

}
, which we proved previously in-

dicates a dead cache. Hence, an empty effective cache-
domain indicates a dead cache.

The following theorem proves the correctness of reusing
memory in subcaching:

Theorem 3. When the value of N ’s reset variable changes,
no current cache values at N will ever be queried again.

Proof. Let ρ = [A1, ..., Aq] be an ordering over the cache-
domain of N , and let ρ′ = [B1, ..., Br, var(NP )] be an
ordering over NP ’s cache-domain and NP ’s variable, or-
dered as defined above. Note that ρ′ is a superset of ρ. Let
Ai−1 be the reset variable for node N . Let p′ ∈ D(ρ′)
be a context over the variables in ρ′. We will define the
projection of a context p′ ∈ D(ρ′) to the variables in ρ,
denoted ⇓ρ p′ as the context p such that X ∈ ρ and
(X = x) ∈ p′ ⇒ (X = x) ∈ p.

In order for a cache value to be successfully hit, there must
exist two contexts p′

1
and p′

2
∈ D(ρ′) such that p′

1
�= p′

2

and ⇓ρ p′
1

=⇓ρ p′
2

. This means that there exists a variable
Y ∈ ρ′ − ρ such that ⇓{Y } p′

1
�=⇓{Y } p′

2
. For two contexts

to be the same subsequent to a change in the value of Ai−1,
one of these variables that have different values in p′

1
and

p′
2

must exist in the ancestry of Ai−1’s node. However, no
variable exists that can meet all these criteria at once: if Y
is in CD(NP ) and is before Ai−1 in the ordering, then it

Table 1: The amount of memory required for caching over
networks from the Bayesian network repository.

Network Complete (MB) Live (MB) Sub (MB)
Barley 16.14 7.737 0.4580
Diabetes 4.172 2.252 0.6250
Link 1475 16.40 12.20
Mildew 1.497 0.4219 0.1058
Munin1 170.7 90.06 41.81
Munin2 3.494 2.065 0.4560
Munin3 3.605 1.879 0.6227
Munin4 19.17 6.793 0.4271
Pigs 1.052 0.4860 0.1234
Water 10.32 2.170 1.885

must also exist in CD(N), which contradicts the statement
Y ∈ ρ′ − ρ. Hence, we assume that the two contexts p′

1
and

p′
2

cannot be generated across the changing of the value of
Ai−1.

Algorithm P requires very little modification to accom-
modate subcaching. We need to know when the value of
the reset variable of node N changes. Hence, by storing
the current value of this variable at N , we can easily de-
termine when it changes, and reset the cache appropriately.
At each node, we store the variable RN (the reset variable
of N ), as well as rN , the current value of RN . When that
value changes, we call ResetCache on node N , that resets
the value of N ’s cache.

The memory savings due to subcaching are quite substan-
tial. Consider the etree in Figure 2. Of the three remaining
live caches, the subcaches of nodes ND, NT , and NV are
{B}, {C}, and {T }, respectively (shown in the Figure as
underlined variables). In other words, the variable O does
not belong to any of the subcaches. This pruning means that
only 6 caches values are needed to compute over this net-
work, without sacrificing the runtime of algorithm P .

Table 1 compares the memory requirements of com-
plete caching, live caching, and subcaching over several
well-known networks from the Bayesian network reposi-
tory.2 The networks were constructed using a variable or-
dering generated by the Netica software package, which
uses a search-based method to find orderings of low-width.3

The results empirically demonstrate that subcaching reduces
the overall size of the caches considerably, even from live
caching. Seven of the ten networks required less than 1
MB of cache storage. Again, this reduction in space does
not affect the time complexity of algorithm P – it remains
O(n exp(w)).

Exploiting Subcaching
The amount of cache memory in an etree constructed from a
Bayesian network depends on a given elimination ordering
over the network’s variables. An ordering of low treewidth
results in smaller cache-domains in the nodes of an etree,

2http://www.cs.huji.ac.il/labs/compbio/Repository/.
3Netica is a software package distributed by Norsys Software

Corporation.
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which results in smaller memory requirements. Choosing an
optimal ordering is NP-hard; however, several good heuris-
tics exist(Kjaerulff 1990). We used the popular min-fill
heuristic to generate the variable ordering for constructing
the etree in Figure 2. The min-fill heuristic (Kjaerulff 1990)
is lightweight, and in practice yields good variable order-
ings. The algorithm for computing an elimination ordering
can be simply modified to build a etree (Grant & Horsch
2005; 2006b).

In any algorithm for computing a variable ordering, se-
lecting a next variable often requires tie-breaking. The min-
size heuristic (Kjaerulff 1990) is often used to break ties,
although this is typically not enough to resolve every tie.
In practice, some random tie-breaking procedure must be
used. This means that there is more than one possible elimi-
nation ordering for each Bayesian network, even using these
heuristics. Often however, breaking the ties randomly does
not affect the width of the ordering considerably, and there
is typically no preference between two variable orderings of
the same width.

