
The Design and Implementation of a

Successful General Game Playing Agent

David M. Kaiser

Florida International University
11200 S.W. 8th Street
Miami, Florida 33199
dkaiser@mdc.edu

Abstract
General Game Playing is the problem of designing an agent
capable of playing any previously unknown game when
given only the rules. This paper describes the
implementation architecture and design issues behind Ogre,
a General Game Playing agent designed at Florida
International University. Our main contribution is an
innovative algorithm for automatically generating efficient
evaluation functions for previously unfamiliar games. The
system competed successfully at the second AAAI General
Game Playing competition held at AAAI-06.

Introduction

General Game Playing (GGP) is concerned with the
development and use of systems that automate general
cognitive processing technologies (such as knowledge
representation, reasoning and rational behavior)
(Genesereth, Love and Pell 2005). Current specialized
game playing systems are capable of beating the best
human players in many games such as chess, checkers,
Othello and backgammon. However, the spectacular
achievements in these areas have not translated into
success in more than a handful of problems. Therefore,
key concerns in the development of more powerful GGP
systems are to provide an ability to solve a large range of
problems, and to provide the ability to solve more difficult
problems within the same resource limits.
 This paper presents the design and implementation of
Ogre, a fully autonomous agent created to participate in the
second AAAI General Game Playing competition which
was held at the AAAI 2006 in Boston. The main
contribution is an original method for automatically
constructing effective search heuristics based solely on the
game description. The system is fully implemented and
competed successfully at the AAAI-06 General Game
Playing competition. Ogre came in fourth place out of
twelve initial participants.

Copyright © 2007, American Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

General Game Player Design Issues

To compete effectively, game playing agents must make a
series of moves that lead to a final winning position.
However the state space for most interesting games is too
large to search exhaustively, so standard game-playing
search techniques include some variant of the Min-Max
algorithm with Alpha-Beta pruning (Levy and Newborn
1991). The basic principle is to expand a game tree from
the current position, and evaluate each game state based on
a heuristic evaluation function, pruning huge areas of the
search space that appear unpromising.
 To perform well, the evaluation function must be as
accurate as possible. Systems designed to play specific
games use optimization techniques such as opening books
or end game databases to enhance the evaluation function.
World Champion Chess Deep Blue (Campbell, Hoane and
Hsu 2002) has an opening book of 4,000 positions and a
summary of 700,000 grandmaster games. World Checkers
Champion Chinook (Schaeffer, et al. 1996) has perfect
information for over 443 billion end game positions. The
effectiveness of the evaluation function directly impacts
the search for good moves. An accurate evaluation
function allows the system to spend more time on
promising areas of play and less time on obviously bad
moves.
 The central problem for a general game playing agent is
to construct a heuristic evaluation function that performs
efficiently for each different game it confronts. Even if the
agent has access to a set of perfect evaluation functions for
specific games, it must still determine whether or not one
or more of these functions are applicable to the current
problem it is facing.
 In order to perform well, a general game playing agent
must be able to examine the relevant features of different
kinds of games and generate an evaluation function. The
system must also accomplish all this within the limits set
by the operational environment. These limits can include
memory resources constraints, restrictions on the amount
of time available to analyze the game definition and limits
on the amount of time to make moves.

110

Related Work

HOYLE (Epstein 1994) is a system that can learn to play
two-person, perfect information, finite board games. It
uses game independent advisors, weighted for each
particular game to improve its performance. Each advisor
represents a different viewpoint on games playing, and
takes a fairly narrow, but rational, view of the move
selection problem. HOYLE quickly and efficiently
identifies key information about the game but it seems to
require a certain amount of hand crafting (i.e. programmer
intervention) for each new game. HOYLE has learned to
play Tic-tac-toe and Nine-men's Morris perfectly, but it is
unclear how well HOYLE would play more complex
games like chess.
 The METAGAMER program (Pell 1993) is a general
game player that plays a subset of two-person, perfect
information, deterministic games called symmetric chess-
like games, which includes games like checkers and chess.
Using features like piece count, piece mobility, threats,
distance and material value, the METAGAMER system is
able to generate effective evaluation functions for novel
games within its domain.
 The GGP system developed at the University of Texas
(Kuhlmann, Dresner and Stone 2005) competed along with
Ogre’s predecessor, Goblin, in the first GGP competition.
The UTexas system was intended to compete in the same
domain as Ogre, so it is not surprising that they developed
some solutions to common problems that are quite similar
to ours, such as successor function identification. They
also provided interesting solutions to problems not
addressed by the Ogre design such as identifying team-
mates in multi-player games.
 Ogre relies heavily on two of our previous system
designs: Goblin and WAR. Goblin took second place
during the first AAAI General Game Playing competition
at AAAI-05. WAR (Kaiser 2000) is system designed to
play a class of games called Simple War Games. The class
includes both deterministic and non-deterministic games
which are comparable in complexity to checkers and chess.
Ogre and WAR do not play the same class of games, but
Ogre builds on the notion of using a set of modules to
evaluate separate general game features.

