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Abstract

Intelligent systems need to store their experience so that it
can be reused. A memory for such systems needs to effi-
ciently organize and search previous experience and to re-
trieve items relevant to the situation at hand. It needs to be
content addressable while providing flexible matching. Pre-
vious approaches to building such memories suffered from
being overly tied to a task or domain.

We propose to separate memory functionality from that of
the system as a way to reduce the complexity of the overall
system and to allow research to focus on the generic aspects
of memory organization and retrieval without the bias of a
specific domain and task. We built such a generic memory
for events. It employs a representation of generic episodes,
uses a multi-layer indexing scheme and provides a generic
API to external systems.

We tested this memory module on three different tasks in the
logistics domain and showed that it performs as well as serial
search in terms of accuracy, while being much more efficient
and more scalable.

Introduction

Remembering past experiences is an essential characteris-
tic of any intelligent system. Such experiences enable the
system to solve similar problems - by adapting previous so-
lutions - and to avoid unwanted behavior - by detecting po-
tential problems and trying to side-step them.

As the tasks that an intelligent system accomplishes be-
come more and more complex, so does the experience it
acquires in the process. A memory for such a system has
to be able to cope with this complexity and make available
the acquired experience for whatever future use the system
may have for if. For example, a planner needs not only to
build plans for a given goal, but also to monitor their execu-
tion in order to detect and avoid failures and to recover from
such failures if they still occur. A memory for such a sys-
tem should be able to store and retrieve past experience by
goals, sequence of actions taken, failures avoided and those
encountered.

Although systems that use memory to organize events
have been presented before (e.g. (Hammond 1986) used
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memory to guide the functioning of a planner, and (Kolod-
ner 1984) used memory to organize events by their time
and place), they suffered from either being too specific to
a task or domain. Recent approaches (Ma & Knight 2003;
Nuxoll & Laird 2004; Sanchez-Marre et al. 2005) have rec-
ognized the need to build memories that can accommodate
more complex and temporally extended experience, in the
form of Episodic Memories (Tulving 1983). However they
embedded the memory module within the system, making it
difficult both to study in isolation and to port to other sys-
tems (Vere & Bickmore 1990; Nuxoll & Laird 2004).

The need for general tools to aid the development of
knowledge-based systems has long been recognized: E-
MYCIN (van Melle, Shortliffe, & Buchanan 1984) sepa-
rates domain specific knowledge (i.e. rules) from the in-
ference mechanisms. We propose to separate the memory
functionality from the system and build a generic memory
module that can be attached to a variety of applications in
order to provide episodic memory functionality. Encapsu-
lating the complexity of such a memory into a separate sub-
system should reduce the complexity of other parts of the
overall system, allowing us to focus on the generic aspects
of memory organization and retrieval and its interaction with
the external application. Each application will use the re-
trieved memories differently, depending on their task. We
do not propose complete solutions for problem solving in
these domains as this would require domain specific knowl-
edge (e.g. for adapting prior experience); rather, the episodic
memory will have a supporting role in problem solving.

A Generic Memory Module for Events
General Memory Requirements

Desired qualities of a generic memory module include: ac-
curacy (memory should return memories relevant for the sit-
uation at hand), scalability (memory should be able to ac-
commodate a large number of episodes without a signifi-
cant decrease in performance), efficiency (memory should
provide efficient storage and recall), content addressability
(memory items should be addressable by their content) and
flexible matching (memory should recall the correct previ-
ous episodes even if they only partially match the current
context).

From a software application perspective, a generic mem-



ory module for events needs to provide: a generic repre-
sentation of events that can be used with different types
of events; a flexible interface that allows various types of
queries to be formulated and provides feedback to the appli-
cation on how these queries were matched against memory,
and domain-independent organization and retrieval tech-
niques that efficiently index events.

