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Abstract

Researchers have reported successful deployments of
diagnosis decision support systems based on Bayesian
networks. However, the methodology for evaluating the
diagnosability for such systems has not been sufficiently
addressed, which consequently hinders the pace of full
embracement of such systems. In this paper, we propose
a methodology to analyze diagnosability for diagnosing
multiple faults for systems with multi-valued discrete
variables. Our analysis procedure is based on comput-
ing the configurations, p-slop MAP, for the top p percent
of posterior joint distribution for faults given evidence.
p-slop MAP enables us to extend diagnosability mea-
sures beyond those developed in system diagnosis liter-
ature. Our analysis results can help not only design for
diagnosability, but also for developing new diagnostic
procedures for systems in service.

Introduction
Several researchers have reported successful deployments
of diagnostic decision support systems (DDSS) based on
Bayesian networks (Middleton et al. 1991; Heckerman,
Breese, & Rommelse 1995; Darwiche 2000; Przytula &
Smith 2004). However, we believe that evaluating the di-
agnosability for such systems has not been sufficiently ad-
dressed, especially for the cases of diagnosing multiple
faults for systems with multi-valued discrete variables. For
example, due to the lack of consensus, IEEE Standards on
Testability and Diagnosability Characteristics and Metrics
only addresses systems with no more than a single indepen-
dent fault(Kaufman & Wilmering 2005). It is obvious that
the inadequacy of diagnosability analysis can slow the ac-
ceptance of DDSS.

More importantly, we see several benefits for the evalua-
tion of system diagnosability. For example, if systems are in
service, the diagnosability analysis result can lead to devel-
opment of new diagnostic procedures or maintenance sched-
ules to improve diagnosability. If systems are in design, the
analysis result can help in sensor placements and built-in test
design to improve the availability of observables. We envi-
sion that diagnosability analysis will be incorporated into
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system life-cycle analysis such that the cost-effective trade-
off analysis among system reliability, functionality, and di-
agnosability could be evaluated.

When evaluating the performance of DDSS, one nor-
mally compares the gold standard with the diagnosis recom-
mended by DDSS for a given case. Gold standards are usu-
ally elicited from domain experts, which may be biased by
recent, unusual, or memorable cases. Diagnosis generated
by DDSS, on the other hand, depends on how conclusions
are drawn from evidence, which are the subjects of repre-
sentation and reasoning frameworks. Even though we can
assume that we can elicit reliable gold standards and gener-
ate appropriate diagnosis, we may still encounter situations
where we have no known cases (e.g., systems which are in
design) or poorly recorded cases (e.g., repair records are col-
lected for the purpose of billing). Therefore, there is a clear
need for a systematic and automated evaluation method for
system diagnosability analysis.

Analysis of system diagnosability have been studied
in model-based diagnostics (MBD) (Simpson & Sheppard
1994; Sheppard & Simpson 1998; Provan 2001). Sev-
eral testability and diagnosability measures have been re-
ported. Although traditional model-based diagnosis was
wide-spread in diagnosing electronic circuit systems, we
found it is difficult to apply MBD to applications where sys-
tem behavior is inherently uncertain and too complex to be
fully represented by model-based representation languages.
Diagnostic decision support systems based on Bayesian net-
works, on the other hand, have become popular in domains
where uncertainty is prominent. However, diagnosability
analysis for such systems receives much less attentions. In
(Middleton et al. 1991), the diagnostic accuracy is eval-
uated for systems with binary variables (a disease present
or absent) for test cases abstracted from Scientific Ameri-
can Medicine. In (Heckerman, Breese, & Rommelse 1995;
Przytula, Dash, & Thompson 2003), Monte Carlo sampling
technique is used to automatically generate test cases for
model evaluation based on posterior marginal probabilities
for faults given evidence. Two possible drawbacks are the
use of posterior marginal probabilities for multiple faults and
the difficulty in sampling cases for the tail end of the distri-
bution.