The Design of Ogre

Ogre is a GGP agent designed to play any game defined in
the Game Description Language (GDL) and compete
within the Stanford GGP framework. The language is a
subset of first-order logic based on KIF (Genesereth 1991).

GDL is a formal language for defining deterministic
games with perfect information. A game, in which all the
players have complete information of the current game
state, is called a perfect information game. Othello is a
perfect information game because the state of the game is
completely captured by the position of the pieces on the

board. Games in which agents are not privy to the entire
game state, such as Poker or Scrabble, are not perfect
information games. A deterministic game is one in which
the game states are decided entirely by the combined
decisions of the competitors. Checkers is a deterministic
game, but games involving rolling dice or shuffling cards
are considered nondeterministic.

The Stanford GGP framework defines how participating
agents compete. GGP agents are given the game
description, their roles within the game and the time limits
available to analyze the game and the time available
submit moves.

Ogre attempts to generate an efficient evaluation
function. It does so by examining the syntactic structure of
the game definition as well as dynamic features that appear
in the game during a self play stage. Features recognized
solely from the game definition include the dependency
graph, static predicates, successor functions, and turn
counters. Features discovered through self play include
pieces and board position.

Feature Extraction
One feature that the system attempts to identify is the turn
counter. GDL games are guaranteed to end in a finite
number of turns. Many GDL games achieve this by using
a turn counter. These turn counters are particularly vexing
because game states that might otherwise be identical
appear unique when there is a turn counter.

Take for example, an instance of the eight puzzle game
state a) (box 1 b 2 3 4 5 6 7 8) (turn 14) and another game
state b) (box 1 b 2 3 4 5 6 7 8) (turn 19). By identifying
the turn counter, our agent is able to recognize that these
two game states are essentially the same, except that they
occur at different times.
 In order to identify a turn counter it is necessary to first
recognize successor functions. Any series of predicate
functions with the following format are considered
possible candidates for successor functions:

(<successor> <value0> <value1>)

 (<successor> <value1> <value2>)
 (<successor> <value2> <value3>)
 . . .
 (<successor> <valueN-1> <valueN>)

Where <successor> can be any relation constant, and the
<value> components are object constants.

It is then possible to identify predicate functions with the
following format as possible turn counters.

(<== (NEXT (<turn> <varX>))
 (TRUE (<turn> <varY>))
 (<successor> <varX> <varY>))

It is interesting to note that our solution for this problem
is quite similar to that described in (Kuhlmann, Dresner
and Stone 2005). This is likely an artifact of the sample

111

game descriptions that were available during the
development of these systems.

Unfortunately, the method is quite brittle. Encoding the
turn counter differently prevents recognition of this feature.

Identify Static Clauses
Ogre also creates a dependency graph of the predicates in
the game description. The dependency graph identifies
clauses that are static. Figure 1 shows a dependency
graph generated by the system.

GDL contains seven reserved predicates: LEGAL,
TERMINAL, NEXT, GOAL, ROLE, DOES and TRUE. Any
clause that is dependent on the reserved predicates TRUE
or DOES is a dynamic clause. Dynamic clauses can change
from turn to turn and therefore must be continually
reevaluated. A clause that is not dependent on a TRUE or
DOES predicate is a static clause. Static clauses need to be
resolved only one time and are used to optimize the
inference engine for the target game.

The Evaluation Function
Following the approach used in WAR (Kaiser 2000) we
created several evaluators that encapsulate knowledge
about common features found in many classes of games.
This section explains briefly a partial list of evaluators
implemented in Ogre. It should be noted that this list is
incomplete. Many important general heuristics are missing
and the set will likely be expanded upon for future
competitions. The evaluators can be categorized into two
groups based on whether or not they rely on information
derived from the structure of the game or simply the game
definition itself.