Episode Representation

A generic episodic memory needs to have a representation
for a generic episode. Episodes are dynamic in nature,
changing the state of the world in complex ways. Besides a
sequence of actions that make up the episode, the context in
which the episode happens as well as its effect on the world
are important. We propose that a generic episode have three
dimensions: context, contents and outcome. Context is
the general setting in which an episode happened; for some
applications (e.g. planning) this might be the initial state
and the goal of the episode (the desired state of the world
after the episode is executed). Contents is the ordered set
of events that make up the episode; in the case of a planner,
this would be the plan itself. The outcome of an episode
is an evaluation of the episode’s effect (e.g. if a plan was
successful or not, what failures it avoided, etc.).

The idea of indexing episodes based on the different kinds
of information encoded by them is not new - Chef (Ham-
mond 1986) indexed plans both by their goals and by their
failures. We extend this idea by defining three generic di-
mensions for episodes and show that retrieval along one or
more of these dimensions allows the same memory struc-
ture to be used for various memory-based tasks. For exam-
ple a memory of plan goals, their corresponding plans and
whether or not they were achieved by a given plan can be
used for tasks such as:

planning - devise a plan (i.e. a sequence of actions) to
accomplish a given goal. In terms of our representation
this corresponds to memory retrieval using episode con-
text (i.e. initial state and goal of a planning problem) and
adapting the contents of the retrieved episodes (i.e. their
plans).

classification - recognize whether a goal is solvable given
a state of the world. This corresponds to retrieval based
on episode context and using the outcome of the retrieved
episodes (i.e. their success) for classification.

goal recognition - recognize the goal of an agent executing
a sequence of actions. This corresponds to retrieval based
on episode contents (i.e. observed actions) and adapting
the context of retrieved episodes.

The semantics of individual actions (i.e. their applicabil-
ity conditions and goals they achieve), as well as knowledge
about the state of the world is represented using our knowl-
edge base - a library of about 700 general concepts such
as Transport, Communicate, Enter and 80 semantic
relations like agent, object, causes, size (Barker,
Porter, & Clark 2001).

The episode is the basic unit of information that memory
operates on. The decision as to what constitutes a mean-
ingful episode is domain dependent and left to the external
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application to make. In general, an episode is a sequence of
actions with a common goal, which cannot be inferred from
the individual actions taken in isolation.

Memory API

The memory module provides two basic functions: store
and retrieve. Store takes a new Episode represented as a
triple [context, contents, outcome] and stores it in memory,
indexing it along all three dimensions; retrieve takes a stim-
ulus (i.e. a partially specified Episode) and a dimension and
retrieves the most similar prior episodes along that dimen-
sion. Memory retrieval provides also information on how a
stimulus matched the retrieved episodes (e.g. shared struc-
ture, differences, mappings). This information is intended
to be used by the external application that works in connec-
tion with the memory module and helps it better utilize the
returned episodes for its purpose (e.g. adaptation).

Memory Organization and Retrieval

Episodes are stored in memory unchanged (i.e. no gener-
alization) and are indexed for retrieval. We have adopted a
multi-layer indexing scheme similar to MAC/FAC (Forbus,
Gentner, & Law 1995), (Borner 1994) and Protos (Porter,
Bareiss, & Holte 1990): a shallow indexing in which each
episode is indexed by all its features taken in isolation and a
deep indexing in which episodes are linked together by how
they differ structurally from one another.

During retrieval, shallow indexing will select a set of
episodes based on the number of common features be-
tween them and the stimulus. Starting from these can-
didate episodes, a hill-climbing algorithm using semantic-
matching will find the episode(s) that best match the exter-
nal stimulus. A robust memory needs to employ a flexible
matching algorithm, such that old situations are still recog-
nized under new trappings. The semantic matcher we use
(Yeh, Porter, & Barker 2003) employs taxonomic knowl-
edge, subgraph isomorphism and transformation rules in or-
der to resolve mismatches between two representations.

It is the organization of memory given by this indexing
mechanism and the search-based retrieval that sets our ap-
proach apart from those employing a flat memory struc-
ture, that is searched serially (e.g. (Nuxoll & Laird 2004;
Forbus, Gentner, & Law 1995)).