Our approach to system diagnosability is an automated
system diagnosability analysis procedure based on the com-
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putation of the configurations, p-slop MAP, for the top p per-
cent of posterior joint distribution for faults given evidence.
Instead of drawing diagnosis from the posterior marginal
probabilities, our procedure derives diagnosis from poste-
rior joint probabilities of faults given evidence, which is not
only suitable for single fault diagnosis, but also for diag-
nosing multiple faults for systems with multi-valued vari-
ables. Beyond diagnosability measures developed in system
diagnosis, our procedure computes case-wise, observation-
wise, and model-wise diagnosability measures such as ac-
curacy, sensitivity, and specificity. In addition, we extend an
ambiguity measure for single fault analysis to multi-valued
multi-fault analysis and separability for faults given evi-
dence based on conditional entropy. To address the possible
complexity of MAP computations, we introduce the level
parameter to partition the networks into relevant fragments
with respect to evidence for diagnosability analysis.

In summary, we developed a novel automated system di-
agnosability analysis procedure, which extends current diag-
nosability measures for users to automatically and system-
atically generate the diagnosability for diagnosing fault con-
figurations with respect to the top j percent of observations
manifested by fault configurations and are diagnosed up to
the top k percent of diagnoses. In the following sections, we
will report our diagnostic Bayesian networks, analysis pro-
cedure, diagnosability measures, and examples of analysis.

Diagnostic Bayesian Networks
To represent diagnostic knowledge in a Bayesian network
(BN), we classify each node in BN into one of following
categories: target, observation, and auxiliary. A target node
usually represents a diagnostic interest (e.g., the health sta-
tus of a fuel injector). A target node has at least one tar-
get state, representing a failure mode (fault) of a component
(e.g., a state ”plugged” as a failure mode of a fuel injec-
tor), and at least one non-target state, representing a normal
operational mode of a component (e.g., a state “ok” for an
operational fuel injector). An observation node usually rep-
resents a symptom (e.g., observing an excessive smoking in
engine exhaust), a built-in error message (e.g., the status of
a power supply which is monitored by a feedback signal),
or a test (e.g., measuring the voltage of a battery). An er-
ror message based observation is normally recorded in an
archive when it obtains an abnormal state (e.g. power supply
status is failed). When an error message, which is continu-
ously monitored by a signal, is not recorded in an archive,
one could assume that the error message is in its default ok
state. This is to account for unreported observations (Peot
& Shachter 1998). A node which is neither a target nor an
observation is classified as an auxiliary node, which is usu-
ally used to represent intermediate relations between targets
and observations. An observation node is further annotated
with a Boolean flag, ranked, to specify whether a node will
be ranked in the computation for recommending next ob-
servation to make. We normally annotate a test, but not an
error message or a symptom, as ranked, since the states of
symptoms and error messages are usually available before
a diagnostic session is started and do not need to be rec-
ommended. We call such an annotated Bayesian network a

diagnostic Bayesian network (dBN) (Lu & Przytula 2005).

Diagnosability Analysis
Diagnosability is usually defined as the ease of isolating
faults in a physical system, i.e., whether a physical system
can be properly diagnosed. To analyze the diagnosability of
a system, we need to consider (1) whether there are sufficient
observables and (2) whether observed evidence is properly
reasoned upon to derive diagnosis. There have been several
proposals on how the most likely diagnosis can be drawn
from observed evidence (Poole & Provant 1991). In this pa-
per, we will focus on quantifying sufficiency of observables
by computing diagnosis as p-slop maximum a posteriori as-
signments for target nodes.

The maximum a posteriori probability assignment (MAP)
is the most probable configuration for a set of target vari-
ables given the evidence. The p-slop MAP assignments are
the configurations of a set of target variables which have the
top p percent of posterior joint probability distribution re-
gion given the evidence. The p-slop MAP is selected as our
diagnoses, because we believe that system diagnosability
shall be addressed by posterior joint probability distribution
for the set of target nodes rather than by posterior marginal
distribution for each target node in the set. Please note that
the configurations of a set of target variables given evidence
are derived by max operator in p-slop MAP computation,
whereas the configuration for each target node would be de-
rived from a threshold operator (possibly max operator) over
the posterior marginal probability for each target node. As
a result, p-slop MAP provides a consistent view of overall
status of system diagnosability.