Game Structure Evaluators The first group of evaluators
generalizes concepts related to games that involve boards
and pieces. The complicating factor for these evaluators is
that the GDL does not explicitly identify critical features

such as pieces and board locations. In those cases where
the system is unable to identify the required aspects of the
game, these structural evaluators will not be available.
Distance-Initial (Run-Away): measures the

distance between the initial position of a piece and the
current position. This evaluator was intended for racing
game like race-track-corridor and Chinese-checkers.
Surprisingly it also provides a positive influence in games
such as checkers or chess by nudging the agent into early
board development.
Distance-To-Target: measures the distance between

the piece and a target location. Intended for games like
Maze where a piece must be moved to a specific location.
Count-Pieces: measures the number of each type of

piece in the current game state. This evaluator is most
valuable in games where capturing pieces is possible, like
chess. Games like Tic-tac-toe do not benefit from it.
Occupied-Columns: This evaluator measures how

many pieces are in the same column. This evaluator is
intended to provide useful information for games like Tic-
tac-toe, Pente, Connect-4 or the Eight Queens puzzle.

Game Definition Evaluators The second group of
evaluators do not rely on information derived from the
structure of the game. These evaluators encapsulate very
general heuristics that are applicable to a very broad set of
games.
Count-Moves: measures the number of choices

available to each player. In games such as chess it can be
beneficial to limit the choices available to the opponent.
Depth: produces a number inversely proportional to the

search depth. The idea is to give a small preference for
shorter solution paths. The evaluator is intended for
puzzles which usually reward players for shorter solutions,
but other games benefit as well. This evaluator completely
ignores the game state.
Exact: calculates the exact value of the current game

state based on the goal predicates given in the game

Figure 1 – Dependency graph for predicates in the game Towers of Hanoi. Rectangles represent reserved GDL predicates.
Ovals represent game specific predicates. Parallelograms indicate negated predicates. Static predicates are underlined.

112

definition. Depending on the game definition this
evaluator will most often return a value at terminal game
states. This function relies on the Inference Engine and
this is therefore quite expensive.
Pattern: compares the current game state with a

pattern found in the goal state. Helps solve several simple
puzzles quickly.
Purse: measures the value of ordinal symbols in the

game state. This evaluator is intended for games that
involve accumulating items such as gold, chips or money.

The system combines these evaluators into a single
evaluation function by playing games internally against a
player that makes random moves. This method is
described in more detail in the next section.

The Implementation of Ogre

Ogre is written entirely in Java. The system consists of
five key components: HTTP Interface, Parser, Game
Analyzer, Search Engine and Inference Engine. The
overall process architecture of the Ogre implementation is
shown in Figure 2.

Figure 2 – Ogre architecture. The Game Analyzer is used
during the analysis phase before the first turn is submitted.

HTTP Interface
The Ogre HTTP interface is a very simple HTTP server.
The Stanford GGP framework requires that each player
communicates with the Game Master through an HTTP
connection. The Game Master transmits all game

information to the players including the game description,
start time, player moves and final game scores. Players
communicate only with the Game Master, sending legal
moves at the appropriate time.

Parser
Game descriptions and player moves are extracted from the
Game Master messages and sent to the Parser. Ogre uses
the KIF parser built into the Java Theorem Prover (JTP) to
convert the game description, and player moves, into
clauses. JTP is a forward-chaining inference engine
developed at Stanford (Fikes, Frank, and Jenkins 2003). In
addition to the parser, Ogre’s ancestor, Goblin, used the
JTP inference engine to determine game states, legal
moves, goal states and game termination conditions. Ogre
uses an entirely new inference engine. The new inference
engine is significantly faster than the JTP inference engine
and includes several GDL specific enhancements.

Game Analyzer
There are two distinct phases of each match. The start
phase and the play phase. The Stanford GGP process gives
agents a period of time to analyze the game before the first
turn begins. This “start” time can range from as short as a
few seconds, to as long as an hour. Prior to the first
message from the Game Master, agents have no knowledge
of the game rules or the amount of time they will have to
deliberate between moves.

Constructing the Evaluation Function The system uses
approximately 50% of the time given in the analysis phase
for self play. The system first plays two games in which
all players choose their moves at random. This allows the
system to quickly categorize structures that represent
pieces and board locations.

The remaining portion of the self play stage is spent
conducting a series of games whose purpose is to identify
evaluators that are effective for the target game definition.