{ }*S

X

O

B C

D T

V

P(X | O)

P(S)

P(B | S)

P(D | O, B) P(O | T , C ) 

P( T  | V ) P(V)

P( C  | S) 

{O } 

{S}*

{S, O}* {S, O}* 

{O , C } 

{T } 

{O , B } 

Figure 5: The network from Figure 1, arranged in a different
etree.

However, the situation is different when subcaching is to
be used. Consider the etree in Figure 5, which was con-
structed using the min-fill heuristic. The variable ordering
used to construct this tree has the same width as the one to
construct the etree in Figure 2. However, this network has
one more live cache, and the variable O becomes part of the
subcache in the caches of ND and NT . This doubles the
amount of memory required for caching. In other words,
while the random tie-breaking procedures do not seem to af-
fect the width of the variable ordering significantly, it does
seem to have a great impact on the amount of memory re-
quired for subcaching.

To further test the extent of this effect, we generated 50
etrees over each repository Bayesian network using the min-
fill heuristic, breaking ties with min-size, and breaking any
further ties randomly. We then measured the width of the
variable ordering, and the storage requirements for caching.

Table 2: Memory requirements of etrees constructed using
min-fill and min-size.

Network μ (MB) σ (MB) Min-Max (MB) Width
Barley 3.118 6.176 0.1954-42.34 7-7
Diabetes 1.124 0.1298 0.8623-1.449 4-4
Link 2.643 1.899 0.9588-10.16 13-17
Mildew 0.3848 0.4033 0.0738-1.943 4-4
Munin1 21.01 29.92 1.865-197.9 11-11
Munin2 0.3522 0.0921 0.2282-0.7729 7-8
Munin3 0.4842 0.3635 0.1304-1.336 7-7
Munin4 0.9766 0.5155 0.5010-2.955 8-8
Pigs 0.1835 0.1138 0.0535-0.5349 10-10
Water 0.2027 0.1554 0.0224-0.6195 10-10

Table 2 shows the results of this test. The first two columns
show the mean and standard deviation of the memory re-
quired for caching over the generated etrees for each net-
work. The next column shows the range of the cache mem-
ory requirements over the generated etrees. The final col-
umn shows the range of the widths of the computed variable
orderings.

From the table, we can see that breaking ties randomly
has almost no effect on the width of the final ordering (with
the exception of the Link network). However, the vari-
ance in the memory requirements of caching is quite high.
In seven of the ten networks, the ratio between the small-
est tree and largest tree (in terms of memory requirements)
is over 10; in Barley and Munin1, this ratio exceeds 100.
These results suggest that while the mentioned heuristics
provide low-width orderings (and thus good runtimes) pretty
reliably, they cannot by themselves reliably provide low-
memory etrees.

To address this problem, we propose another heuristic
when breaking ties between variables. Where min-fill and
min-size attempt to minimize the width of the variable or-
dering, the new heuristic, which we will call min-cache,
will attempt to minimize the amount of memory required for
caching. We cannot directly calculate the amount of cache
memory that will be required in the subtree below node NV ,
since this depends on the order in which the variables in
NV ’s cache-domain are eliminated, which is unknown at the
time of V ’s selection. However, if we assume for each node
in NV ’s subtree that the chosen ordering is optimal with re-
spect to the number of variables excluded from the subcache,
then we can easily calculate a lower bound on the amount of
cache memory in NV ’s subtree. This lower bound will be
the min-cache value of variable V . Hence, when choosing
between variables with equivalent min-fill and min-size val-
ues, we will choose the variable with the smallest min-cache
value. Any further ties will be broken randomly.

To test the effectiveness of min-cache, we performed the
same experiments as those that generated the data in Table 2,
using min-cache to further reduce ties. Table 3 summarizes
the results.

The table demonstrates that min-cache improves the mean
memory requirements for each network except for Diabetes.
This improvement has no effect on the width of the order-
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Table 3: Memory requirements of etrees constructed using
min-fill, min-size, and min-cache.

Network μ (MB) σ (MB) Min-Max (MB) Width
Barley 0.6281 0.0004 0.6276-0.6285 7-7
Diabetes 1.663 0.0214 1.620-1.714 4-4
Link 1.858 0.3671 1.227-2.266 15-15
Mildew 0.1978 0.0309 0.1608-0.2381 4-4
Munin1 0.6186 0.4556 0.1373-1.704 11-11
Munin2 0.3134 0.0062 0.3012-0.3278 8-8
Munin3 0.1429 0.0021 0.1390-0.1470 7-7
Munin4 0.6230 0.0523 0.5205-0.7463 8-8
Pigs 0.0410 0.0001 0.0408-0.0412 10-10
Water 0.1525 0.0487 0.0996-0.2290 10-10

ings, meaning that we obtain these smaller memory require-
ments on average without significantly affecting the runtime
of the algorithm.