The problem of computing MAP in BN has been shown
to be NP

PP -complete (Park 2002). In addition to meth-
ods for exact inference (Park & Darwiche 2003), there are
several approximate approaches for finding MAP in large
Bayesian networks (Park & Darwiche 2001; Yuan, Lu, &
Druzdzel 2004; Sun, Druzdzel, & Yuan 2007). We use both
SMILE reasoning engine, developed by Decision Systems
Laboratory at the U. of Pittsburgh and SamIam reasoning
engine developed by Automated Reasoning Group at UCLA
for computing p-slop MAP assignments.1

Analysis Procedure

Our diagnosability analysis procedure consists of three ma-
jor phases: case simulation, diagnosis generation, and diag-
nosability scoring. In the case simulation phase, we assume
that there is a generative BN faithfully modeling the gener-
ative distribution of a physical system. We use the genera-
tive BN to generate cases for faulty system, i.e., generating
configurations for observation nodes by injecting faults into
the system. In the diagnosis generation phase, we assume
that there is a diagnostic BN (dBN) faithfully modeling the
diagnostic distribution of a physical system. We instantiate
simulated evidence (observation configurations) into dBN to
compute diagnoses. In diagnosability scoring phase, the de-

1SMILE and SamIam are available for download at
http://genie.sis.pitt.edu/ and http://reasoning.cs.ucla.edu/samiam/.
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rived diagnoses are compared with their corresponding in-
jected faults to compute diagnosability scores.

More formally, the case simulation phase will perform the
following steps:

1. fault simulation: simulate a configuration ti = {tgh|Tg ∈
T} from the generative BN, where each target node Tg ∈
T is put into one of its states, tgh. We will denote the joint
probability for configuration ti as pi.

2. fault injection: instantiate target nodes as ti in the gener-
ative BN.

3. evidence simulation: simulate a set of evidence, ei =
{oi1, . . . ,oij, . . . ,oim}, by computing p-slop MAP from
the instantiated generative BN, where ei is a set of m ob-
servation configurations returned by p-slop MAP, i.e., the
set of observation configurations for the top p percent of
Pr(O|ti). We will denote the posterior joint probability
for evidence oij as pij .

After completing the case simulation phase, we will have a
set of cases w where each case wi ∈ w is a tuple 〈ti, ei〉.

The diagnosis generation phase will loop through each
observation configurations oij ∈ ei to perform the following
steps:

1. evidence instantiation: in the dBN, instantiate observation
nodes as oij;

2. diagnoses generation: generate diagnoses, dij =
{dij0, . . . ,dijk, . . . ,dijn}, by computing p-slop MAP
from the dBN, where dij is a set of n target configurations
returned by p-slop MAP, i.e., the set of target configura-
tions for the top p percent of Pr(T|oij). We will denote
the posterior joint probability for diagnosis dijk as pijk .

After the diagnosis generation phase, we extend wi to a
triple 〈ti, ei,di〉 where di is the sets of diagnoses dij for
each oij ∈ ei.

In the diagnosability scoring phase, we compute diagnos-
ability measures by comparing ti with dijk and aggregate
over ei and wi to derive target-wise diagnosability measures
for ti and model-wise diagnosability measures for w.

We would like to emphasize the importance of the as-
sumption of faithfulness for both generative BN and diag-
nostic dBN. It is normally the case that we will elicit the
generative distribution of a system from design engineers to
build a generative BN, whereas diagnostic distribution will
be elicited from field experts for dBN. However, it is pos-
sible that we can only afford to build one BN. For exam-
ple, when a system is in design, we may only have gener-
ative distribution; or alternatively we only have diagnostic
distribution, because we purchased the system from a man-
ufacture who would not disclose the internal design of the
system. In such a case, we still can perform diagnosability
analysis by replicating a dBN or the generative BN, but we
need to be cautious that we do not violate the faithfulness
assumption.

The fault simulation step in the case simulation phase
could be done in several ways. One way is to systematically
enumerate the configurations of the set of target nodes. Ex-
haustive enumerations will become infeasible for large BN,
since the number of configurations for target nodes grows

exponentially as the number of target nodes increases. Alter-
natively, one can rank the prior joint probabilities for target
nodes and only perform fault simulation for the faut config-
urations, which have the top i percent of probability mass.

When we evaluate diagnosability for large BNs, exact
MAP computations sometimes fail to generate solutions.
Although approximate MAP can yield solution for large
BNs, it is hard to judge the quality for the solutions of ap-
proximate p-slop MAP. In order to evaluate large BN, our
approach allows users to evaluate BN by fragments. The
network fragments are derived by the topological separation
between the injected faults, which is a subset of all target
nodes, and other nodes in our custom layered structure (Lu
& Przytula 2005). Since we constrained ourselves in evalu-
ating diagnosability to one set of injected faults at a time, all
other target variables will not be instantiated. Consequently,
the BN will automatically be fragmented by relevance rea-
soning before p-slop MAP computation in the steps of evi-
dence simulation and diagnoses generation.