The algorithm used to select evaluators which involve
pieces is outlined in Figure 3.

SelectEvaluators
FOR each evaluator E

 FOR each piece P
 Create instance of E (En) using P.
 Play one game using En weighted +10.
 IF win THEN

add En to list L
 ELSE
 Play game using En weighted -10.
 IF win THEN

add En to list L
 ENDFOR (piece)
ENDFOR (evaluator)
RETURN list of evaluators L

Figure 3 – Algorithm for selecting evaluators.

HTTP
Interface

Parser

Search
Engine

Inference
Engine

Game
Analyzer

113

Every evaluator returns a positive number. The final
evaluation function is the sum of values returned by all the
selected evaluators. One instance of evaluator is created
for each piece identified in the game definition.

The actual values generated by the final evaluation
function are unimportant. What does matter is that the
function be able to give an assessment of the game state
that is accurate relative to the other game states. Currently,
Ogre assigns similar weights to each evaluator, but it might
prove beneficial to test different weighting strategies.
 Finally with the remaining time in the analysis phase,
Ogre attempts to choose the best first move using the
generated evaluation function. After the first move of the
game is made, the system no longer references the Game
Analyzer.

Search Engine
Since GDL allows multiplayer games, Ogre uses a variant
of Min-Max with Alpha-Beta pruning called the paranoid
algorithm (Sturtevant and Korf 2000). This essentially
assumes that all of the opponents have formed a coalition
and work together against the agent. In practice, this is
unlikely, but the assumption reduces an n-player game to a
two-player game making it possible to implement the basic
Min-Max with Alpha-Beta pruning algorithm with only
minor modification.
 Two common enhancements, iterative deepening
(Russel and Norvig 2003) and a transposition table (Sakuta
and Iida 2000) are also used to improve performance of the
search algorithm. Iterative deepening allows the system to
examine all available moves in a reasonable amount of
time. The transposition table reduces the overhead of the
iterative deepening algorithm by storing the evaluation
results of previously visited game states.

 During development we found that playing certain
puzzles within a reasonable amount of time is completely
impossible without a transposition table. For the
transposition table to operate effectively, however, it is
absolutely crucial that the system identifies potentially
misleading game state information. As noted previously,
many game definitions include elements such as turn
counters. These elements must not be included in the
game state hashing function or the benefits of the
transposition table will be lost.

Inference Engine
Every state of the game, and every game state visited in the
game tree must be interpreted by the inference engine.
Depending on the game definition, Ogre can spend
upwards of 71% of its time doing inferences. At the high
end of the spectrum, in games that have complex
definitions, this seriously limits how much time the system
can spend on analyzing the game structure, as well as how
deeply the system can search the game tree.

As stated previously, Ogre uses an entirely new
inference engine. It is significantly faster than the one used
by Goblin and includes some GDL specific enhancements.
The basic inference algorithm is shown in Figure 4.

The most significant enhancement is the static predicate
cache. As described earlier, static predicates are those
predicates that are not dependent on the reserved GDL
predicates TRUE or DOES. The Ogre inference engine
caches the results of any resolution done on a clause
containing a static predicate.

Solve()
WHILE (TRUE) {
 IF goal stack G is empty

THEN return TRUE
goal G1 <- top literal in G

 IF out of time THEN return FALSE
 IF term of G1 is a static predicate

AND cache contains G1 term
THEN R <- queryStatic(G1)

ELSE R <- literals potentially
unifiable with compliment of G1.

 ENDIF
 FOR each literal L in R
 IF L and G1 unify with mgu θ THEN
 G2 = Unify(L,G1, θ)
 Push right-literals of G2 onto G
 ELSE
 IF backtrack() fails
 THEN return FALSE

ENDIF
 ENDFOR
}

Figure 4 – Inference Algorithm. The queryStatic() function
stores and retrieves literals to/from the cache.

 The static predicate cache can improve the performance
of the inference engine significantly. That is to say that the
system can do more inferences in the same amount of time.
However, this improvement is heavily dependent on the
game definition. Game definitions that make wide use of
static predicates will benefit more than game definitions
which have none or rarely use them. Another concern is
that the amount of overhead necessary to maintain the
cache can cost more in time than it saves.

Assessment

Ogre performed very successfully in the AAAI-06
competition (Love 2006), coming in fourth out of the
initial twelve entrants. There were eleven days of
competition held over the course of three months,
culminating in a final match on the third day of the
conference. Each system played 41 different games
including one-player games (puzzles), two-player games,
and games involving three or more players. Some games

114

were played more than one time, with players switching
sides.