An important parameter that controls the functioning of
the episodic memory module is the number of initial can-
didate episodes that are explored. Given that all stored
episodes might have some - albeit slight - resemblance to
a stimulus, a limit on the number of such candidate episodes
needs to be imposed. Otherwise, the hill-climb process
might explore all stored episodes, failing to scale. This limit
can be set by the external applications.

Experimental Evaluation

We empirically evaluated how the proposed memory archi-
tecture fares against our goals (being generic in nature and
scalable). We chose three different tasks in the logistics do-
main (Veloso 1994): planning (given a goal, find a plan that



would achieve that goal), classification (is a given goal solv-
able?) and goal-schema recognition (given the sequence of
actions, recognize its goal type).

Episodes for all three tasks had the same representation: a
plan goal and initial situation as the context, the correspond-
ing plan that accomplishes that goal for the contents, and
whether or not the goal is solvable (i.e. a plan that accom-
plishes the goal exists) as outcome.

Each of these tasks employed different uses of the mem-
ory retrieval mechanism and used the retrieved episodes
differently. Planning used retrieval based on context and
adapted the contents of the retrieved episodes, recognition
used retrieval based on contents and adapted the context of
retrieved episodes, while classification employed retrieval
based on context and adapted the outcome of the retrieved
episodes. Successfully building and using such a multi-
functional memory structure for different tasks supports our
claim that a generic memory module can be built and that
our proposed architecture is a good candidate for that pur-
pose. Besides the performance at the individual tasks, we
were also interested in how memory behaves as the number
of observed episodes grows.

The Logistics Domain

The logistics domain (Veloso 1994) consists of simple plans
involving delivery of packages among various locations.
There are two types of locations: post offices and airports,
either in the same or in different cities. Within a city, pack-
ages are delivered by trucks, whereas between cities air-
planes are used. If a vehicle is not available at the pick-up
location it has to be moved there from its current location.
We restricted the goals to involve deliveries of a single pack-
age and three cities, resulting in 11 different goal types.

We have randomly generated a set of 250 pairs of goals
and initial situations, so that the distribution of goal types is
close to uniform. In order to generate unsolvable problems,
we generated minimally solvable problems (i.e. containing
the minimal set of instances such that they are solvable),
then randomly removed facts from them. Each fact had a
0.2 probability of being removed, independently of other
facts being removed, thus generating a rather wide variety of
goals and initial situation descriptions. We used the SHOP2
planner (Nau et al. 2003) in order to determine whether a
[goal, initial situation] pair is solvable and if so, to build a
plan that achieves the given goal. The resulting dataset had
129 unsolvable goals and 121 solvable. We used this dataset
for all three tasks described above.

Experimental Setup

For each of the three tasks we have built an EM-based sys-
tem. This required writing a thin interface layer on top of
the EM generic memory module. This consisted of func-
tions dealing with the adaptation and evaluation of the re-
trieved episodes. For all EM systems we limited the number
of candidate episodes explored to 5.

We adopted a storage policy similar to (Smyth & Keane
1995) by storing only episodes for which the retrieved mem-
ory episode could not accomplish its intended task. This re-
duced the memory size without a decrease in performance.
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For each of the three tasks we performed a 10-fold cross
validation, generating learning curves. We measured the
performance of each of the systems in terms of accuracy,
retrieval cost (number of explored episodes per task), and
the scalability of retrieval (number of episodes explored vs.
total number of episodes stored). We have compared our
approach against a k-nearest neighbor algorithm (denoted
here kKNN(5)) that performs a serial search through the mem-
ory of episodes, and retaining 5 most similar episodes. We
chose kNN for two reasons: first, to be able to evaluate the
impact of the indexing mechanism employed by our mem-
ory module; kNN(5) is an ablation of our EM system: it
uses the same semantic match routine to determine simi-
larity between a new episode and an old one and employs
the same storage policy. The most significant difference be-
tween kNN and EM is that kNN’s memory is flat, while
EM’s memory is multi-layered. Second, serial search is the
basic search process employed by memories with a flat or-
ganization.