Diagnosability Measures
There have been several diagnosability measures developed
in model-based system diagnosability analysis (Simpson &
Sheppard 1994; Provan 2001). Although there is a IEEE
standard on diagnosability measures for systems with single
fault, there is no consensus about diagnosability measures
for multiple faults with multi-valued variables. In this sec-
tion, we define diagnosability measures to quantify diagnos-
ability for systems modeled by dBNs with multiple faults
and multi-valued variables.

Accuracy, sensitivity, specificity
Given a case wi = 〈ti, ei,di〉 generated by our diagnosabil-
ity analysis procedure, we can compute accuracy by com-
paring each diagnosis in dijk with the simulated fault injec-
tion ti. Recall that ti = {tgh|Tg ∈ T}, where each target
node Tg is put into one of its states, tgh. Similarly, a di-
agnosis dijk is {tgh′ |Tg ∈ T} where each target node Tg

is diagnosed as being in one of its states, tgh′ . If a target
node is correctly diagnosed, tgh = tgh′ , we will denote it
as aijkg = 1, and aijkg = 0, otherwise. Let t be the num-
ber of target nodes in T, t = |T|. The accuracy, aijk , for a

diagnosis dijk is computed as aijk =
P

g aijkg

t
. The accu-

racy for diagnosing a fault simulation ti given evidence oij

is weighted by the likelihoods as:

aij =

∑
k aijk × pijk∑

k pijk

. (1)

Next, we can compute the accuracy for diagnosing a fault
simulation ti given the set of evidence ei as:

ai =

∑
j aij × pij
∑

j pij

. (2)

Similarly, we can weight each fault simulation diagnosis ac-
curacy with its likelihood to produce model-wise diagnosis
accuracy:

a =

∑
i ai × pi∑

i pi

. (3)
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In addition to accuracy, we can use similar formula-
tions to compute sensitivity and specificity measures. Re-
call that each target node has a injected state ti and a di-
agnosed state dijk. If the injected state is a target (non-
target) state and its diagnosed state is the same target (non-
target) state, we count it as one of the correctly diagnosed
defects (non-defects). The sensitivity (specificity) is defined
as the ratio of correctly diagnosed defects (non-defects). All
we need to do now is to substitute the definition of accu-
racy with sensitivity (specificity) in Equation 1-3 to com-
pute observation-wise, case-wise, and model-wise sensitiv-
ity (specificity) measures.

Ambiguity
In system diagnosability analysis, ambiguity group refers to
a set of faults that cannot be further isolated given evidence.
Since ambiguity group is defined in terms of faults, we de-
note the set of target nodes which are instantiated into their
target (fault) states in ti as t

f
i . Similarly, we denote the set of

target nodes which are diagnosed in their target (fault) states
in dijk as d

f ′

ijk. We define the ambiguity between ti and dijk

as follows:

αijk = 1 −
|tfi

⋂
d

f ′

ijk|

|tfi
⋃

df ′

ijk|
, (4)

where t
f
i

⋂
d

f ′

ijk is the set of target states for the target nodes
which have the simulated target state the same as the diag-
nosed state, and t

f
i

⋃
d

f ′

ijk is the union of the simulate target
states and the diagnosed target states. The value of αijk

ranges between 0 and 1. Ambiguity αijk = 0 (αijk = 1)
indicates that all faults are correctly (incorrectly) diagnosed.

To see how well a fault simulation ti is diagnosed with
respect to evidence oij, we can average over ambiguity αijk .
The ambiguity αij for ti given evidence oij is defined as:

αij =

∑
k αijk × pijk∑

k pijk

. (5)

Similarly, we can see how well a fault simulation ti is diag-
nosed with respect to the set of evidence ei. The ambiguity
αi for ti given evidence ei is defined as:

αi =

∑
j αij × pij
∑

j pij

. (6)

The model-wise ambiguity can be computed as follows:

α =

∑
i αi × pi∑

i pi

. (7)

Separability
So far, we define diagnosability measures by comparing di-
agnoses with simulated faults (gold-standards) and weighted
by their frequency of occurrence. Separability, on the other
hand, is defined directly on the posterior joint distribution
of diagnoses to see how separable the distribution is. This
is particularly useful when we only have field data without
gold-standards. We can compute the separability by normal-
ized conditional entropy. The separability for diagnosing ti

with diagnoses dij given evidence oij is computed as:

Hdij|oij
=

−
∑

k pijk log pijk

log n
. (8)

Similarly, we can check how separable it is for the pos-
terior joint probability distribution of evidence manifested
by a fault simulation ti. The separability for observing evi-
dence ei given fault simulation ti is computed as:

Hei|ti =
−

∑
j pij log pij

log m
. (9)

Please note that both Hdij|oij
and Hei|ti are computed

from the top p percent of Pr(T|oij) and Pr(O|ti). Hdij|oij

and Hei|ti will become real normalized conditional en-
tropies for Pr(T|oij) and Pr(O|ti), when p = 100.

Example
To illustrate our diagnosability measures, we apply our diag-
nosability procedure to Asia network (Lauritzen & Spiegel-
halter 1988). The network consists of three target nodes,
four observation nodes, and one auxiliary node (see Fig-
ure 1). We duplicate Asia network into two copies one for
case simulation and one for diagnosis generation.

Figure 1: Asia network annotated as diagnostic BN. Tar-
get nodes (Tuberculosis?, Lung Cancer?, and Bronchitis?)
are colored as light blue, observation nodes (Visit to Asia?,
Smoking?, X-Ray Result, and Dyspnea?) as light yellow,
and auxiliary node (Tuberculosis or Lung Cancer?) as white.

Table 1 is the list of prior joint probabilities for all con-
figurations of targets nodes in the Asia network. We see that
the multiple fault configuration t2 is pretty frequent, even
more than the single fault configurations t3 and t4.

Assume that we would like to evaluate the diagnosabil-
ity for at least the top 90% of observations manifested by
t2 using at least the top 95% of diagnoses given the in-
terested observations. Our procedure will first inject t2

onto the Asia network and simulate the evidence e2 for
observation configurations using 90%-slop MAP. Table 2
shows the posterior joint probabilities for observation nodes
given t2. Since we consider at least the top 90% of ob-
servations manifested by t2, we have e2 = {o2,0,o2,1}.
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Next, our procedure performs diagnosis generation phase
for e2. Table 3 and 4 show the posterior joint probabil-
ity for diagnosis given o2,0 and o2,1 separately. Since we
consider at least the top 95% of generated diagnoses, we
have d2,0 = {d2,0,0,d2,0,1,d2,0,2,d2,0,3} and d2,1 =
{d2,1,0,d2,1,1,d2,1,2,d2,1,3}.

The diagnosability measures for each diagnosis of inter-
est are shown in Table 5. With Equation 1, 2, 4, 5, and 6,
we compute observation-wise and case-wise diagnosability
measures of accuracy, sensitivity, specificity, and ambiguity
(see Table 6). As an example, we can read off from Table 6
and claim that the accuracy for diagnosing t2 with respect
to at least the top 95% of diagnoses for observation o2,0 is
0.816861. Similarly, we can read off case-wise accuracy for
diagnosing t2 with respect to at least the top 95% of diag-
noses for at least the top 90% observation manifested by t2

is 0.793075.
To see separability, we use Equation 9 and we have sepa-

rability Hd2,0|o2,0
= 0.830747 and Hd2,1|o2,1

= 0.916433
for how separable the diagnoses are given o2,0 and o2,1.
With Equation 8, we have He2|t2 = 0.5384 for how sep-
arable the observations are manifested by t2. Please recall
that separability is based on the approximate computation of
conditional entropy. If we do use the conditional entropy for
Pr(T|o2,0) and Pr(T|o2,1) as listed in Table 3 and 4, we
have 0.645823 and 0.696556. Similarly, if we compute the
conditional entropy for Pr(O|t2), we have 0.24119.

Now, we have demonstrated how to compute diagnos-
ability measure for t2, we can systematically go through
each target configurations listed in Table 1 to compare their
relative diagnosability or compute the model-wise diagnos-
ability. We can also have different fault simulation strate-
gies: for example, compute diagnosability for faults with
joint prior probability above certain threshold to account for
frequent fault configurations, or compute diagnosability for
faults bellow certain threshold to account rare fault configu-
rations.