 One-
player
Points

Two-
player
Points

Multi
player
Points

Fluxplayer 1st 1520 80% 2792 59% 350 50%

Cluneplayer 2nd 1145 60% 2895 62% 300 43%

Pires5600 3rd 1000 53% 2923 62% 200 29%

Ogre 4th 825 43% 2322 49% 450 64%
Total
Possible
Points 1900 4700 700

Table 1 – The un-weighted points acquired by the top four
players. Each player had the opportunity to earn 7300 points.

Each match afforded players the opportunity to acquire
up to 100 points. As shown in table 1, Ogre performed
best in games involving more than two players and worst
in puzzles. Ogre received only 43% of the possible points
from puzzles compared to the 1st place finisher Fluxplayer,
which receive 80%. On the other hand Ogre did better
than the top three players in games with more than two
players, winning 64% of the possible points in this
category.

Ogre finished in 4th place while its predecessor, Goblin,
had finished 2nd the previous year. All of the top four
finishers had participated in the first GGP competition and
demonstrated clear improvements in performance.
 On average Ogre is only able to search through 100
game states each second. However, the effectiveness of
the evaluation functions generated by the system seems to
compensate for this serious shortfall.

Conclusion & Future Work

In this paper, we presented the implementation architecture
and design issues behind Ogre, a General Game Playing
agent. We described an innovative methodology for
generating specialized evaluation functions for previously
unfamiliar games.

While the system performed well during competition, it
is clear that there are many areas that could be improved
and much work remains to be done. In addition to new
evaluators and better feature detection the area of overall
system speed should be addressed.

The core inference engine could be made faster.
Because every fact in each game state must be inferred
from the previous state combine with each player’s moves,
a significant percentage of the system’s computation time
is taken performing resolution. While the amount of time
is generally dependent on the game description, it is clear
that improvements in this component would improve the
entire systems functionality.

References

Astrachan, O.L., and Stickel, M.E., 1992. Caching and
Lemmaizing in Model Elimination Theorem Provers, In
Proceedings of Automated Deduction - CADE-11, 11th
International Conference on Automated Deduction, 224-
238.

Campbell, M., Hoane, A. J., Hsu, F. 2002. Deep Blue.
Artificial Intelligence 134(1-2):57-83.

Epstein, S., 1994. Identifying the Right Reasons: Learning
to Filter Decision Makers. In Proceedings of the AAAI
1994 Fall Symposium on Relevance. 68-71 New Orleans,:
AAAI Press.

Fikes R., Frank, G., and Jenkins, J., 2003. JTP: A System
Architecture and Component Library for Hybrid
Reasoning. In Proceedings of the 7th World Multi-
Conference on Systemics, Cybernetics and Informatics.
Orlando, Florida, USA. July 27-30.

Genesereth, M., Love, N., and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AI Magazine
26(2): 62-72.

Kaiser, D. 2000. A Generic Game Playing Machine,
Master’s thesis, Florida International University, Florida.

Kuhlmann, G., Dresner, K., and Stone, P. 2006. Automatic
Heuristic Construction in a Complete General Game
Player. In Proceedings of the Twenty First National
Conference on Artificial Intelligence. p 1457-62.

Levy, D. N. L. and Newborn, M. M., 1991. How
Computers Play Chess. W.H. Freeman and Company.

Love, N., 2006 General Game Playing Competition Results
[http://games.stanford.edu/2006results.html] accessed
September 24, 2006.

Pell, B. 1993. Strategy Generation and Evaluation for
Meta-Game Playing. PhD thesis, University of Cambridge.

Russel, S. and Norvig, P. 2003. Artificial Intelligence, A
Modern Approach (Second Edition), Prentice Hall
International, Inc.

Sakuta, M. and Iida, H. 2000. Solving Kriegspiel-Like
Problems: Exploiting a Transposition Table, ICGA
JOURNAL, 23(4): 218-229.

Schaeffer, J., Treloar, N., Lu, P., and Bryant, M., 1994.
Chinook: The Man-Machine World Checkers Champion.
AI Magazine. 17(1): 21-29.

Sturtevant, N. R., and Korf, R. E., 2000. On pruning
techniques for multi-player games. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of
Artificial Intelligence, 201-207.

115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