For the memory-based planning task we eliminated
from the dataset the unsolvable goals, resulting in a total of
121 goal-plan pairs. A retrieved episode is considered cor-
rect if its plan can be easily adapted (i.e. using only variable
substitutions suggested by the memory retrieval function) to
solve the given goal. The plan corresponding to the most
similar episode retrieved was adapted. The results of these
experiments are presented in Figure 1(a)-1(c).

For the memory-based classification task we used all
250 goals, including both solvable and unsolvable goals. A
majority vote by the top 5 most similar retrieved episodes
was used to determine whether a new goal is solvable or not.
The results are presented in Figure 2(a)-2(c).

For the memory-based goal-schema recognition task,
we used only the problems containing non-empty plans,
eliminating those that were unsolvable and those for which
the goal is already achieved (i.e. trivial plans, in which the
package is already at its destination). 109 problems were
left. The goal-schema of the most similar plan retrieved
was used for classification. The results are presented in
Figure 3(a)-3(b). Our goal-schema recognition algorithm
works incrementally, generating predictions after each ac-
tion is seen, therefore we report the number of explored ac-
tions (not episodes) per recognition task. There are an aver-
age of 8.83 actions per episode in the dataset.

Discussion

For all three tasks EM achieves the same accuracy as kKNN(5)
after most training episodes have been seen. Even though
kNN(5) learns faster, EM is able to catch up in the end.

In terms of explored episodes, EM is able to drastically
reduce their number compared to kNN(5). As kNN(5) is an
EM from which the multi-layered organization of episodes
(i.e. indexing mechanism) has been ablated, we attribute the
efficient retrieval to this memory organization technique.

In terms of memory size, EM stores slightly more
episodes than kNN(5). This is explained by the fact that
EM learns slower and in the process stores those episodes
for which it did not perform well when they were first seen.
Without a memory compaction mechanism, these episodes
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are left in memory. However, even having stored more
episodes than kNN(5), EM examines significantly fewer
episodes with respect to the number of stored episodes. This
shows that EM’s retrieval scheme is scalable. Another ar-
gument for this is that even though the number of episodes
stored by EM increases, the number of explored episodes per
task stays constant (Figure 2(b)) or even decreases (Figure
1(b)).

A limitation of using artificial plan corpora (like the one
used here) for goal-schema recognition tasks is that plan-
ners usually optimize for some parameter (plan length, cost,
etc.), generating the same sequence of actions in a plan every
time a similar goal is seen. This is less than desirable since
real world plans rarely display this characteristic. We have
used the same goal-schema recognition algorithm on real-
world data, achieving performance comparable to statistical
approaches (Tecuci & Porter 2006). In the future, we plan to
apply the same approach on plan corpora specifically gener-
ated for recognition tasks (e.g. (Blaylock & Allen 2005)).

Related Work

Early attempts to build a memory for events explored ideas
from (Schank 1982) and include Cyrus (Kolodner 1984)
which designed a memory for organizing events by their
time and place and Chef (Hammond 1986), a case-based
planner that indexes its plans by the goals they achieve and
the failures they avoid. The Basic Agent (Vere & Bickmore
1990) was the first system to use a separate episodic mem-
ory in conjunction with an intelligent system; it employed
two such memory modules, one made up of simple recog-
nizers, used for text generation, and the other for guiding
the planner’s backtracking mechanism.

(Nuxoll & Laird 2004) designed the most advanced cog-
nitive model of an episodic memory, implementing all the
functional stages proposed by (Tulving 1983). Its main lim-
itations are the fact that it is embedded in the Soar architec-
ture, the flat episode organization and serial search strategy
which results in retrieval time linear in the number of stored
episodes. Our approach addresses the same problem of
building a generic episodic memory, but it does not embed it
in a generic cognitive architecture, trying to be architecture-
independent. The interaction between the overall system and
the memory module needs to go through a well-defined in-
terface. In terms of retrieval, Soar EM uses all the features
of an episode during retrieval, while EM will only use the
subset corresponding to a specific dimension. An impor-
tant difference is that retrieval in Soar EM is a serial search
through the entire episodic memory, while EM employs hill-
climbing through the space of memory structures. Soar EM
uses simple feature match algorithm for computing the sim-
ilarity between the cue and a prior episode, while EM makes
use of a semantic matcher.