Table 1: Prior joint probabilities for target nodes in the Asia
network. Target nodes are abbreviated as B?:Bronchitis?,
L?:Lung Cancer?, and T?:Tuberculosis?. Target states are
abbreviated as p:present and a:absent.

ti B? L? T? Pr(ti)
t0 a a a 0.5210244
t1 p a a 0.4141476
t2 p p a 0.0311724
t3 a p a 0.0232556
t4 a a p 0.0054756
t5 p a p 0.0043524
t6 p p p 0.0032765
t7 a p p 0.0002444

Conclusion
The major contribution of our paper is a novel automated
system diagnosability analysis procedure which can auto-
matically and systematically generate the diagnosability for

Table 2: Posterior joint probabilities for observation nodes
given t2 in the Asia network. Observation nodes are ab-
breviated as D?:Dyspnea?, S?:Smoking?, V?:Visit To Asia?,
and X:X-Ray Result. Observation states are abbreviated
as p:present, a:absent, s:smoker, ns:non smoker, v:visit,
nv:no visit, n:normal, and ab:abnormal.

o2,j D? S? V? X Pr(o2j|t2)
o2,0 p s nv ab 0.8319361
o2,1 a s nv ab 0.0924373
o2,2 p ns nv ab 0.0415968
o2,3 p s nv n 0.0169782
o2,4 p s v ab 0.0080638
o2,5 a ns nv ab 0.0046218
o2,6 a s nv n 0.0018864
o2,7 a s v ab 0.0008959
o2,8 p ns nv n 0.0008489
o2,9 p ns v ab 0.0004031
o2,10 p s v n 0.0001645
o2,11 a ns nv n 0.0000943
o2,12 a ns v ab 0.0000447
o2,13 a s v n 0.0000182
o2,14 p ns v n 0.0000082
o2,15 a ns v n 0.0000009

Table 3: Posterior joint probabilities for target nodes given
observation configuration o2,0 in the Asia network.

d2,0,k B? L? T? Pr(d2,0,k|o2,0)
d2,0,0 p p a 0.4730187
d2,0,1 a p a 0.2452689
d2,0,2 p a a 0.1930688
d2,0,3 p a p 0.0430017
d2,0,4 a a p 0.0222971
d2,0,5 a a a 0.0160891
d2,0,6 p p p 0.0047777
d2,0,7 a p p 0.0024077

fault configurations. It provides the flexibility for users to
specify the observations of interest up to the top j percent
of observations manifested by fault configurations. It also
allows users to specify the diagnoses for the observation of
interest up to the top j percent of diagnoses. Moreover, this
diagnosability analysis procedure can compute novel diag-
nosability measures from various perspectives: observation-
wise, case-wise, and model-wise diagnosability measures.

In (Lu & Przytula 2005), we described a methodology for
building complex dBN (2,147 nodes and 3,650 arcs) for lo-
comotive diagnoses. Our practical experience of applying
this analysis procedure to the locomotive dBN led us to de-
velop the level parameter to partition the large network into
smaller ones so that MAP computation is feasible. Although
we are able to extend our analysis to some network frag-
ments with the level parameter, there are still complex net-
work fragments cannot be addressed. This calls for research
in developing more efficient MAP computation algorithms.

We have also applied the analysis procedure to the the
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Table 4: Posterior joint probabilities for target nodes given
observation configuration o2,1 in the Asia network.

d2,1,k B? L? T? Pr(d2,1,k|o2,1)
d2,1,0 a a a 0.3949117
d2,1,1 a p a 0.2866767
d2,1,2 p p a 0.1433383
d2,1,3 p a a 0.1316372
d2,1,4 a a p 0.0260615
d2,1,5 p a p 0.0130307
d2,1,6 a p p 0.0028957
d2,1,7 a p p 0.0014478

Table 5: Diagnosability measures for d2,0 and d2,1.

d2,j,k Acc. Sen. Spe. Amb.
d2,0,0 1 1 1 0
d2,0,1 2/3 1/2 1 1/2
d2,0,2 2/3 1/2 1 1/2
d2,0,3 1/3 1/2 0 2/3
d2,1,0 1/3 0 1 1
d2,1,1 2/3 1/2 1 1/2
d2,1,2 1 1 1 0
d2,1,3 2/3 1/2 1 1/2

problem of design for diagnosability, for which two versions
of system designs are evaluated for sensor placements. Al-
though the analysis results are informative, we believe that
more research is needed to integrate the design for diagnos-
ability into system design life cycle.
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