In all cases, the variance of the memory requirements
was reduced considerably by using min-cache. The ratio
between the smallest and largest etrees (in terms of cache
memory) has been reduced for all networks, and is less than
2 for all but two networks. Combined with the lower aver-
age memory requirements, this means that we can expect to
obtain a good etree in fewer tries, on average.

Conclusions
In this paper, we have presented subcaching, a new tech-
nique for reducing the memory requirements of caching in
etrees. The technique demonstrates how two values in a
node’s cache can occupy the same memory, without colli-
sion, based on their non-overlapping lifetimes. Exploiting
this property empirically showed a substantial improvement
in the amount of caching memory required by the etrees
computed from our test networks, without affecting the run-
time of the algorithm for computing over these etrees.

We also presented a heuristic, min-cache, for comput-
ing variable elimination orderings that attempts to reduce
the overall memory requirements of an etree’s cache. min-
cache was used in conjunction with the min-fill and min-size
heuristic, to resolve ties that occur during variable selection.
The heuristic breaks ties by choosing the variable that min-
imizes the lower bound on the amount of memory required
for caching in that variable’s subtree. Our experiments show
that in almost all cases, the average cache size of the etrees
for each network was reduced when compared to using min-
fill and min-size alone. Amongst all experimental networks,
the variance on the amount of memory required was reduced
considerably when using min-cache. This means that by us-
ing min-cache, the chance of obtaining an etree with large
memory requirements is smaller than when it is not used.

For future work, note that while the values in a particular
cache could share a spot in memory, two values from dif-
ferent caches could not share memory. However, it should
be no surprise that there are pairs of cache values between
caches whose lifetimes do not overlap with each other as
well. Thus, by sharing memory between nodes, rather than
simply within nodes, we hope to reduce the memory require-

ments of computing in etrees even further.
Finally, while min-cache chose smaller-memory etrees on

average, the smallest etrees overall were still found without
using this heuristic. Hence, we will continue to explore other
options for heuristics that will not only provide the best re-
sult on average, but also find the smallest tree overall, while
still maintaining the low-variance results of min-cache.

References
Allen, D., and Darwiche, A. 2003a. New advances in inference
by recursive conditioning. In Proceedings of the Nineteenth Con-
ference on Uncertainty in Artificial Intelligence, 2–10.

Allen, D., and Darwiche, A. 2003b. Optimal time–space tradeoff
in probabilistic inference. In Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, 969–975.

Allen, D.; Darwiche, A.; and Park, J. D. 2004. A greedy al-
gorithm for time-space tradeoff in probabilistic inference. In
Proceedings of the Second European Workshop on Probabilistic
Graphical Models, 1–8.

Cooper, G. F. 1990. Bayesian belief-network inference using re-
cursive decomposition. Technical Report KSL-90-05, Knowledge
Systems Laboratory, Stanford, CA, 94305, USA.

Darwiche, A., and Hopkins, M. 2001. Using recursive de-
composition to construct elimination orders, jointrees and dtrees.
In Trends in Artificial Intelligence, Lecture notes in AI, 2143.
Springer-Verlag. 180–191.

Darwiche, A. 2000. Recursive Conditioning: Any-space condi-
tioning algorithm with treewidth-bounded complexity. Artificial
Intelligence 5–41.

Dechter, R. 1996. Bucket Elimination: A Unifying Framework
for Probabilistic Inference Algorithms. In Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelligence, 211–
219.

Grant, K., and Horsch, M. 2005. Conditioning Graphs: Practical
Structures for Inference in Bayesian Networks. In Proceedings
of the The Eighteenth Australian Joint Conference on Artificial
Intelligence, 49–59.

Grant, K., and Horsch, M. 2006a. Exploiting Dynamic Inde-
pendence in a Static Conditioning Graph. In Proceedings of the
Nineteenth Canadian Conference on Artificial Intelligence.

Grant, K., and Horsch, M. 2006b. Methods for Constructing Bal-
anced Elimination Trees and Other Recursive Decompositions. In
Proceedings of the the Nineteenth International Florida Artificial
Intelligence Research Society Conference.

Grant, K. 2006. Conditioning Graphs: Practical Structures for
Inference in Bayesian Networks. Ph.D. Dissertation, University
of Saskatchewan, Computer Science Department.

Kjaerulff, U. 1990. Triangulation of graphs - algorithms giving
small total state space. Technical Report R 90-09, Dept. of Math-
ematics and Computer Science, Strandvejan, DK 9000 Aalborg,
Denmark.

Lauritzen, S., and Spiegelhalter, D. 1988. Local computations
with probabilities on graphical structures and their application to
expert systems. Journal of the Royal Statistical Society 50:157–
224.

Zhang, N., and Poole, D. 1994. A Simple Approach to Bayesian
Network Computations. In Proceedings of the Tenth Canadian
Conference on Artificial Intelligence, 171–178.

103



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