More recently there has been a lot of interest in the CBR
community in incorporating temporal information in the
stored cases. (Ram & Santamaria 1997) recorded raw data
from prior actions to improve navigation. Although it em-
ploys matching during retrieval, cases consist entirely of
quantitative data and have a fixed structure. (Ma & Knight
2003) propose the use of a relative temporal knowledge
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model to support historical CBR. Similarity has two com-
ponents: non-temporal (based on elemental cases) and tem-
poral (based on the graphical representation of the temporal
references).

(Sanchez-Marre et al. 2005) propose Episodic-Based
Reasoning (EBR) as an extension to CBR in order to cope
with dynamic or continuous temporal domains. Tempo-
ral sequences of simple cases form an episode. Different
episodes can overlap, thus having simple cases in common.
Cases use a flat representation, while Episodes are organized
using discrimination trees. Sets of episodes considered to
share an important pattern are grouped in meta-episodes
(called Episode Bases). Retrieval proceeds in a top-down
fashion, by selecting a meta-episode first and then search-
ing inside the corresponding episode-bases. Similarity of
episodes based on their set of events is computed by looking
at each pair of corresponding events (simple cases), in tem-
poral order. Both our approach and EBR address the same
questions: how to represent temporal sequences of events,
how to organize and retrieve them efficiently, and how to
assess similarity between such episodes. EM does not ad-
dress the problem of determining the extent of an episode,
leaving that to the application that uses the memory mod-
ule. In EBR an episode consists of a description, a solution-
plan and a solution-evaluation, corresponding roughly to our
three dimensions (context, contents and outcome). However,
retrieval in EBR is only performed on the episode sequence
of events, while EM allows retrieval on context and outcome
as well. Another important difference is the underlying rep-
resentation of cases, for which EBR uses an attribute-value
representation, while we employ a frame-based representa-
tion.

Related approaches also include the application of case-
based reasoning technology to experience management (Al-
thoff & Weber 2005), where the intended target is either
human (the experience factory of (Althoff er al. 1998)) or
machine (the lessons learned of (Weber, Aha, & Becerra-
Fernandez 2001)).

Conclusions

Although there is agreement that intelligent systems could
benefit from reusing their prior experience, the form that this
experience should take is still debated. In this paper we ar-
gued that the memory module should be separated from the
system that uses it and that it is possible to build a generic
memory module for this purpose. Such a memory module
is not intended to provide complete solutions for problems,
but to have an assisting role.

We presented an architecture for a memory module for
events that provides accurate and efficient retrieval, flexi-
ble matching, is scalable, and content addressable. It uses
a generic representation for events that divides an episode
into its context, contents and outcome. Interaction with ex-
ternal applications is done through a simple API composed
of a store and retrieve functions. Episodes are indexed using
a two-tier process: shallow (looking at features in isolation)
and deep (looking at how episodes differ structurally from
each other). Generic storage and retrieval mechanisms that
exploit this indexing structures were presented. Compared



to similar approaches, our memory module is architecture
independent, uses semantic matching for retrieval and gen-
erates an indexed memory structure.

We evaluated the proposed memory module on three dif-
ferent tasks in the logistics domains: memory-based plan-
ning, memory-based classification and goal-schema recog-
nition. Empirical evaluation showed that the indexing mech-
anism maintains the same level of performance but signifi-
cantly improves retrieval efficiency compared to a nearest-
neighbor algorithm. The storage and retrieval strategies
proved scalable: even though the number of stored episodes
grew linearly, the number of explored episodes remained
constant or grew at a much slower rate. The fact that the
same memory organization and retrieval mechanisms were
successfully applied to three different tasks supports our
claim that the memory module is generic.

Any long-term memory needs to revisit the items stored
during its past execution and decide whether to delete them
(i.e to forget) or not. Under our current storage policy the
decision to store is made when the episode is first seen and
never reversed. We intend to look at forgetting policies in
order to make memory structure more efficient.
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